
A Construction for
One Way Hash Functions

and
Pseudorandom Bit Generators

Babak Sadeghiyan
and

Josef Pieprzyk'

Department of Computer Science,
University College,

University of New South Wales,
Australian Defence Force Academy,

Canberra, A.C.T. 2600,
Australia.
Abstract

We prove that if j is a n-bit one-way permutation, i.e., it has some hard bits, a one-way
permutation with n - k provably simultaneous hard bits can be constructed with it. We apply
this construction to improve the efficiency of Blum-Micali pseudo-random bit generator. Then,
we apply the construction to propose a new approach for building universal one-way hash
functions. This approach merges Damgard's design principle (or Merkle's meta-method) and
the method proposed by Zheng, Matsumoto and Imai for the construction of hash functions for
long messages.

1 Introduction
Consider a situation when a communicant A, sends a message to a receiver B. In order to protect
the message against forgery, A should sign the message. If the length of the message is long, the
efficient method is transforming all the message to a short string with a public hash function h,
then signing the hash value.

The hash function simply maps messages of arbitrary length to some small fixed length, and
should satisfy four properties:

1. h should have the property that for any given message z and hash value h(z) , finding another
message y such that h(y) = h(z) , z # y, is computationally hard. In other words, a hash
function has to be collision free.

'Support for this project was provided in part by Telecom Australia under the contract number 7027 and by the
Australian Research Council under the reference number A48830241.

D.W. Davies (Ed.): Advances in Cryptology - EUROCRYPT '91, LNCS 547, pp. 431-445, 1991
0 Spnnger-Verlag Berlin Heidelberg 1991

432

2. h should be one-way so that messages are not disclosed by their signatures.(Properties 1 and
2 are related to each other.)

3. h should have the property to be computed over the entire message (with different lengths).

4. h should destroy the homomorphic structure of the underlying public key cryptosystem used
for the signature scheme (for a detailed discussion see [9],[14],[15],[21]).

Several approaches for constructing hash functions based on DES have been proposed (see [l]).
Unfortunately, DES suffers from small key space and also has some undesired properties such 89

complementation property, i.e., edm) = m. In [ZO], it is shown that some of these hash func-
tions are not collision free. Several other proposals based on DES appear in [19],[23],[18], [28],[29],
which try to overcome these drawbacks. Some other hash functions based on RSA and squaring
modulo n appear in [16],[10]. Attacks to some of these constructions appear in [6],[10]. Later,
Damgard (71 constructed hash functions based on the existence of a claw free pair of permutations,
which was the first for which collision freeness could be proven.

The current trend in cryptography is to provide the construction of basic primitives with general
cryptographic assumptions that are also as weak as possible (it is theoretically important to base
cryptographic primitives and basic tools on reduced complexity assumptions). It is also practically
important to give efficient implementation of such constructions [24].

Two formal complexity-theoretic definitions have been suggested for cryptographic hash func-
tion families. The first family of hash functions, defined by Damgard, is the Collision Free Hash
hnctions (CFHF) or Collision Intractable Hash F'unctions (CIH). In this family, the function is
given but finding a pair which map to the same output is difficult (see [S] for the precise dehi-
tion). The second family, defined by Naor and Yung [22], is the Universal One Way Hash F'unctions
(UOWHF). This family is weaker and if given an input and any function from the family, it is
difficult to fmd another input which collides with it.

Naor and Yung [n] showed that a secure signature scheme reduces to the existence of UOWHF.
They constructed a family of UOWHF from any one-way permutation and a family of strongly
universal2 hash functions, which was introduced in [5],[27], with collision accessibility property. In
their construction, the one-way permutation provides the one-wayness of the UOWHF, and the
strongly universal2 family of hash functions performs the mapping to the small length output.
When a member is chosen randomly and uniformly from the family, the output is distributed
randomly and uniformly over the output space.

Santias and Yung [25] constructed the family of UOWHF from any 1 to 1 one-way function.
They also proposed another construction from any one-way function with almost known pre-image
size. Zheng, Matsumoto and Imai [32] built a family of UOWHF from any quasi-injection one-
way function with the application of a pair-wise independent uniformiser and a family of strongly
universal2 hash functions. Ftompel [24] gave a construction for one-way hash functions from m y
one-way function and proved that existence of one-way functions is a necessary and sufficient
condition for constructing hash functions. However, although his work is theoretically optimal, it
is less than practical.

In this area, each successive paper has assumed weaker conditions for the one-way function and
has made hashing and additional procedures more complicated, such that Rompel's scheme can be
constructed trom any one-way function but needs too many additional procedures. In contrast, in
this paper we construct a one-way permutation with some stronger properties but apply a simple
hashing procedure, simply chopping or selecting arbitrarily some bits of the output.

On the other hand, for the construction of pseudo-random bit generators (PBG), Blum and
Micali [3] discovered hard-core predicates b of functions f. Such b(z) cannot be efficiently obtained,

433

given f(x). They applied this notion to construct a PBG based on the intractability of the discrete
logarithm problem. Yao I301 generalises this by showing that a PBG can be constructed from any
one-way permutation. He transforms any one-way permutation into a more complicated one which
has a hard-core predicate. Similarly, later works in this area have tried to make generalisations
and assume weaker conditions (for example see [12], [13]).

In this paper, we present a method such that given an n-bit one-way permutation, i.e., it
has some hard bits, a one-way permutation with n hard bits can be constructed, which we call
a strong permutation. We apply this strong permutation to present a construction for pseudo-
random bit generators with maximum efficiency, based on the Blum-Micali pseudo-random bit
generator. We also present a method to build a universal one-way hash function from the strong
permutation. Hence, given a one-way permutation, we can construct both an efficient pseudo-
random generator and a universal one-way hash function. Zheng, Matsumoto and Imai [31] revealed
a duality between pseudo-random bit generators and UOWHF. Applying the revealed duality, they
presented a construction for UOWHF which is a dual of the construction of Blum-Micali PBG.
We show that by the application of the strong permutation, Zheng et al.'s scheme and Damgard's
design principle for construction of hash functions merge with each other, and would yield the
same result. As the result, our proposal yields an algorithm that can be used both for generating
pseudorandom bits, and hashing long messages. This has a practical significance, since it would
not be necessary to use two different algorithms for implementing these two cryptographic tools.

2 Notations
The notation we use here is similar to [31]. The set of ail integers is denoted by N. Let C = (0 , l)
be the alphabet we consider. For n E N , C" is the set of all binary strings of length n. The
concatenation of two binary strings x,y is denoted by x 11 y. The length of a string x is denoted

Let 1 be a monotone increasing function from N to N and f a function from D to R, where
D = U, D,, D, C C" and R = U, R,,, R,, E C'("). D is called the domain and R the range of f .
Denote by fn the restriction off on En. f is a permutation if each fn is a 1 to 1 and onto function.
f is polynomial time computable if there is a polynomial time algorithm computing f (x) for all
x E D. The composition of two functions f and g is defined as f o g(x) = f(g(x)). The i-fold
composition of f is denoted by f (i) .

A (probability) ensemble E, with length I (.) , is a family of probability distributions {En I
En : El(") -t [O,l],n E N } . The uniform ensemble U with length l (n) is the family of uniform
probability distributions U,, where each Un is defined as Un(z) = &, for all x E El("). By
x EE El(") we mean that z is randomly selected from according to En, and in particular by
x er S we mean that x is chosen from the set S uniformly at random. E is samplable if there is an
algorithm M that on input n, outputs an x EE El("), and polynomially samplable if the running
time of M is also polynomially bounded.

by I x I.

3 Preliminaries
Definition 1 A statistical test is a probabilistic algorithm T that on an input x, where x is an
n-bit string, halts in O(n t) and outputs a bit 011, where t is some fixed positive integer.

434

Definition 2 Let 1 be a polynomial, and E' and EZ be ensembles both with length Z(n). EL and
E2 are called indistinguishable from each other, i j for each statistical test T , for each polynomial
Q, for all suficiently large n,

I Prob(T(x1) = 1) - Prob(T(z2) = 1) I< I
Q(n)

where 51 EQ El("), z2 E i p C'(").

Definition 3 A polynomially samplable ensemble E is pseudorandom i f it is indistinguishable from
the uniform ensemble U with the same length.

Definition 4 Let f : D + R, where D = U, C" and R = U, El("), be a polynomial time computable
function. W e Jay that f is one-way i f for each probabilistic polynomial time algorithm M , for each
polynomial Q and for all suficiently large n ,

where x Eu D,.

Note that the one-way property of a function is relative to a specific model of computation with
a specific amount of computing resources.

Deflnition 5 We say we have a computing resource for k bits i f given the output of a one-way
function and n - k bits of the input string, one can define the remaining k bits of the input string
b y ezhaustive search.

For the remaining of this paper we assume that we have a computing resource for at most k
bits.

4 Hard Bits
If a function f is one-way then given f(z) the argument z must be unpredictable. If every bit
of the argument G were easily computable from f(z), then f would not be a one-way function.
Therefore, some specific bits of the argument are unpredictable, and we cannot guess them better
than by flipping a coin. We c d these bits hard bits of f .

Definition 6 Let f : D + R be a one-way function, where R = U, C" and D = U, El("). Let i (n)
be a function fPom N to N with 1 5 i(n) 5 n. If for each probabilistic polynomial time algorithm
M , for each Q and for all suficaently large n,

1 1
P r o b i M (f n (l)) = 4(n)) < 5 + &O

where I E, C" and xi(,,) is the i (n)- th bit of an x' E C" satisfying f (s) = f(z'), then i (n) - th bit is
a hard bit o f f [31].

Note that the definition of hard bits implies that a hard bit depends on al l bits of f (x) under
f -', where f -l is a hard problem.

435

Lemma 1 The number of hard b i h defines the dif iculty of inverting a one-way function.

Proof: Assume that only a small number of bits of a function are hard bits and, when the output
is given, we can obtain every remaining bit with a probability better than f + & in polynomial
time. A probabilistic algorithm M that first predicts the easy bits and then does an exhaustive
search for finding hard bits can inverse the function f in polynomial time with a probability at
least better than &. For example, consider that a function has been proven to have only log,(n)
hard bits and n = 512 then only 9 bits are hard. If we have a computing resource for more than 9
bits, which we usually have, then given the output, the input can be obtained in polynomial time
with a probability better than &. 0

Hence, a one-way function should have at least k + 1 hard bits.

Lemma 2 All the hard bits are independent of one another.

Proof : (By contradiction) assume that the i1,iz-th bits are hard bits that are dependent on
each other and there is a probabilistic algorithm M that can calculate il-th bit given both f (z)
and iz-th bit with a probability better than &. Then, we can construct a probabilistic algorithm
M' for guessing il-th bit.

Algorithm MI:

1. Guess iz-th bit with flipping a coin (guess with probability 0.5).

2. Given iz-th bit and f (z) , run M and find il-th bit.

then Prob{M'(f (z)) = zil} > $ + &; which is a contradiction. 0

Fkom the above Lemma we draw the following corollary.

Corollary 1 Let f : D + R be a one-way function, where R = U, C" and R = U, C'("). Assume
f has t hard bits, t < n - k, and j < k of t hem and f (z) are given, we cannot predict any of the
remaining t - j hard bits with a probability better than

Definition 7 Let 1 be a polynomial, and E be a n ensemble with length l(n). We say that E passes
the nezt bit test i f for each statistical test TI for each polynomial Q, for all suficiently large n,
the probability that on input the first i bits of a sequence z randomly selected according to E and
i < Z(n), T outputs the (i + 1) th bit of z is:

+ &.

1 1
P r o q T (z l , . . . ,xi) = 1) < - + -

2 Q(n)

where z EE El(").

The following theorem is derived from [Yan 821 and has been stated in [2], [3], [ll] in different
terms.

Theorem 1 Let E be an polynomially samplable ensemble, the following statements are equivalent:
(i) E passes the nezt bit test.
(i i) E is indistinguishable from the uniform ensemble U.

In other words, the indistinguishability test is equivalent to the unpredictability test.

436

Corollary 2 Assume that f : D -+ R is a one-way function, where D = U,, C" and R = U,, C'(").
Abo assume that il, i 2 , . . .,it are functions from N t o N , with 1 5 ij(n) 5 n for each 1 5 j 5 t ,
t < k and each i j denotes a hard bit o f f . Denote by Et and the probability distributions
defined by the random uariables zit(,,) . . . z;+) zil(,,) 11 f(z) and rf . . . r2 r1 11 f(z) respectively, where
I E, C", zi,(,,) u the ij(n)-fh bit ofz and r, E, C. Let E1 = (E,! I n E N } and EZ = {E: I n E N},
then E' and E' are indistinguishable fi.om each other.

Proof : Fkom Corollary 1, it can be concluded that every string of t < k hard bits paaaes
the next bit test. This is equivalent to saying that given f(z), any string of t < k hard bits is
indistinguishable from a string chosen uniformly at random from C', according to Theorem 1. 0

In other words, given f(z), any string of t < k hard bits is indistinguishable from random
strings. Such hard bits are called simultaneous hard bits of f. Note that the maximum number of
simultaneous hard bits of any one way function can not be more than n - k.

Blum and M i d discovered the notion of hard core predicates of functions and applied it to
construct pseudorandom bit generators (PBG).

De5nition 8 Let 1 be a polynomial with l (n) > n. A pseudorandom bit generator is a determinib-
trc polynomial t ime funct ion g that upon receimng a random n-bit input, eztends it into a sequence
of l (n)-bi t pseudorandom bits bl, b, . . . , bq,) OJ the output.

In other words:

1. Each bit 6 k is easy to compute.

2. The output bits are unpredictable, in other words the output string passes the next bit test,
i.e., given the generator g and the f ist s output bits 61,. . . , b,, but not the input string, it is
computationally infeasible to predict the (s + 1)th bit in the sequence [3].

The following theorem describes Blum-Micali PBG [3].

Theorem 2 Let 1 be a polynomial with l(n) > n, and let f be a one-way permutation on D = U, C"
and i(n)-th bit u proven t o be a hard bit off . Let gn be a funct ion defined

1. Generate the sequence f,?(z), fi2)(z), . . . , fi'("))(z), where I E C".
2. h m right t o left (!), eztract i - t h bit from each element in the above sequence and output

follows:

that bit.

so, gn(z) = b+,)(s). . . b(s) b(z) where z E C" and b j (s) = (the i-th bit of f,?(z)). The g = (gn I
n E N } i s a pseudorandom bit generator eztending n-bit into l (n)-bi t output strings.

If i l(n), . . ., it(n)-th bits are simultaneous hard bits o f f , then the efIiciency of g can be improved
by defining the b j (z) to be a function which extracts all known simultaneous hard bits of f(j)(z).

In [2], it has been proven that the logz(") least significant bits of RSA and &bin encryption
functions are simultaneously hard. Hence, if we use RSA or Rabin functions instead of the one-way
permutation, with each iteration of the function we can extract log,(n) bits. For example, if n is
equal to 512 and we would like to produce a 512 bit pseudorandom string, we should iterate the
one-way function for [&I = [,q5't12 1 = 57 times. If a one-way permutation has more h o r n
hard bits, we can use it instead o f a o r Rabin function and obtain a better efficiency.

437

5 A Strong One Way Permutation
In this section we construct a one-way permutation with maximum number of hard bits, which can
be used for the construction of both the Blum-Micali pseudorandom bit generator and one-way
hash functions. Before describing the construction some preliminary definitions are given.

Definition 9 A transformation is called complete if each output bit d e p e n h o n all input bib. In
other words, the simplest Boolean ezpression fo r each output bit contains all the input bits.

Definition 10 If the inverse of a complete tramformation i s also complete, i t u described as being
two way complete. I n other words, each output bit depends o n all the input bits and vice-versa.

Lemma 3 If a permutation is complete, then it is also two way complete.

Definition 11 If the correlation between two binary variables is zero, they are called independent
variables.

(See [26], for the definition of correlation.)

Definition 12 Let v be a complete permutation and all the output bit3 be painuise independent.
W e call v a perfect permutation.

Kam and Davida [17] presented a method where an entire substitution-permutation network
could be guaranteed to be complete if all the substitution boxes used in the procedure were com-
plete. DES is an example of a complete cryptographic transformation. Since DES is reversible and
the reverse function (decryption) has the same structure as encryption, DES is a two way com-
plete transformation. Webster and Tames (26) showed that there is very little correlation between
output variables of DES. So, we can conclude that DES is an example of a perfect permutation, in
our definitions. Brown (4) has used the known design criteria of DES to build an extended 128-bit
DES and has shown that his scheme has similar cryptographic properties to DES. Extending the
DES structure for more bits, for example 512 bits, has the disadvantage that the running time
would be relatively high and would be comparable to public key cryptosystem. For the following
theorems, we use a two way complete permutation such that only k + 1 output bits are independent
of other bits and we call it a k + 1-bit perfect permutation, which has much looser requirements
than a perfect permutation. If we consider k = 63, a k + 1-bit perfect permutation can easily be
constructed with the Kam and Davida method, plus a single DES block.

Lemma 4 Let f be an n-bit one-way permutation and V be the set of all n-bit permutations, then
m = f o u o f is also a one-way permutation with a probability better than 1 - &, when v Er V .

Proof : Both f and v are permutations and f is a one-way permutation, so the result of their
composition would be a permutation. The probability that m would not be a one way psmutation
is equal to the probability of finding f-' (or any linear function of f - ') from V by chance and is
equal to &. 0

If we put some conditions on v and f , m can be made to be a permutation with the desired
properties.

438

Theorem 3 Let m : D D be a one-way pernautation where D = U, C" and m = f o v o f,
where f is a one-way permutation, i .e. , it has at least k + 1 hard bits, and w i s a k + 1-bit perfect
permutation where the positions of independent output bits comply with the position of hard bits of
f . For each probabilistic polynomial time algorithm M, for each Q and for all suficiently large n,

1 1
Prob{M(m(z)) = zi} < - + -

2 Q(n)

where z E, C" and xi is the i - th bit of the I, and 1 5 i 5 n. In other words, each bit of x is a hard
bit of m.

Proof : (By contradiction) we show that if an algorithm could find ii, it would be able to invert
f . For simplicity of notation, we indicate the first one-way function with f1 and the second one
with f2, so m = f2 o v o f1. Assume that M is an algorithm that given m(z), can predict 2; with
a probability bigger than f + & (zi is not a hard bit of m). Two situations may arise;

(a) when 5; is not a hard bit of f1:

Since the i-th bit is not a hard bit of f1, then given fi(z), there exists an algorithm M' that
can find the i-th bit with a probability bigger than f + 1.

Without loss of generality, consider w to be an invert1 le permutation. Due to the two way
completeness property of u , all bits of v o fl(z) depend on all bits of f l (z) and vice-versa. So, to
obtain f i (z) , we need to know all bits of w o fl(z). Since v is an invertible function in polynomial
time, then given u o fl(z), it is possible to find the i-th bit of z,

Q'?b

1 1
Prob{M'(v o f1(x)) = 2;) > - + -

2 Q (n)

the probability equation simply says that we can predict z, by tossing a coin with probability 1/2
or estimating it given v o f l(s) with a probability better than l /Q'(n). In other words,

1 Probtestimating xi I u o fl(x)} > -

Without loss of generality, we assume that f2 is a one way permutation such that given a f2(y),
we can guess n - k - 1 bits of y efficiently. Moreover, the k + 1 independent bits of v comply with
hard bits of fa, and knowing some other bits of v o fi(z) (i.e., other than independent output bits
of v) and w , we cannot calculate all bits of w o f i (s) . In accordance with the assumption that the
i-th bit is not a hard bit of m, the following is also held:

Q (n)

- < Probtestimating z; I f2 o u o fl(z)}
1

Q(n)
= Probtestimating xi I v o fi(z)}.Prob{obtaining v o fl(z) I f2 o w o f i (z) }

Since the multiplication of two polynomial expressions is another polynomial expression, then
for some polynomial Q , the following holds:

1 Probtobtaining u o f l (x) I f2 o u o fl(z)} > -
Q(n)

This is equivalent to inverting fi and contradicts our assumption that fi is a one-way permutation.
(b) when the z; is a hard bit of f1:

by performing a procedure similar to the case (u), it is obvious that the i-th bit should also be
a hard bit of m. 0

439

Lemma 5 Let m = f i o v o f i be a one way permutation defined in Theorem 3. I n addition,
consider f l to be a one way permutation such that given a t < n - k bits of x , no e > k b i b of
f (x) can be guessed with a probability better than f, then given m (x) and the t < n - k bits of x,
m (x) can not still be reversed.

Proof : Since t < n - k bits of x is known, the value of f l (x) can be guessed with a probability
equal to A, where n - t > k. Hence, with v being a two way complete permutation, any bit of
v o f l (x) can not be estimated with a probability better than < 3. On the other hand we
assumed that given f 2 o 2, o fr(z), n - k - 1 bits of v o f i (x) could be guessed efficiently. Since the
position of hard bits of f z comply with the positions of independent bits of v, given n - k - 1 bits
of v o f l (x) , we can not still estimate the E + 1 independent output bits of v with a probability
better than &. Then the only possibility for reversing m is that the hard bits of fi and the
t < n - k bits of x be related to each other with some function such that revealing the t bits of
x makes estimating the hard bits of f i probable. Such possibility has been excluded by assuming
that fl is a one way permutation such that given a t < n - k bits of x , no t > k bits of f (5) can
be guessed with a probability better than &. Because, even if v o f l (x) and f l (x) are related to
each other with a system of linear equations, knowing n - k - 1 bits of v o f l (x) and e < k bits of

0 the f l (x) , the system of equations can not still be solved.

two or more parts, for example f (2 1 11 x 2) = X I 11 g(z2).
Lemma 6 Let m = f2 o v o fi be the one way permutation defined in Theorem 3. In addition,
consider f l to be a one way permutation such that given any string o f t < n - k bits of x , any
e < k bits of f i (x) can not be evaluated with a probability better than $-, then given m (x) and any
string o f t < n - k bits of x , rn can not be reversed.

Note that, the conditions of Lemma 5 for fi only excludes one way permutations that split into

Lemma 6 simply suggested a construction for a one-way permutation m such that each bit of x
is a hard bit of m and given any t < n - E bits of x and m (x) , m can not be reversed. We call such
a permutation m a strong one-way permutation or simply a strong permutation. The following
corollary can be drawn from Lemma 6.

Corollary 3 Assume that m : D -+ D is a strong one-way permutation, where D = U, C". Also
assume that i l , i z , . . . , i t are functions f r o m N to N , with 1 5 i l (n) 5 n for each 1 5 j 5 t ,
t < n - k. Denote by E: and Ei the probability distributions defined by the random variables
x,,(.) . . . xi2(,,) xil(,,) 11 m (x) and r t . . . r2 rl)I m (x) respectively, where x Er C", xi,(,,) is the i j (n) - th
bit of x and rj E~ C . Let E' = {Ei I n E N) and E2 = {E: 1 n E N } , then E' and E2 are
indistinguishable)+om each other.

In other words, any string of t < n - k bits of x is indistinguishable from random strings.
We can now construct aa efficient Blum-MiCali pseudo-random bit generator with the strong

one-way permutation sugge3ted in Theorem 3.

Theorem 4 Let 1 be a polynomial with l(n) > n and m be a Jtrong one-way permutation. Let g
be a junction defined as follows:

1. Generate the sequence rn$,')(x), mk')(x) , . . . , m;(")) (x) , where x E C".

2. From right to left, eztract n - k - 1 bits f rom each element in the above sequence and output
them.

440

Then g U a pseudorandom bit generator estending n-bit into (n - k - l)I(n) bit output atrings.

Since we have a computing resource for k bits then the above scheme yields the maximum
possible efficiency. If k = 128 (!) and n is 512, then with 2 iterations of m, or 4 iterations off, we
can extract 766 pseudorandom bits. This yields nearly 192 pseudo-random bits per iteration of f ,
which is 21 times more &cient than using RSA or &bin function with the scheme described in
Theorem 2.

Note that since the output string is pseudorandom, we can also draw the following corollary.

Corollary 4 The n - k - 1 eztmcted bits of each iteration w distributed uniformly and Tandomfy
in En-k-1

6 UOWHF Construction and PBG
Damgard in [S] suggested the use of pseudorandom bit generators for hash functions and extraction
of a small portion of the output string, due to their one-way property, provided that the collision
freeness of the concrete instance is analysed. Moreover, Zheng et al. [31] revealed a duality between
the construction of pseudorandom bit generators and one-way hash functions. We show that the
construction presented in Theorem 5 for PBG, can also be used for the construction of UOWHF.
Before entering this discussion we give the background and some preliminary definitions.

There are two kinds of one-way hash functions, i.e., universal one way hash functions, or weak
one-way hash functions, and collision free hash functions, or strong one-way hash functions. The
main property of the former is that given a random initid string I, it is computationally infeasible
to find a different string y that collides with I, i.e., h(s) = h(y). The main property of the latter
is that it is computationally difficult to h d a pair (I, y) of strings, I # y , that collide with each
other.

In universal one-way hash functions, there is no guarantee that it is computationally infeasible
to find pairs of input that map onto the same output and for some inputs z # z' might h(z) = h(z').
However, there should not be too many z , z' pairs. So, choosing I randomly should make it unlikely
that anyone can find an I' such that h (z) = h(z') [19]. However, if we assume that h is random,
i.e., hashing is accomplished by looking up the correct value in a large table of random numbers,
then it is possible to choose I in a non-random way since any method of choosing r that does not
depend on h is random with respect to h.

Another problem with universal one-way hash functions is that repeated use weakens them. To
deal with this problem, we can simply defme a family of one-way hash functions with the property
that each member hi of the family is different from all other members, so any information about
how to break hi will provide no help in breaking h j for i # j (see [19]). If the system is designed
so that every use of a weak one-way hash function is parameterized by a different parameter, then
the overall system security can be kept high. Naor and Yung [22] constructed such a family of
functions with a onoway permutation and a strongly unive.,.sall family of hash functions. The
precise definition of UOWHF is given in Definition 13 below.

6.1 Preliminaries
Let 1 be a polynomial with l (n) > n, H is a family of hash functions defined by H = U, H,,, where
H,, is a set of functions from El(") to C". For two strings I , y E El(") with I # y, we say that I

441

and y collide under h E H, or (5, y) is a collision pair for h, if h (x) = h (y) . H is polynomial time
computable if there is a polynomial time algorithm computing all h E H, and accessible if there
is a probabilistic polynomial time algorithm that on input n E N outputs uniformly at random a
description of h E H,. Let F be a collision finder. F is a probabilistic polynomial time algorithm
such that on input x E El(") and h E H, outputs either ? (cannot find) or a string y E C"") such
that x # y and h (x) = h(y).

Definition 13 Let H be a computable and accessible hash function compressing l (n)-bi t input into
n-bit output strings and F a collision string finder. H is a universal one-way hash funct ion if for
each F , fo r each Q and for all suflciently large n,

1
P r o b (F (x , h) f?} < -

Q(n)

where z E C'(") and h E, H,. The probability is computed over all h E, H,, x E I?(") and the
random choice of F .

6.2 UOWHF Based on the Strong One-way Permutation
Theorem 5 Assume that m : D -+ D is a strong one-way permutation, where D = U,En, and
chop, : C" + En-' simply chops the last bit, then h = chop, o m is a universal one-way hash
function.

Proof : (By contradiction), assume that there is a probabilistic algorithm F that can find a
collision, then we show that we can make an algorithm that can invert m. Consider that we first
choose an z at random, then run m on I to get m(x), then we obtain h(x) = chopl(m(z)). There
is only one element that can collide with m(x) under chop,. This element differs with m(z) in one
bit. Let us notate this element m(y). If a collision finder can find an y such that collides with x
under h with probability bigger than & , it can obtain y from m (y) with the same probability.

0 This contradicts our assumption that n is a one-way permutation.

Lemma 7 If we define lchop : C" + En-' simply 20 chop one bit and the position of chopped bit
is defined in the description of the funct ion and can be any bit, then h = lchop(m(s)) is also a
universal one-way hash function.

Proof Sketch: The problem of finding a collision for h, defined in Lemma 7, can be reformulated
to finding I , y and x # y , such that m(x) and m (y) match at all bits except at the one defined in
the definition of lchop function. By repeating a procedure similar to the procedure for the proof
of Theorem 5 the claim of Lemma can be shown to be true.

Since according to Corollary 3 and Corollary 4 the output ->f m is distributed uniformly and
randomly in C", then for finding y with exhaustive search, we need to perform 2"-' operations on
the average. If this much computation is bigger than 2k, then it is infeasible to find the collision.

If we chop t bits of m(z), then there are (2* - 1) elements which collide with z under h. If these
elements are distributed randomly in 2" elements; then, we need to do 2"-* search operations to
find a collision for x. Since our computational resource can do at most 2k search operations then
t should be less than n - k.

0

442

Corollary 5 Let chopt : C" + En-' simply to chop t last bi ts and t < n - k , then h = chop, o rn
is a universal one-way hash function.

Note that the scheme described in the abwe corollary increases the eficiency of the hash
function scheme, so for hashing long messages, we need to do less iterations. We can also generalise
the above scheme by introducing tchop to be a function which chops t bits of the output. In this
case, we need (n - k - 1)log, n bits to specify the positions of the chopped bits.

6.3 Parameterization
Since the hash function presented in Corollary 5 is a universal one-way hash function, we should
parameterize it to make it secure in a practical scenario. The parameterization can be done in two
different ways:

1. we can parameterize h by selecting v from a family of k + 1-bit perfect permutations. Then
H = (h = chop, o f o v o f I v E V,} where V, is the k + 1-bit perfect permutation family and
chop, simply chops the t last bits.

2. we can parameterize h by selecting the function for the compressing procedure from a family
of hash functions. We may consider this family to be a family of chop functions. In this
case, the number of bits required to specify a member of the family is at most equal to
(n - k - 1) log, n. However, we may also consider this family to be a family of t to 1 strongly
universal hash function as proposed in 1221.

6.4 Compressing Arbitrary Length Messages
One of the main properties of hash functions is that they should be applied to any argument of any
size. Damgard suggested a design principle in [S] based on fixed size collision free hash functions.
Another method has been appeared in [31] and is the dual of Blum-Micali pseudorandom bit
generator (let us call it ZMI method). We show that using the perfect one-way permutation
proposed in Theorem 4, these two methods actually yield one scheme for hashing long messages.

Damgard's design principle: Let Z(n) be a polynomial with Z(n) > n, let f be a collision
free one-way hash function f : En+' + C", a Er C", split Z(n)-bit message I into t bit blocks, let
the blocks be denoted by z l , q r . . . , IW. Let

Yo =

I

Yi+1 = f (y i I1 l i + l)

then h (z) = y u would be the hash value of the long message z.

denote the known simultaneously hard bits of f, let I = z t . . . Q I ~ E C', b E C", define:

t

ZMI method: Let f be a ode-way permutation f : En+, + En+*, let I (n) = (i l , i 2 , . . . , i t)

ins+)(b, z) = . . . b iqb i -1 . . . bzb,

Let z E denote by drop,(,,)(z) a function dropping the il-th, . . ., it-th bits of z. Let 1 be
a polynomial with.Z(n) > n, a E C", split I(n)-bit message I into t bit blocks be denoted by

443

~i = dropl(n)(f(insr(n)(y-l, ~ + i + i)))

then h(x) = y p ~ = dropl(n)(f(ins~(,)(y~-l ,xl))) . (In the original ZMI scheme h (s) =
f (i n s l ~ n ~ (y ~ - l , q))). If we use the strong one-way permutation m in ZMI scheme for f , since the
t least significant bits are simultaneously hard bits, then dropl(,) function performs identically to
the chop, function defined in Corollary 5. So, dropl(,)(f(z)) in ZMI method would be identical
to chop,(m(z)) of Corollary 5, which is a universal one-way hash function from to C". On
the other hand, when t last bits of a function are simultaneously hard bits, then insr(,)(yo, "9)
would yield the same result as (yo I(zw). So, practicing the strong one-way permutation with
ZMI scheme, would yield the same resuli as either practicing the one-way hash function proposed
in Corollary 5 with Damgard's design principle, when the message blocks are fed in a similar order.

t

7 A Single construction for PBG and UOWHF
Each iteration of the pseudorandom bit generator presented in Theorem 5 is identical to the hash
function presented in Corollary 5. Assume that we have a computational resource for at most
k 6 3 bits. For the construction of the PBG of Theorem 5 , an algorithm should extract at most
TI - k - 1 bits, and throw away at least R + 1 bits on each iteration. On the other hand, for the
construction of the one-way hash function according to Corollary 5, we may chop at most n - k - 1
bits, and leave R + 1 bits as the hash value. If we choose k < t < n - k, for example for n = 512
we choose 64 5 t 5 448, then the algorithm can be used both for pseudorandom bit generation
and universal one-way hashing.

8

1.

2.

Conclusions and Extensions
We constructed a strong permutation with a k+l-bit perfect permutation, namely a complete
permutation whose k + 1 output bits are independent. A k + 1-bit perfect permutation can
be constructed easily as follows:

~ (x) = ~ (x) @ PBGL+I(~I , . . . , X I)

where x E C", and c(z) is a complete permutation, and PBGk+l(z,, . . . , xl) denotes k + 1
output bits of a pseudorandom bit generator where the seed is 1 > k bits of the x. Then, we
constructed a UOWHF and also an efficient pseudorandom bit generator with the strong per-
mutation. This confirms Naor and Yung's conjecture [22] that if pseudorandom bit generators
exist then UOWHF exist.

For the construction of the strong permutation we assumed that the position of k + 1 hard
bits of the one-way function f complies with k + 1 independent bits of v. The following
generalisation can easily be shown to be true.

444

If v is a perfect permutation then m = f o v o f is a strong one-way permutation, where f is
a one way permutation.

In other words, there is no need t o know the exact positions of hard bits of f . As we
mentioned earlier, the running time of a perfect permutation based on DES structure for
large enough n, e.g., n=512, is rather big.

A reasonable question is whether we can apply some simpler mathematical functions or a
compositions of such functions for v, for example y = (a ; ~) ~ mod rn, and/or y = (as +
b) mod m.

ACKNOWLEDGMENT

We would like to thank the members of the CCSR for their support and assistance during the
preparation of this work.

References
(11 Selim G. Akl. On the security of compressed encoding. In Advances in Cyptology - CRYPTO '83,

pages 209-230. Plenum Publishing Corporation, 1983.

[2] W. Alexi, B. Chor, 0. Goldreich, and C. P. Schnorr. RSA and Rabin functions: Certain parts are as
hard as the whole. SZAM Journal on Computing, 17(2):194-209,1988.

[3] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random bits.
SIAM Journal on Computing, 13(4):850-864,1984.

(41 L. Brown. A proposed design for an extended DES. In Computer Swurity in the Age of Information.
North-Holland, 1989. Proceedings of the Fifth IFIP International Conference on computer Security,
IFIP/Sec '88.

[5] J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of Computer and System
Sciences, 18:143-154, 1979.

[6] D. Coppersmith. Analysis of ISO/CCITT Document X.509 Annex D, 1989.

[7] I. B. Damgard. Collision free hash functions and public key signature schemes. In Advances in CryptoG
ogy - EUROCRYPT '87, volume 304 of Lecture Notes in Computer Science, pages 203-216. Springer-
Verlag, 1987.

[8] I. B. Damgard. A design principle for hash functions. In Advances in Cyptology - CRYPTO '89,
volume 435 of Lecture Notes in Computer Science, pages 416-427. Springer-Verlag, 1989.

[9] D. E. Denning. Digital signatures with RSA and other public-key cryptosystems. Communications of
the ACM, 27(4):388-392,1984.

[lo] M. Girault. Hash-functions using modulen operations. In Advances in Cryptology - EUROCRYPT
'87, volume 304 of Lecture Notes in Computer Science, pages 218-226. Springer-Verlag, 1987.

(111 0. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal of the ACM,
33(4):792-807,1986.

1121 0. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In the 21st ACM
Symposium on Theory of Computing, pages 25-32, 1989.

(131 R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random generation from one-way functions. In the
2fst ACM Symposium on Theory of Computing, pages 12-24, 1989.

[14] W. De Jonge and D. Chaum. Attacks on some RSA signatures. In Advances in Cryptology - CRYPTO
'85, volume 218 of Lecture Notes in Computer Scienoe, pages 18-27. Springer-Verlag, 1985.

(151 W. De Jonge and D. Chaum. Some variations on RSA signatures and their security. In Advances in
Cryptology - CRYPTO '86, volume 263 of Lecture Notes in Computer Science, pages 49-59. Springer-
Verlag, 1986.

445

(161 R. R. Jueneman. Electronic document authentication. IEEE Network Magazine, 1(2):17-23,1987.

[17] J . B. Kam and G. I. Davida. Structured design of substitution-permutation encryption networks. IEEE

[HI S. M. Matyas, C. H. Meyer, and J. Oseas. Generating strong one-way functions with cryptographic

[19] R. C. Merkle. One way hash functions and DES. In Advances in Cqptology - CRYPTO '89, volume

[20] S. Miyaguchi, K. Ohta, and M. Iwata. Confirmation that some hash functions are not collision free. In

(211 J. H. Moore. Protocol failures in cryptosystems. Prvceedings of the IEEE, 76(5):594-601, 1988.

[22] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic applications. In

nnnsacfions on Computers, 28(10):747-753,1979.

algorithm. IBM Technical Disclosure Bulletin, 27(lOA):5658-5659,1985.

435 of Lecture Notes in Computer Science, pages 428-446. Springer-Verlag, 1989.

Abstmcts of EUROCRYPT '90, pages 293-308, 1990.

the 2fst ACM Symposium on Theory of Computing, pages 33-43,1989.

[23] J . Quisquater and M. Girault. %-bit hash functions using n-bit symmetric block cipher algorithms. In
Abstmcts of EUROCRYPT '89, 1989.

[24] J. Rompel. One-way functions are necessary and sufficient for secure signatures. In the 22nd ACM
Symposium on Theory of Computing, pages 387-394,1990.

[25] A. De Santis and M. Yung. On the design of provably-secure cryptographic hash functions. In Abstmcts
of EUROCRYPT '90, pages 377-397,1990.

1261 A. F. Webster and S. E. Tavares. On the design of S-boxes. In Advances in Cyptology - CRYPT0
'85, Lecture Notes in Computer Science, pages 523-534. Springer-Verlag, 1985.

[27] M. N. Wegman and J. L. Carter. New hash functions and their use in authentication and set equality.
Journal of Computer and System Sciences, 22:265-279,1981.

(281 R. S. Winternitz. Producing a one-way hash function from DES. In Advances in Cyptology - CRYPTO
'88, pages 203-207. Plenum Publishing Corporation, 1983.

[29] R. S. Winternitz. A secure one-way hash function built from DES. In the 1984 ZEEE Symposium on
Security and Privacy, 1984.

[30] A. C. Yao. Theory and applications of trapdoor functions. In the 28d IEEE Symposium on the
Foundations of Computer Science, pages 80-91,1982.

(311 Y. Zheng, T. Matsumoto, and H. Imai. Duality between Two Cryptographic Primitives. In the 8-
th International Conference on Applied Algebm, Algebmtc Algorithms and E m r Correcting Codes,
page 15, 1990.

132) Y. Zheng, T. Matsumoto, and H. Imai. Structural properties of one-way hash-functions. In CRYPTO
'90, pages 263-280, 1990.

	A Construction forOne Way Hash FunctionsandPseudorandom Bit Generators
	1 Introduction
	2 Notations
	3 Preliminaries
	4 Hard Bits
	5 A Strong One Way Permutation
	6 UOWHF Construction and PBG
	6.1 Preliminaries
	6.2 UOWHF Based on the Strong One-way Permutation
	6.3 Parameterization
	6.4 Compressing Arbitrary Length Messages

	7 A Single construction for PBG and UOWHF
	8
.Conclusions and Extensions
	References

