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Abstract. Self-synchronizing stream ciphers (SSSC) are a commonly used encryp- 
tion technique for channels with low bit error rate but for which bit synchronization 
can present a problem. Most presently used such ciphers are based on a block cipher 
(e.g. DES) in 1-bit cipher feedback mode. In this paper, several alternative design 
approaches for SSSCs are proposed that are superior to the design based on a block 
cipher with respect to encryption speed and potentially also with respect to security. 
A method for combining several SSSCs is presented that allows to prove that the 
combined SSSC is at least as secure as any of the component ciphers. The prob- 
lem of designing SSSCs is contrasted with the problem of designing conventional 
synchronous additive stream ciphers and it is shown that different security criteria 
must be applied. 
Furthermore, an efficient algorithm is presented for finding a function of low degree 
that approximates a given Boolean function, if such an approximation exists. Its 
significance for the cryptographic security of SSSCs and its applications in coding 
theory are discussed. 

1. Introduction 

Cryptographic protocols and techniques are often designed under the assumption that the 
communication channels are error-free. Such protocols can therefore be extremely vulnerable 
to unexpected errors on the channel. Many existing communication channels introduce some 
errors because their complete removal by the use of error-correcting codes would be too costly 
in terms of transmission rate reduction or encoder/decoder complexity. When encryption has 
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to be built into an existing application on such a channel then no reduction of the data rate 
can be tolerated and thus no synchronization bits nor redundancy can be introduced for the 
purpose of error-correction. Therefore the encryption algorithm itself must be designed to be as 
error-resistant as possible to ensure that errors on the channel result in as little distortion of the 
deciphered plaintext as possible. For instance, when the channel introduces single bit errors, the 
optimal solution is to use a (conventional) synchronous additive stream cipher because every bit 
error in the ciphertext results in only a single bit error in the corresponding deciphered plaintext. 
This is in contrast to a block cipher in electronic codebook mode where a single bit error destroys 
the entire corresponding plaintext block. If the channel introduces bit slips (deletion or insertion 
of bits), however, both synchronous stream ciphers and block ciphers behave catastrophically 
since loss of synchronization results in a completely erroneom decryption of the entire following 
ciphertext. 

A well-known cryptographic technique (e.g., see [5]) that is resistant against bit slips on 
the transmission channel (without introducing additional synchronization bits and without us- 
ing an interactive higher-level protocol for recovering lost synchronization) is the use of a self- 
synchronizing stream cipher (SSSC for short). Properties and advantages of SSSCs are discussed 
in Section 2, and in Section 3 a theoretical treatment of SSSCs is given and several new design 
strategies for SSSCs are presented. The cryptographic security of SSSCs is discussed in Sec- 
tion 4. In Section 5 ,  an efficient algorithm is presented for finding a function of low degree that 
approximates a given Boolean function, if such an approximation exists, and its significance in 
cryptography and coding theory is discussed. 

2. Self-Synchronizing Stream Ciphers ( S S S C )  

The basic idea behind an SSSC (see Figure 1 for a canonical representation of an SSSC) is to 
encipher every plaintext digit using an encryption transformation that depends only on a fixed 
number M of previous ciphertext digits and on the secret key, but that does not depend on past 
plaintext digits other than through its dependence on past ciphertext digits. Therefore every 
ciphertext digit can be deciphered correctly when the previous M ciphertext digits have been 
received correctly. This self-synchronizing mechanism not only allows to resynchronize after 
bit slips on the channel, but it also .enables the receiver to switch at any time into an ongoing 
enciphered transmission without knowing the current bit position within the message. 

SSSCs are resistant against bit slips but on the other hand are less resistant than synchronous 
stream ciphers against single bit errors because every bit error in the ciphertemt results in an error 
burst of length M in the deciphered plaintext. Hence SSSCs are suitable only when the bit error 
rate on the channel is sufficiently small. The trade-off between security and error-propagation 
is discussed in Section 4. 

An alternative synchronization technique for stream ciphers is described in [7]. The running 
key generator of an ordinary additive stream cipher is reset whenever a given (secret or public) 
synchronization pattern (of length for example 16 bits) occurs in the ciphertext. The reset state 
of the generator is different each time since it depends not only on the secret key but also on 
a certain number of ciphertext bits following the synchronization pattern. For every bit error 
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probability and bit slip probability on the channel, this technique, even when modified so that a 
set of synchronization patterns rather than a single one triggers resynchronization, can be shown 
to have no advantages over SSSCs with respect to error-tolerance. Note that an SSSC can be 
viewed as a special case of this synchronization technique where the length of the synchronization 
pattern is zero, i.e., the generator is synchronized after every bit. 

In addition to the resynchronization feature, SSSCs also offer two advantages over synchronous 
additive stream and block ciphers from a security point of view. First, the fact that single bit 
errors in the ciphertext result in error bursts in the plaintext prevents active eavesdroppers 
from undetectable tampering with the plaintext, thus assuring message authenticity. Note that 
when a synchronous additive stream cipher is used, plaintext bits can selectively be flipped by 
flipping the corresponding ciphertext bits. This would for instance allow an enemy to selectively 
modify the account number of an encrypted financial transaction. The second advantage is 
that unlike in additive stream ciphers or block ciphers, every plaintext bit influences the entire 
following ciphertext. Compared to block ciphers which are insecure when the plaintext is strongly 
redundant, i.e., when some plaintext blocks are likely to occur repeatedly, SSSCs are more 
resistant against attacks based on plaintext redundancy. 

Most presently used SSSCs are based on a block cipher (e.g. DES) in 1-bit cipher feedback 
mode [13]. This mode is quite inefficient in terms of encryption speed since one block cipher 
operation is required for. enciphering a single plaintext bit. Moreover, the published design 
criteria, security analysis and cryptanalytic attacks [4] for most block ciphers is restricted to the 
electronic codebook mode. While some design and security criteria are known for synchronous 
stream ciphers and block ciphers, only little is known about the design of SSSCs. The major 
goals of this paper are to narrow this gap and to contrast the problem of designing SSSCs with 
that of designing conventional synchronous additive stream ciphers. 

3. Theoretical Foudations and Design Strategies 

Without essential loss of generality, only binary SSSCs are considered in this paper. Let 
E = (0,l). Let X = Xl,Xz,. . ., 1 = Yl,Y,,. . . and W = Wl, WZ,. . . denote the binary 
plaintext, ciphertext and keystream sequences, respectively, and let 2 denote the secret key 
that is chosen randomly (and uniformly) from the set Z of possible keys. The encryption 
transformation can be described by 

y ,  = xiew; (1) 

for a = 1,2,. . ., where every keystream digit Wi depends on the previous If ciphertext digits 
x-M, . . . , Y,-l and the secret key 2, and where Y - M + ~ ,  . . . , YO are predebed constants. Figure 1 
shows a canonical representation of an SSSC. 

The feedback part of an SSSC is a finite automaton with input the ciphertext sequence 
- Y = Yl,  Y2, .  . ., with output the keystream sequence W = Wl, W z , .  . . and with state sequence 
C T ~ , ( T ~ ,  Q , .  . .. It has the special property that the input memory is finite and equal to M ,  i.e., 
the state depends only on the previous M input digits and the secret key, but is independent of 
all other input digits. This automaton is characterized by the state space C and the (possibly) 
key-dependent statetransition and output functions captured in the following definition. 
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Figure 1: Canonical representation of a self-synchronizing stream cipher as a length M 
shift-register with a memoryless feedback function. 

Definition: A keyed state-transition function for state space C, with memory A4 and key space 
2 is a family Gz = {g ,  : z E 2) of functions g, : C x B + C such that for a3l z E 2, when z 
is given, g,(u, y) is easy to compute for all c E C and y E B, and such that the corresponding 
automaton has input memory M .  A keyed output function for state space C and with key space 
2 is a family H z  = {h, : z E 2)  of functions h, : C + B such that for all z E 2, when z is 
given, h,(a) is easy to compute for all c E C. 

The encryption transformation of an SSSC with state-transition function GZ = {g, : z E 2) 
and output function HZ = {hz : z E Z}, secret bey Z and initial state a0 is specified by equation 
(1) and the two equations 

- 
Every fmite automaton with finite input memory M can be represented in a canonical fonn 

that consists of an input shift-register of length M with an attached memoryless function whose 
input is the shift-register state. In other words, the encryption transformation specified by 
equations (1)-(3) can equivalently be described by (1) and 

wi = h(X-1,. . . , Y I - M ) ,  

for a = 1,2, .  . ., where the feedback function f z  is completely specified by the secret key Z 
(capital letters denote random variables whereas small letter denote particular values that a 
random variable can take on), the statetransition function gz and the output function hz and 
where Y-M+~,. . . , y0 are specified by the secret key and the (for the key 2 reachable) initial 
state uo (see Figure 1). The concept of a memoryless key-dependent function is captured in the 
following definition. 

Definition: A keyed Boolean function (KBF) of size M and with key space 2 is a family 
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Fz = {-fz : z E 2) of functions fz : BM 
easy to compute for all x E BM. 

B such that for all z E 2, when z is given, fz(z) is 
I 

The above defined canonical representation of a finite-memory automaton assigns a keyed 
Boolean function Fz to every pair (Gz ,  HZ) of statetransition and output function. The security 
of an SSSC is determined by the properties of the corresponding KBF Fz. 

The design of most presently used SSSCs was motivated by the canonical representation of 
a finitememory automaton. These SSSCs consist of a ciphertext shift-register of length M 
and a memoryless key-dependent function with input the state of the register (see Figure 1). 
Most often, a block cipher algorithm (e.g. DES) is used for implementing the key-dependent 
memoryless function, where the block cipher's input is the shift-register state and where all but 
one of the block cipher output bits are discarded. This mode of using a block cipher is usually 
referred to as 1-bit cipher feedback mode [13]. 

Note that in the canonical form, the statetransition function is extremely simple and inde- 
pendent of the secret key. Therefore the security of ciphers based on a block cipher in 1-bit cipher 
feedback mode relies entirely on the security of the output function. In this paper we suggest to 
design SSSCs that are based on a cryptographically secure statetransition function as well as on 
a cryptographically secure output function such that the SSSC is secure unless both functions 
are simultaneously insecure. In particular, we suggest to choose a state space with cardinality 
much greater than 2M where clearly for a given key, at most 2M states can be reached. The 
idea is that unlike for the conventional 1-bit cipher feedback mode, it should be infeasible for an 
enemy knowing the input sequence to even determine the state of the automaton. In addition, 
it should also be infeasible for an enemy to determine the output of the automaton, even if an 
oracle provided the (actually hidden) state sequence for free. 

A general finite automaton has infinite input memory. In the following we present a method 
for designing state-transition functions that are guaranteed to correspond to an automaton with 
finite input memory M .  Without essential loss of generality we assume in the following that the 
state can be represented by T 2 M binary digits, i.e. a; = (a;[l], . . . , u;[q) .  Hence C = BT. For 
1 5 k 5 T ,  a;[k] is a (memoryless) generally key-dependent function of the ciphertext digit y i ,  
some of the variables a;-l[l], . . . , U;-I[T] and the secret key 2, but it is independent of the time i. 
One can show that there always exists a relabeling of the memory cells such that for 1 5 k 5 T, 
a;[k] only depends on 0;-~[1], . . . , ~ i - ~ [ k - l ] ,  yi and 2 and is independent of ~ ; - ~ [ k ] ,  . . . ,C; -~[T] .  
The dependence structure of such an automaton A is characterized by a loogfree directed graph 
G A  with vertex set V = {I,o[l],a[2], . . . ,o[T], 0 )  and edge set E, where I and 0 denote the 
input and output, respectively. A directed edge from ab] to a[k] indicates that o;[k] functionally 
depends on 0;-1b]. Similarly, an edge from I to a[k] indicates that a;[k] functionally depends 
on K, and an edge from a[k] to 0 indicates that Wi depends on a;-1[k]. I has no incoming 
edges and 0 has no outgoing edges, and there exists no edge from I to 0. The memory of A is 
given by the length of the longest path from I to 0 and can be determined as p ( 0 )  where the 
function p maps the vertices of GA to the integers and is defined by p ( I )  = 0 and 

For a given dependence structure (i.e., a given matrix GA), LM can efficiently be determined by 
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Figure 2: Serial composition (left) and parallel composition (right) of two SSSCs in 
the canonical form with memories MI and Mz, respectively. The serial and 
parallel compositions are equivalent to SSSCs with memory M = M I  f Mz 
and M = m a x ( M l , M ~ ) ,  respectively. 

a dynamic program. 

An important concept in cryptography is that of composition. In the following we consider 
two different ways of combining two or more finite automata: parallel and serial composition. 
By the parallel composition of several automata we mean the automaton that is realized by 
connecting its input to every of the component automata’s inputs and taking as its output 
the modu l~2  sum of the components’ outputs. The memory of the parallel composition is the 
maximum memory of the component automata. By the serial composition of two automata Al  
and A2 we mean the automaton whose input is the input of Al, whose output is the output 
of A2 and where the output of A1 is connected to the input of Az. The memory of the serial 
composition of two or more automata is equal to the sum of the component memories. Parallel 
composition allows to increase the number T of memory cells, i.e., the size of the state space, 
without increasing the memory. A theorem about the security provided by parallel feedback is 
stated in the next section. Figure 2 shows the serial and the parallel composition of two SSSCs 
in the canonical form. 

By iterative applicatim of parallel and serial composition, many component SSSCs that are 
relatively simple in terms of implementation complexity and memory length can be combined 
to form an SSSC realizing a very complicated keyed Boolean function with desired memory size. 
One possible architecture for realizing the state-transition function of an SSSC with memory 
M = 8L and state space of size Z Z M  using 16 SSSCs of memory length L is shown in Fig- 
ure 3. The component SSSCs can all be different and can either be realized by a shift-register 
with a memoryless key-dependent output function or they can themselves be designed as the 
combination of several smaller component SSSCs. The design of Figure 3 consists of the serial 
composition of four component SSSCs, each component SSSC consisting of the parallel composi- 
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Figure 3: A possible design for the statetransition function of an SSSC by iterative 
application of serial and parallel composition of component SSSCs. 

tion of two further component SSSCs, each of which is the serial composition of two elementary 
SSSCs with memory L. For instance, L could be 16 such that the resulting SSSC has memory 
M = 128, or L could be as small as 3 such that the resulting SSSC would have a memory of 
M = 24. Such an SSSC would not be secure by itself, but could be used as one component SSSC 
in the design of Figure 3 such that the M y  resulting SSSC has memory M = 192. Clearly, the 
design of Figure 3 is only one example of a vast number of ways several component SSSCs can 
be combined. It should also be pointed out that only the state transition function is spec8ed 
by the suggested design and that the output function would have to be some cryptographically 
secure function of all or part of the state. 

The goal of a design strategy similar to the one described above, is to realize a crypt+ 
graphically secure key-dependent statetransition function having the property that it should be 
infeasible to determine the state corresponding to a given input sequence. In addition to the 
potential improvement in cryptographic security compared the conventional design method of 
using a block cipher in 1-bit cipher feedback mode, another major advantage of the suggested 
architecture is the very high achievable encryption speed. When such a cipher is implemented 
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in hardware, all the component functions can be evaluated in parallel. The time required for 
enciphering one plaintext bit is the maximum of the execution times of all the memoryless com- 
ponent functions, including state transition and ontput functions. These memoryless functions 
can be realized by tables which could for instance be compiled by a key-dependent precomputa- 
tion. The most time-consuming component function will usually be the overall output function 
that is applied to all or at least a substantial part of the state, which can for instance be realized 
by combining the results of several table lookups. 

4. Cryptographic Security of S S S C s  

A necessary condition for an SSSC to be secure is that M is su5ciently large such that the 
probability is neghgible that a length M ciphertext pattern is repeated before the secret key is 
changed. When an enemy can observe two occurrences of the same length M ciphertext pattern 
he is able to compute the module2 sum of the corresponding two plaintext bits. 

For the pcrpose of determining the minimum memory M required to achieve a certain level of 
security, assume that the ciphertext can be modeled as a random sequence and moreover, that 
consecutive (overlapping) ciphertext patterns are independent. The probability q(N,  M )  that in 
a sequence of N random binary length M patterns all patterns axe distinct is given by 

N - 1  
q (N,  M )  = n (1 - i 2 - M ) .  

;=a 

Using the fact that h(1- z) x --z for small 2 we obtain 

Thus when a probability p of a ciphertext pattern repeating can be tolerated and the expected 
plaintext length for a given secret key is N ,  M must be chosen such that p < .1 - q(N,  M )  M 
Inq(N, M ) ,  hence 

M > log, (5) . 

For example, for p = one should choose M 2 110. Because bit errors on the 
channel propagate over the following M deciphered plaintext bits, M should on the other hand 
be as small as possible. To choose M between 80 and 128 seems to be a reasonable compromise 
for the tradeoff between security and error performance. 

An important observation for SSSCs is that essentially no security can be gained by letting the 
initial state 00 of the finite automaton depend on the secret key because the states UM, o M + 1 , .  . . 
are independent of the initial state and therefore an enemy can simply discard the first M 
ciphertext bits and attack the cipher based on the remaining ciphertext. 

Although no presently-used cipher can rigorously be proved computationally secure, some 
necessary security criteria are known for synchronous stream ciphers (1, 151. A synchronous 
stream cipher is insecure unless the period and the linear complexity of the keystream sequence 
are sufficiently large. These criteria cannot be applied to SSSCs because there exists no sequence 

and N = 
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in the encipherment process that is independent of the plaintext and has the property that the 
SSSC is insecure unless the sequence’s period and the linear complexity are large. However, it is 
shown in Section 4 that a necessary condition for an SSSC to be secure is that the corresponding 
KBF is (for all but a negligible fraction of the keys) not approximable by a Boolean function 
of low degree. Considering the limitations of the cryptographic sigdcance of linear complexity 
for synchronous stream ciphers, this result is somewhat surprising for two reasons. First, the 
concept of linear complexity looses its original significance when generalized to quadratic or 
hqher order complexity while such a generalization is possible in our case. Second, there exists 
no known efficient method for cryptanalyzing a synchronous stream cipher whose keystream 
sequence can only be approximated by a sequence with low linear complexity. For SSSCs, only 
the approximability by a low degree function is required for breaking the cipher. On the other 
hand, it should be pointed out that while lower bounds on the linear complexity of practical 
keystream generators can be proved, it seems to be extremely difficult to design SSSCs whose 
KBF can be proved to have no low degree approximation. 

For the purpose of analyzing the security of a cipher it is generally assumed that the enemy 
cryptanalyst knows the cipher system precisely, but that he has no a priori information about 
the secret key. Moreover, one generally assumes that the enemy is capable of intercepting the 
ciphertext completely. Regardless of the particular implementation of an SSSC, an enemy can 
always consider its canonical form, i.e., he can analyze the corresponding KBF. Cryptanalytic 
attacks against a cipher are usually classified according to the type and amount of information 
about the plaintext the enemy cryptanalyst is assumed to have available. Commonly considered 
attacks are ciphertext-only, known-plaintext, chosen-plaintext and chosen-ciphertext attacks. 
Unlike for block ciphers where a chosen-plaintext attack is in general much more powerful than 
a known-plaintext attack (see [4]), these two attacks seem for SSSCs to be both equivalent to 
the enemy seeing certain randomly selected input/output pairs of the SSSCs keyed Boolean 
function. 

The by far most powerful type of attack against an SSSC is the chosen-ciphertext attack. It 
allows an enemy to choose arguments of the KBF as he wishes, except that he is assumed to 
be unable to choose arguments occurring in the actual ciphertext. The task of cryptanalyzing 
an SSSC with KBF Fz and key space 2 in a chosen-ciphertext attack is equivalent to the 
problem of predicting fz(G), f ~ ( & ) ,  . . . , where &,&, . . . E BM are given and where 2 is a 
randomly and uniformly (from 2) selected secret key, when one can obtain for free the values of 
fz(&),jz(&), . . . for arbitrarily chosen &,&,.. . E BM such that the two sets {&,&,.. .} and 
{& , &, . . .) are disjoint. 

The design goal for a cryptographic system is usually to make it secure against the most 
powerful conceivable attack for the strongest possible definition of security. Not only should it 
be mfeasible for the enemy to determine any useful information about the plaintext or the secret 
key, but it should even be infeasible to determine any information whatsoever about the system 
that cannot be computed in an obvious way. It should for instance be infeasible to obtain any 
information about not obviously accessible intermediate results of the encryption process, even if 
this seems to be of no help in deriving information about the plaintext. In particular, it should 
be infeasible to distinguish the ciphertext from a truly random sequence for an appropriate 
definition of distinguishing. 



467 

For SSSCs, one of the strongest conceivable definitions of security is that the corresponding 
KBF be indistinguishable from a random function. We define a cryptographically secure KBF 
as follows. Let H M  be the set of Z Z M  Boolean functions with M inputs. Consider the following 
random experiment. Let S be a binary random variable that takes on the values 0 and 1 equally 
likely. S is assumed to b t  secret. Let g be a Boolean function with M inputs that is selected 
randomly from the set HM when S = 0 and that is selected randomly from the set FZ when 
s=  1. 

Definition: A keyed Boolean function Fz of size iM and with key space 2 is cryptographically 
secure if it is computationally infeasible to distinguish FZ from H M ,  i.e., to predict S defined 
above with probability of being correct sigmficantly greater than 1/2, when an oracle for the 
function g is available. 

This paper is focussed mainly on the practical aspects of designing SSSCs and therefore the 
definitions are by intention only stated informally for the sake of simplicity. The above definition 
(as well as other definitions in this paper) could however be further formalized similar to the 
definition of a pseudorandom function generator (PRFG) introduced by Goldreich, Goldwasser 
and Micali [S] and Luby and Rackof€ [9]. For instance, one could consider a family F = {FitCkc, : 

k = 1,2,. . .} of KBFs where for every k >_ 1,2,. . ., is a KBF of size k with key space 
B'('), and There t ( k )  is an integer-valued key-length function. Such a family F of KBFs could 
be defined to be cryptographically secure if there exists no polynomial Q and polynomial-time 
(in k )  algorithm T such that for all sufficiently large lc ,  when given k as an input and when given 
access to an oracle for g corresponding to the KBF p $ ( k )  as defined above, T can guess S with 
success probability at least l/Q(k). A KBF could then be shown to be equivalent to a PRFG: 
A KBF can trivially be obtained from a PRFG by discarding all but one of the output bits and 
a KBF can be transformed into a PRFG by letting the function argument be the initial state 
of a feedback shift-register whose feedback function is the KBF, and defining the state of the 
shift-register after k - 1 shifts as the output of the pseudo-random function generator. 

The following proposition demonstrates that a cryptocraphicdy secure SSSC can be trans- 
formed into a cryptographically secure synchronous additive stream cipher. This demonstrates 
that the design strategies presented in this paper have also applications to the design of conven- 
tional stream ciphers. 

Proposition: The autonomous finite automaton resulting by feeding the output of a finite 
automaton realizing a c yptographically secure KBF back to its input, is a pseudo-random number 
generator. 

The following theorem about the cryptographic security of the parallel composition of SSSCs 
or, equivalently, the sum of KBFs, can be proved using a similar argument aa the one used 
in [ll] for proving that the cascade of several conventional synchronous stream ciphers is at 
least as secure as the most secure component cipher. The theorem holds for virtually every 
reasonable definition of distinguishing and under virtually every assumption about the enemy's 
computational resources and knowledge. 

Theorem: The modulo-2 sum of several keyed Boolean functions with statistically independent 
keys is at least as dificult to  distinguish from a random function as any of the component 
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KBFs. Hence the parallel composition of seveml SSSCs with independent keys is at least as 
cryptographically secure as any of the component SSSCs. 

This theorem suggests to design an SSSC as the parallel combination of two or more SSSCs 
with independent keys. Each component SSSC can be based on an entirely different design prin- 
ciple. As long as at least one of the component SSSCs is secure, the combined SSSC is provably 
at least as secure, but intuitively even much more secure. The risk that all design strategies fail 
simultaneously is much smaller than the risk that each design strategy fails individually. 

The goal of designing an SSSC must be to make the corresponding KBF cryptographically 
secure, i.e., indistinguishable from a random function. The design approaches discussed in this 
paper try to achieve this goal by designing the state-transition and the output function of the 
finite automaton both to be cryptographically secure. 

A state-transition function can be defined to be cryptographically secure if it is infeasible to 
determine the state for a given length M input sequence, even when an oracle would provide the 
state for free for any other length M input sequence. Note that for the state-transition function 
of Figure 3 to be secure against such a hypothetical attack it would have to be improved by 
introducing additional dependencies between the component SSSCs. The reason is that for every 
memoryless function with only few inputs, a table realizing the function could be determined by 
exhaustive search using the above mentioned oracle. 

5. Low Degree Approximations for Boolean Functions 

Assume that the algebraic normal form of the feedback function fi(zl,. . . , ZM) in an SSSC 
is of the special form that almost all coefficients are known to be zero, and only few coefficients 
can possibly be non-zero. Then an enemy who is able to perform a chosen-ciphertext attack 
can break the cipher since he can determine the coefficients of f by solving a system of linear 
equations of size the number of potential non-zero coefficients. 

Assume now it is only known that there exists a simple function g(z1,. . . ,ZM) that E- 

approximates f, i.e., that agrees with f for at least a fraction l - 6 of the 2M arguments. 
Knowing g would allow the enemy to determine the plaintext bits with error rate c. When the 
plaintext is sufficiently redundant, even an error rate of 25 - 30% would allow to determine the 
plaintext precisely. However, the problem of finding g corresponds to  the problem of approzi- 
rnately solving a system of linear equations over GF(2),  i.e., of hd ing  the solution that satisfies 
the most equations. This problem is equivalent to the problem of decoding a linear code to the 
nearest codeword, which is for general linear codes believed to be a very diflicult problem. In 
fact, this problem is NP-complete [2]. 

However, for certain special types of codes there do exist efficient decoding algorithms. More 
over, a significant step towards decoding general linear codes has recently been announced [8]. 
Because the cadewords in our application have length 2M and are thus too long to be even only 
read in feasible time, general decoding algorithms are of no use however. In this section we 
present a local decoding algorithm for certain classes of codes that not only provides necessary 
security criteria for SSSCs but also has applications in coding theory. 
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Consider as a first example the problem of determining the best &e approximation 

g ( z 1 , .  . . ,5M) = al + a121 + a2z2 + * * + U M Z M  

to a given function f ( 5 1 , .  . . , E M ) .  Every coefficient uj for 1 5 a 5 M can be expressed in 
many different ways as the sum of two function values. More precisely, a1 can for every choice 
of z2, . . . , ZM be expressed 89 a1 = g ( 0 ,  z2, . . . , zM) + g (  1, z2, . . . , z ~ )  and therefore 2M-' in- 
dependent estimates of al of the form f(O,z2,. . . ,ZM) + f ( l , s2 , .  . . ,zy) can be obtained. 
When f agrees with some afEne function g for more than 3/4 of the arguments, a majority 
decision for the above 2M-1 values yields the coefficient al .  The coefficients az, . . . , aM can 
be determined analogously, and can be determined by a majority decision over all 2M bits 
f(Zl,...,ZM)-&lzl - " ' - a M d M .  

When only linear rather than &e functions are considered (i.e., = 0), the described 
procedure can be interpreted as a decoding algorithm for the dual code of a ( 2 M  - 1, 2M - M - 1) 
Hamming code [12]. The minimum distance of this code is 2M-1 so that only 25% errors are 
guaranteed to be corrected, but when errors occur randomly and independently, close to 50% 
errors can be corrected with high probability using the above procedure. Observe that for large 
M, even when a majority decision is made only from a small subset of the 2M-1 terms, this 
procedure still allows to correct close to 50% errors with high probability. In other words, this 
code can be decoded with a local decoding procedure that examines only a small fraction of the 
word to be decoded. 

Consider now the more difEcult problem of finding the best approximation g ( z 1 , .  . . , ZM) of 
degree at most r to a given Boolean function f(zl,. . . , z ~ ) .  g caa be expressed in the algebraic 
normal form as 

The s u m  is over all index sets S C { 1,. . . , M} of cardinality at most T. 

One can show that any two Boolean functions of degree at most r differ for at least a frac- 
tion 2' of the arguments. This is equivalent to saying that the minimum distance of an r-th 
order Reed-Muller code of length 2M is 2M-r 131. Hence it is theoretically possible to uniquely 
determine the best r-th degree approximation g to a given function f provided that it differs in 
less than a fraction 2-'-l of the function values. For instance, an error rate of up to 1/8 can be 
tolerated for finding the best second order approximation. 

However, it is completely infeasible to examine all 2M values of f ,  and therefore it seems to be 
infeasible to find an r-th degree approximation when the error rate is not considerably less than 
2-'-'. Surprisingly, a solution to this problem exists that is based on a novel local decoding proce- 
dure for Reed-Muller codes. Instead of finding several orthogonal expressions for every coefficient 
individually, we find systems of linear expressions for small subsets of the coefficients that can be 
solved by the (complete) decoding algorithm for much shorter Reed-Muller codes. We choose sets 
of L > T variables {Z ;~ ,Z~~,  . . . , z iL}  and consider the 2L values of f for those arguments where 
the remaining variables take on the value 0. These function values depend solely on the Xi=-, (:) 
coefficients of the form USI for S' { i l l . .  . , ZL} and thus a system of 2L linear expressions for 
C:=o (i) < 2L unknm is obtained or, equivalently, the codeword of an r-th order Reed-Muller 
code of length 2L evaluated for the information bits equal to the coefficients with indices in the 
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set t i l , ,  . . . , iL}, i.e., the coefficients %,ail,. . . ,a iL,ai l i2 , .  . . , aiL-l;L,ail;2;3,. . . , ail,i2 ,..., iL. The 
decoding procedure for Reed-Muller codes that is fast for short codes can thus be used to deter- 
mine these coefficients correctly when no more than 2L-r-1 - 1 errors are among the 2L function 
Values. 

There exist two somewhat different strategies for repeatedly using this local decoding proce- 
dure to determine all coefficients of the approximating function g. A first strategy is to choose 
sufficiently many sets of L variables such that all coefficients of g appear in at least one of the sys- 
tems. The problem of choosing the subsets of variables of size L is related to the graph-theoretic 
problem of covering the edges of a complete hypergaph on M vertices with complete subgraphs 
on L vertices. The second strategy, in which L must be chosen smaller than in the first strategy 
in order for the algorithm to be feasible, is to consider all (:) size L sets of variables and to  
make a majority decision over all obtained solutions for every coefficient. For a coefficient of 
order s (0 5 s 5 r )  the number of solutions is (?I:). 

The second strategy suggests a new class of linear error-correcting codes with ELo (7) in- 
formation bits and codeword length E,", (:) for some choices r < L < M .  The encoding 
procedure is simply to evaluate the r-degree function of size M defined by the information bits 
taken as coefficients at all arguments of Hamming weight at most L. The information rate of 
these codes is much higher than that of the corresponding Reed-Muller codes while their error- 
resistance is nevertheless comparable to that of Reed-Muller codes. This is true although the 
minimum distance of the new codes is only 

L-r M - r 
L = C (  i=O 2 )  

compared to 2M-L for the corresponding Reed-Muller code. In other words we propose a de- 
coding procedure for strongly truncated bed-Mullers codes that is efficient even when decoding 
(and even encoding) the full length 2M code is completely infeasible. 

6. Conclusions 

New approaches to designing self-synchronizing stream ciphers have been presented whose 
security is based both on a cryptographically-sre state-transition function of the correspond- 
ing finite automaton as well as on a cryptographically-secure output function and is argued to 
be potentially much higher than for the conventional design based or a block cipher in 1-bit 
cipher feedback mode. Another advantage of the presented design strategy is its suitability for 
high-speed applications. A necessary condition for an SSSC to be secure is that there exists no 
function of sufficiently small degree r (e.g. r 5 10) that agrees with the feedback function in at 
least a fraction 1 - 2-'-' of the function values. 
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