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ABSTRACT 

The general subset sum problem is NP-complete. However, there are two algorithms, one 

due to Brickell and the other to Lagarias and Odlyzko, which in polynomial time solve almost 

all subset sum problems of sufficiently low density. Both methods rely on basis reduction 

algorithms to find short non-zero vectors in special lattices. The Lagarias-Odlyzko algorithm 

would solve almost all subset sum problems of density < 0.6463. . . in polynomial time if it 
could invoke a polynomial-time algorithm for finding the shortest non-zero vector in a lattice. 

This note shows that a simple modification of that algorithm would solve almost all problems 

of density < 0.9408. . . if it could find shortest non-zero vectors in lattices. This modification 

also yields dramatic improvements in practice when it is combined with known lattice basis 

reduction algorithms. 

1. Introduction 

The knapsack or subset sum problem is to find, given positive integers al , . . . , a, (the weights) 

and s, some subset of the a, that sum to s, or equivalently to find variables e l ,  . . . , en, with 
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ei E (0 .  l}, such that 

n 

C e , a i  = s. (1.1) 
2= 1 

This problem is known to be NP-complete [9] (in its feasibility recognition form), and so 
is thought to be very hard in general. This has led to the invention of several public-key 

cryptosystems based on the knapsack problem. Almost all of these have been broken by now, 

however. (See [2, 3, 5 ,  161 for surveys of this field.) Most of the attacks exploited specific 

constructions of the relevant cryptosystems. In addition, two algorithms have been proposed, 

one by Brickell [ 11 and the other by Lagarias and Odlyzko [ 121 which show that almost all 

low-density subset sum problems can be solved in polynomial time. The densiry of a set of 

weights al, . . . . a, is defined by 

n 
d =  

log, max ai 
l s i s n  

The interesting case is d 5 1, since for d > 1 there will in general be many subsets of weights 

with the same sum, and so such sets of weights could not be used for transmitting information. 

The Brickell and Lagarias-Odlyzko algorithms solve almost all subset sum problems with d 
sufficiently small. 

Both the Brickell and Lagarias-Odlyzko algorithms reduce the subset sum problem to that 

of finding a short vector in a lattice. The exact complexity of finding short vectors in lattices is 

not known, and expert opinion appears to be divided as to whether this problem is polynomial 

or not. At the moment, the best known polynomial time method in this area is the L3 lattice 

basis reduction algorithm of Lenstra, Lenstra, and Lovhsz [14], which is only guaranteed to 
find a non-zero vector in an n-dimensional lattice that is at most an exponential times the length 

of the shortest non-zero vector in that lattice. If one uses that algorithm, the Lagarias-Odlyzko 

method can be shown rigorously to solve almost all subset sum problems of density < c/n for 

large n and for a fixed constant c, as is done in [12]. (See [7] for a simplified analysis of the 

algorithm.) Using more recent algorithms of Schnorr [20], one can improve the cutoff bound 

to d / n  for arbitrarily small constants c' > 0, but at the cost of increasing the degree of the 

polynomial that bounds the running time. 

Finding short vectors in lattices may be very hard in general. On the other hand, published 
algorithms, such as the L3 one, perform much beder in practice than is guaranteed by their 

worst case bounds, especially when they are modified [12, 13, 181, and new algorithms are 

being invented [ 19, 20, 221. Thus it is possible that on average, the problem of finding short 

vectors in lattices is easy, even if it is hard in the worst case. Therefore it seems worthwhile to 
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separate the issues of efficiency of lattice basis reduction algorithms from the question of how 

well the subset sum problem can be reduced to that of finding a short vector in a lattice. (Note 

that Paz and Schnorr [ 171 have shown that the general problem of finding the shortest non-zero 

vector in a lattice is reducible to that of solving some subset sum problem, but with some loss 

of efficiency.) 

Consider a lattice oracle that, given a basis for a lattice, with high probability yields in 

polynomial time the shortest non-zero vector in that lattice. We do not know how to construct 

such an oracle, but it might be possible to do so. and in any case in relatively low dimensions, 

known polynomial time algorithms act like such an oracle. The analysis of [ 121 showed that 

availability of such an oracle would let the Lagarias-Odlyzko algorithm solve almost all subset 

sum problems of density < 0.6463.. . , but not higher than that. (Similar analyses are not 

available for the Brickell algorithm [ 11, although it seems to require even lower densities. See 

also [8].) 
In this note we analyze a simple modification of the part of the Lagarias-Odlyzko algorithm 

that reduces the subset sum problem to a short vector in a lattice problem. We show that with 

this modification, a single call to a lattice oracle would lead to polynomial time solutions of 

almost all problems of density < 0.9408.. . . Empirical tests show that this modification also 

leads to dramatic improvement in the performance of practical algorithms. We present some 

results on this in Section 4. More data and fuller comparisons will be given in [13]. 

In Section 2 we derive the Lagarias-Odlyzko bound using the approach in [7]. We show 
in Section 3 that this bound may be increased to 0.9408.. . using a simple modification of 

the Lagarias-Odlyzko attack. Finally, Section 4 discusses possible improvements on the new 

bound and practical results. 

Joux and Stem [ 1 11 have found another modification of the Lagarias-Odlyzko algorithm. 

While the lattice they use is very different from ours, they obtain the same 0.9408. . . density 

bound. 

2. Previous results 

In [ 121, Lagarias and Odlyzko show that if the density is bounded by 0.6463. . . , the lattice 

oracle is guaranteed to find the solution vector with high probability. This section derives the 

0.6463. . . bound using simpler tec'miques due to Frieze [7]. Our presentation differs from 

that of [7] in a few technical details. 

Let A be a positive integer and let a l ,  . . . . a, be random integers with 0 < w, 5 A for 

1 5 I 5 n. Let e = (e l , .  . . ,en) E (0. l}n, e # (0 .0 . .  . . . 0 )  depending only on n, be fixed 
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and let 

n 

s = C e , a , .  
1=1 

n 
t = Cai. 

t=1 

We may assume that s 2 t /n,  since if s < t / n  any ai 2 t / n  cannot be in the subset, and may 

be removed from consideration. Similarly, s I ( 1 - ( l / n ) ) t ,  otherwise any ai 5 ( 1 - ( l /n ) ) t  
may be removed from consideration. Thus, 

n - 1  1 
- t I s < -  
n n 

t .  

We recall the Lagarias-Odlyzko attack on low-density subset sum problems. Define the 

vectors bl, . . . , bn+l as follows: 

bl = (1.0.. . . .O,Nal ) .  

b2 = (0 .1 . .  . . . O .  N a z ) ,  

b, = (0.0. .  . . . l ,  N a n ) ,  

b,+l = (0.0.. . . -0, N s ) ,  

where ,V is a positive integer which will be chosen later. Let L be the lattice spanned by the 

vectors bl, . . . , b,+l (i.e. L = {CyLl t,bi: i, E Z for 1 5 i 5 n + 1)). 

Notice that the solution vector 8 = ( e l .  . . . . en ,  0 )  is in L. Following the proof in [7] we 

are interested in vectors 2 = (XI, 5 2 ,  . . . . x,+1) which satisfy: 

We may assume that 
n 

C e ,  I inq (2.3) 
1=1 

(i.e. the subset contains at most one-half of the at's). If CZ1 et > in,  we may replace s by 

t - s, b,+l by bh,, = (0.. . . , O ,  N(t - s)), and B by 6' = (1 - e l ,  1 - e 2 , .  . . . 1 - e,,O). 
Solving this problem is equivalent to solving the given problem, C:=,(l - e,) 5 an, and 

s' = t - s 2 t /n.  (To be fully rigorous, we actually apply the basic method to two problems, 

at least one of which is covered by the condition Cy='=, e, 5 in ,  and our analysis below applies 

to this case.) 
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Choose N > fi. It is clear that 2 satisfies Equation 2.2 only if xn+l = 0. (Otherwise, 

IIiZll >_ lxn+ll 2 N > f i  2 ( (6 ( ( ,  which contradicts Equation 2.2.) Let y be defined by 
n 

and deduce that 

(2.4) 

Hence, using Equation 2.1 above, 

Note that since -9 is the coefficient of bn+l in the expansion of iZ in terms of the basis vectors, 

y E z. 
We will show that the probability P - that a lattice L contains a short vector which satisfies 

Equation 2.2 - is: 

P = Pr( 3 which satisfies Equation 2.2) 

sn ( 2 n  Jz 1 n + 1  ) 2 y  -, forQ=1.54724 ... (2.7) 

This implies that, if A = 2" with c > Q, lim P = 0. If the density of a subset sum problem 

is less than 0.6463. . . , then 
71-00 

n < 0.6463. . . + rnG ai > 2n'0.6463... log, max uj  l<-r<n 
lFi<n 

+ A > 2COn. 

Thus, all subset sum problems with density < 0.6463. . . could be solved in polynomial time, 

given the existence of a lattice oracle. 
We will now prove Equation 2.7. Let x = (zl, . . . , z,) denote an element of k. (Note 

that if j l  = (zll . . . , x,, 0), then 11211 = llxll and as a special case we have lli3ll = Ilell.) First 
we estimate the probability P by 
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We have to estimate three factors in the right side of Equation 2.8. For the first factor of 

Equation 2.8 we may rewrite C:=, a,s, = ys as: 

n 1 u,z, = 0. where z, = x, - ye,. 
2=1 

Since x is non-zero and llxll 5 llell, we have z = (21,. . . ,z,) # 0, and so we may assume 

without loss of generality (by increasing the bound for the probability by a factor of at most n) 
that z1 # 0. If z’ is defined as - ( C z 2  u t z 7 / z 1 ) ,  then 

A 
= C Pr(a1 = ~’12 ’  = j )  Pr(z’ = j ) ,  

= 1 Pr(u1 = z ‘ )  Pr(d = j ) ,  

J=l 

rl 

(al a n d j  are independent). 
J = 1  

1 5 -. 
A 

Now we consider the second factor of Equation 2.8. From [12] (which borrowed the 

technique from [ 151) we know that 

It is clear that the last factor of Equation 2.8 can be estimated by 2 n f i  + 1. This proves 

Equation 2.7. 

3. A new, improved bound on the density 

The main result of this note is an improvement in the maximum density of subset sum problems 

which can “almost always” be solved: 

Theorem. Lei A be a positive integer, and let a l ,  . . . , a,  be random integers with 0 < a, 5 A 
for 1 5 i 5 n. Ler e = (el . .  . . , e n )  E {0,1}” be arbitrary, c!nd let s = C;==, eiai. rfrhe 

density d < 0.9408 . . . , then the subset sum problem defined by al, . . . . a, und s may “almost 

always” be solved in polynomial time with a single call to a lattice oracle. 
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Proof. We need to make only minor changes to the proof presented in Section 2. As above, A 
is a fixed positive integer and u1. . . . . u ,  are random integers with 0 < (I, 5 A for 1 5 i 5 n. 
Let e = ( e l , .  . . . en )  E (0.1)” be fixed, let s = e,a,, and let t = C:=, a,. Vectors 

bl. . . . , b, are defined as in Section 2 .  Vector b,+l is replaced, however. by 

1 1  1 bhd1 = ( 2 .  ?,..  . . ~ . N s ) .  

Let L’ be the lattice spanned by the vectors bl, . . . . b,. bL+l. 
In Section 2. we knew that the vector C = (el. . . . . en, 0) was in the lattice L. Notice that 

the new lattice L’ does not contain C but instead contains the vector 8’: 

e - /  = (e i . .  . . . ek.0). where e: = e, - 5 1 

Since ei E (0, 1 )  for 1 5 i 5 n, we know that e: E {-f, i} for 1 5 i 5 n. Notice that 

116’11* 5 i n  independent of the number of el’s which are equal to 1. 

Again, we are interested in the number of vectors 1 which satisfy conditions similar to 

Equation 2.2: 

ll41 5 IlG’lL 

2 E L’. 

1 $z ( 0 ,  6’. -C’}* 

(3.1) 

Setting N > ifi implies that rn+l = 0 for any 1 which satisfies Equation 3.1. Suppose that 

1 = C:=, Yibi + ybL+l satisfies Equation 3.1, then we can express xi in terms of yi and y in 
the following way 

0 = Xn+1 = c a,y, + ys . - 1 
This implies that 

n C aiyi = -ys. 
,=1 

Therefore, Equation 2.4 can be replaced by: 

n 

since (zb, bi) - 2bL+l = (0.0.. . . . O .  N ( t  - 2s)). 
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We now establish a bound on the size of (yl. From above, 

I n  I 

5 nab. where a = max ai. 
l<i<n 

(3.3) 

by Equation 3.3. If It - 2sl < ;a, then we can solve two problems: one where a is assumed 

to be part of the subset which sums to s, and one where a is assumed to be part of the subset 

which sums to t - s. In the first case, the new problem has s' = s - a,  t' = t - a, and 

It' - 2s'J = It - a - 2s + 2 a J  = It - 2s + a1 2 fa.  (3.5) 

For the second case, the new problem has s' = s ,  t' = t - a, and 

It' - 2 4  = It - 2s - a1 2 ;a. (3.6) 

Thus we may always assume It - 2sl 2 f a  and that the bound in Equation 3.4 holds. 
We may now calculate the bound on probability P that there exists a vector 2 which satisfies 

Equation 3.1. We now let x = (xl, . . . . xn) be any vector such that 2 x E IT?. We obtain the 

following bound, similar to Equation 2.8: 

As in Section 2, Pr(Cr=l aixi = f y ( t  - 2s)) 5 1/A. To estimate the number of vectors x 
with llxll 5 i f i ,  we again use the technique in [12, 151, but in a more complicated way. The 
number of x with llxll 5 f i / 2  is bounded above by 

In [15] it is shown that for n sufficiently large, the second summand in Equation 3.8 above is 
smaller than the first summand by a factor that is exponontial in n. In any case, the second 

summand equals 2". By the method of [ 12,151, the first summand is bounded, for every u > 0, 

by 
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where 
x. 

6(u)  = + u  + lnO(e-"). for ~ ( z )  = 1 + 2 C z k L  
k=l 

Numerically, we may calculate the minimum value of 6( u) ,  and obtain 

6(u )  2 ~ ( u o )  = 0.7367.. . , for uo = 1.8132.. . 

Thus, for large n, we have 

for cb = 1.0628. . . ! 

P 5 R (4n f i+  1) T. 
Thus, any subset sum problem with density d < l/c$ = 0.9408.. . may be solved in 

polynomial time, given the existence of a lattice oracle. W 

4. Discussion 

The analysis above shows that it is possible to improve the density bound from 0.6463. . . to 

0.9408. . . by modifying one vector in the lattice basis. We now consider the possibilities of 

improving on this bound. 

Solving subset sum problems with basis reduction is closely connected to lattice covering 

problems. In particular, we want to cover the vertices of the n-cube (representing the possible e 
solution vectors) with a polynomial number of n-spheres of radius 6. Lagarias and Odlyzko 

showed that it was possible to cover the n-cube with two n-spheres of radius &. The two 

spheres (centered at (0, 0, . . . . 0) and (1.1, . . . , 1)) correspond to the two basis reduction 

problems which must be solved for any given subset sum problem. Our analysis above uses 

one n-sphere of radius i ,h centered at (i f . . . , i ) to cover all the points. 

One way to improve the bound presented above would be to show that it is possible to 

cover the vertices of the n-cube with a polynomial number of n-spheres of radius 6 with 

a < a. We show that this is not possible, and that the asymptotic bound of 0.9408. . . cannot 

be improved in this way. The following proposition shows that any n-sphere of radius 6 
with (Y < a can cover only an exponentially small fraction of the vertices of the n-cube. Thus, 

no polynomial collection of such spheres can satisfy our requirements. 

Proposition. Any sphere of radius 6. a < i, in R" contains at most ( 2  - 5)" points of 

{O.l}",for some S = 6(a) > 0. 



I 
63 

' Proof. Suppose that the n-sphere is centered at the point c = ( cl. . . . . c, 1. We are interested in 

the number of points e E (0. l}" for which IIc -ell' 5 an. Using the upper bound technique 

of [15], we show that :V, the number of points in (0.1)" inside the sphere, is bounded by 

(4.1) 

If the point e = (el. . . . . en)  is inside the sphere, then JJc - el)' = C,"=, 1 c, - e,)2 _< an,  and 

after expanding the right side. Equation 4.1 contains a term of the form 

exp a n  - C(cz - e,) ( %Il 
for each such point e, which proves Equation 4.1 since all terms in the expansion are nonneg- 

ative. 

Since the terms in the product in Equation 4.1 are independent, we know that the value of 

iV is bounded by 

(It is easy to show that the maximum value of f ( z )  = e-" + e-(z-1)2 is 2e-1/4.) Thus, 

For all a < i, S(a) > 0, which proves the proposition. 

As n + 00, any n-sphere with radius 6, (Y < i, will contain at most (2 - 6 ( ~ ) ) ~  points 

in (0, l}". Thus, any polynomial-sized collection of spheres cannot contain all the points in 

(0. l}n. Thus we cannot hope to asymptotically improve the 0.9408.. . bound by reducing 

a polynomial number of bases with different bnfl vectors. However, for small dimensions it 

might be possible to improve the bound, even though any such advantage will disappear as n 
grows. 

In cases where the subset sum problem (Equation 1.1) to be solved is known to have C ei 

small (as occurs in some knapsack cryptosystems, such as the Chor-Rivest one [4], which has 

still not been broken), it is possible to again improve on the results of [ 121 by our approach. 

For example, if we know that 

n 

Cei = pn. 
i= l  
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we can replace the vector b,+l in the basis of L by 

b:+l = ( P ,  P ,  . . . 9- N s ) ,  

and then the lattice L will contain a vector of length @P( 1 - (?), and our analysis shows 

that in this case it then becomes possible to solve most problems with even smaller weights 

ai. However, it appears that there are choices for parameters in the Chor-Rivest knapsack that 

would resist even this attack. 

When we consider the L ,  or sup-norm, 

then we find that the vector 6’ has norm 1/2. Since there are at most 2” non-zero vectors in L’ 
of norm 5 1/2, we can solve almost all subset sum problems of any density < 1 if we have a 

lattice oracle for the sup-norm. Formally, we may make the following proposition: 

Proposition. Let A be a positive integer, and let a l ,  . . . , a,  be random integers with 0 < 
a, 5 A for 1 5 i 5 n. Let e = ( e l . .  . . , en )  E (0, l}, be arbitrary, and let s = ~ ~ . ,  e,a,. 
If  the density d < 1, then the subset sum problem defined by a1 . , . . . an and s may “almost 

always” be solved in polynomial time, given the existence of a sup-norm lattice oracle. 

The general sup-norm shortest vector problem is known to be NP-complete [6] ;  the complexity 

of the square-norm shortest vector problem is an open problem. That a sup-norm lattice oracle 

yields a better density bound than a square-norm lattice oracle suggests that the shortest vector 

problem for the sup-norm might be harder than for the square-norm. 

Sections 3 and 4 presented theoretical results that assume the availability of an efficient 

method for finding the shortest non-zero vector in a lattice. When one uses known algorithms 

for lattice basis reduction, applying them to lattice L’ instead of lattice L also yields dramatic 

improvements, although the results are not as good as they would be in the presence of a 

lattice oracle. For example, Table 1 presents the comparison obtained in one particular set 

of experiments. The lattices used were not exactly L and L’, and the reduction algorithm 

used a combination of ideas from several sources. More extensive data sets and details of the 

computations are presented in [ 131. For each entry in Table 1, n denotes the number of items, 

and b the number of bits (chosen at random) for each item. For each (n. b)  combination, 20 
problems were attempted, where in tach case e, = 1 for exactly n/2 of the items. The entries 

for the L and L’ column indicate what fraction of the 20 problems were solved in each case. 

Combining the improved lattice of this paper with variants of the algorithms of [ 191 leads to 
solutions of subset sum problems of even higher densities, as is shown in [21]. 
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Table 1: Fraction of random subset sum problems solved by a particular reduction algo- 
rithm applied to bases L and L’, respectively 

I66 I 112 10.60 I 1.00 I 

References 

[ 11 E. F. Brickell, Solving low density knapsacks. Advances in Cryptology, Proceedings of 

Crypto ’83, Plenum Press. New York (1984), 25-37. 

[2] E. F. Brickell, The cryptanalysis of knapsack cryptosystems. Applications of Discrete 

Mathematics, R. D. Ringeisen and F. S. Roberts, eds., SIAM (1988), 3-23. 

[3] E. F. Brickell and A. M. Odlyzko, Cryptanalysis: a survey of recent results, Proc. IEEE 
76 (1988), 578-593. 

[4] B. Chor and R. Rivest, A knapsack-type public key cryptosystem based on arithmetic in 

finite fields, lEEE Trans. Information Theory IT-34 (1988), 901-909. 

[5 ]  Y. Desmedt, What happened with knapsack cryptographic schemes?, Pegormanee Limits 

in Communication, Theon. and Practice, J .  K .  Skwirzynski, ed., Kluwer (1  988), 1 13- 134. 

[6] P. van Emde Boas, Another NP-complete partition problem and the complexity of com- 

puting short vectors in a lattice, Rept. 81-04, Dept. of Mathematics, Univ. of Amsterdam, 

1481. 

[7] A. M. Frieze, On the Lagarias-Odlyzko algorithm for the subset sum problem, SIAM J .  

Comput. 15(2) (May 1986), 536-539. 



66 

[8] M. L. Furst and R. Kannan, Succinct certificates for almost all subset sum problems, 

SIAM J .  Comput. 18 (1989), 550-558. 

[9] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of 
NP-Completeness, W. H. Freeman and Company (1979). 

[ lo] J. Hastad, B. Just, J. C. Lagarias, and C. P. Schnorr, Polynomial time algorithms for 

finding integer relations among real numbers, SIAM J .  Comput. 18(5) (October 1989), 

859-88 1. 

[ 1 11 A. Joux and J. Stem, Improving the critical density of the Lagarias-Odlyzko attack against 

subset sum problems, Proceedings of Fundamentals of Computation Theory '91, to be 

published. 

[ 121 J. C. Lagarias and A. M. Odlyzko, Solving low-density subset sum problems, J .  Assoc. 

Comp. Mach. 32(1) (January 1983,229-246. 

[ 131 B. A. LaMacchia, Basis Reduction Algorithms and Subset Sum Problems, SM Thesis, 

Dept. of Elect. Eng. and Comp. Sci., Massachusetts Institute of Technology, Cambridge, 
MA (1991). 

[ 141 A. K. Lenstra, H. W. Lenstra, and L. LovAsz, Factoring polynomials with rational coeffi- 
cients, Math. Ann. 261 (1982), 515-534. 

[15] J. E. Mazo and A. M. Odlyzko, Lattice points in high-dimensional spheres, Manatsh. 

Math. 110 (1990), 47-61. 

[ 161 A. M. Odlyzko, The rise and fall of knapsack cryptosystems. Cryptology and Computa- 

tional Number Theory, C. Pomerance, ed., Am. Math. Soc., Roc. Symp. Appl. Math. 42 

(1990), 75-88. 

[17] A. Paz and C. P. Schnorr, Approximating integer lattices by lattices with cyclic factor 

groups, Automata, Languages, and Programming: 14'h ICALP, Lecture Notes in Com- 

puter Science 267, Springer-Verlag, NY (1987), 386-393. 

[ 181 S. Radziszowski and D. Kreher, Solving subset sum problems with the L3 algorithm, J. 

Combin. Math. Combin. Comput. 3 (1988), 49-63. 

[19] C. P. Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms, Theo- 

retical Computer Science 53 (1987), 201-224. 



67 

[20] C. P. Schnorr, A more efficient algorithm for lattice basis reduction. J .  Afgorirhms 9 

(1988), 47-62. 

[21] C. P. Schnorr and M. Euchner, Lattice Basis Reduction: Improved Practical Algorithms 

and Solving Subset Sum Problems, Proceedings of Fundamentals of Computation Theory 

'91, to be published. 

[22] M. Seysen, Simultaneous reduction of a lattice basis and its reciprocal basis, Comhina- 

torica, to appear. 


	An Improved Low-Density Subset Sum Algorithm
	1. Introduction
	2. Previous results
	3. A new, improved bound on the density
	4. Discussion
	References


