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Abstract 

In the paper, elementary randomizers based on random functions and the DES structure 
are examined. First, it is proved that the randomizer with three different random functions 
produces the outputs which are independent and uniformly distributed random variables. 
Next, randomizers based on two different random functions are considered and it is shown 
that their statistical properties depend upon the order of the functions used in them. Finally, 
it is proved that the randomizer with a single random function gives outputs which are 
statistically related. 

1 Introduction 
Luby and Rackoff [I] introduced an elementary randomizer $(f, g, h) based on three random 
functions f, g, h and the DES structure. They proved that such randomizer cannot be efficiently 
distinguished from a truly random permutation (function). Ohnishi [2] showed that it is possible 
to simplify the Luby-Rackoff randomizer to $(f,f,g) without any significant deterioration of 
its quality - it cannot be distinguished from a truly random permutation as well. Schnorr [5] 
asked about the possibility of a further reduction of the number of random (or pseudorandom) 
functions to a single one. Pieprzyk [3] proved that $(f, f, f, f') is indistinguishable from a truly 
random permutation, when f is a truly random or pseudorandom function. 

distinguishable from a truly random permutation and in this paper, we will examine the statis- 
tical properties of their outputs. 

The four elementary radomizers Nf, 9 ,  h),  ?Nf, f, g), $47, f, f), and w, f, fl f2) are not 
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2 Preliminaries 
Let I, = (0,l)" be the set of all 2" binary strings of length n. For a, b E I,, a @ b stands 
for bit-by-bit exclusive-or of a and b. The set of all functions from I,, to I,, is F,, i.e., F,, = 
{f I f : I,, -+ I,,}. If we have two functions f , g  E F,,, their composition f o g is denoted as 
f o g ( z )  = f ( g ( x ) )  for all z E I,. For a function f E F,,, we d e h e  the DES-like permutation 
associated with f as Dz,,,,(L, R )  = (R,  L @ f ( R ) ) ,  where L and R are n-bit strings (L, R E I n )  

and Dz,,,, E Fz,. Having a sequence of functions f1, f 2 , . . - ,  f i  E F,,, we can determine the 
composition of their DES-like permutations 1c, and 4(fi, f2, . . * , f i )  = D2,,fi 0 D ~ n , j ; - l o  * . . O  D2,fI 

Of c o ~ s e ,  +(fi, f21* * 7 f i )  E F2n. 

Definition 2.1 A random function f ER F, w a sequence (f(O),f(l),.-.,f(2" - 1) ) of random 
variables, where any random variable f ( x ; ) ;  x i  E I,,, has a uniform and independent distribution 
30 P[f(zi) = x i ]  = f f O T  all x ; , x ;  E I,, (f(zi) and f(2;) are independent for i # j ) .  

The following properties of random variables and the exclusiveor operation are exploited in 
the paper: 

P1. Let X and Y be independent random variables. The random variable X @ Y may be 
described by its conditional probabilities 

P [ X $ Y  = zi I x = x j 1 =  P [ X $ Y  = 2; I X j ]  = P[Y = yk] 

where Yk = z; €3 x j .  

P2. Let X and Y be independent random variables and one of them, say X ,  .be uniformly 
distributed. Then X @ Y is also a uniformly distributed random variable. 

P3. Let X and Y be uniformly distributed independent random variables i.e., P [ X  = x i ]  = 
P[Y = yi] = & for all z;, yi E I,,. Then X @ Y is a uniformly distributed random variable 
that is independent from both X and Y. 

3 Analysis of elementary randomizers 
In this section, elementary randomizers 3 ( f ,  g, h) ,  3 ( f ,  f, 91, $ ( g ,  f, f), and +(fl f, f, f '1 are 
analysed. First, we consider the Luby-Rackoff randomizer. 

Theorem 3.1 Given the L-R randomizer $ ( f , g , h ) ,  where f , g , h  ER F, are three diferent 
random functions, then i b  outpub (Ply) are represented b y  two independent random variables 
each of the uniform probability dwtribution. 

Proof: The following notations are used in the proof: X = f ( R ) ,  a = L @ X ,  Y = g ( a ) ,  
/3 = Y @ R, 2 = h(P), and 7 = 2 @a. The input R specifies a single random variable X = f ( R )  
in the random function f. Clearly, P[-'(R) = i ]  = &, where i E I,, so the random variable X is 
uniformly distributed. The second random function g operates on values of the random variable 
a = X @ L (of the uniform distribution). The resulting variable Y = g ( a )  has the uniform 
distribution and because g is a collection of independent random variables, Y is independent 
from a (it is easy to check that P[Y = i I a = j ]  = P[Y = i ]  = & for all i ,  j E I,,). As /3 = Y @ R  
is permuted random variable Y (a deterministic transformation of Y), ,8 is independent from Q 

and has the uniform distribution. The application of the third random function h generates the 
random variable 2 = g ( P )  which is uniformly distributed and independent from @. As a and 2 
are independent and uniform, y = a $ 2 is the uniform random variable and independent from 



both p and Z (see the property 
distributed random variables. 

0 
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P3). Thus, the outputs (p,  7) are independent and uniformly 

Theorem 3.2 Given the elementary randomizer $( f ,  f ,  g), where f ,  g ER F,, are two different 
random funct ions,  then iib outputs (p,y) are represented by two independent random variable, 
and y has the uni form distribution (p does not  have the uni form distribution). 

Proof: Observe that if the random variable X = f(R) = L @ R in the first call of f ,  
then Q = X @ R = R and in the second call of f ,  the same value must be used. Thus 
P[Y = L @ R I f (R) = L @ R] = 1. Other conditional probabilities are as follows: P[Y = i 1 
f ( R )  = j ;  j # L @ R] = & for all i , j  E I,. It means that 

2 " - 1  1 
22" 2" P[Y = L @ R ]  = - +- 

and for all j # L @ R j E In, we have 

2" - 1 
22" 

P[Y=j] = - 

As p = Y @ R, /? has the following probability distribution: 
F++ 2"-1 if i=L 

P [ p  = i] = L otherwise 

Clearly, the application of the second random function g generates a uniform random variable 
2 = g(p) which is independent from p and according to the property P2,7 = Z @ a  is uniformly 
distributed and independent from p. 

0 

Theorem 3.3 Given the elementary randomizer $(g, f,f), where f,g E R  F, are two different 
random functions,  then i ts  outpuib (p ,  7) are represented by two independent random variables 
and the both have the uni form probability distribution. 

Proof: R assigns a random variable X = g(R) from the random function g. Clearly, X 
has the uniform distribution. The input L permutes values of X ,  and the resulting random 
variable a = X @ L is also uniform. Values of a are arguments of the second random function f 
which is independent from g. As all random variables f(a;); a; E I,, are uniformly distributed, 
the random variable Y = f(a) is uniform and so is the random variable p = Y @ R. The 
probability distribution of Z = f(P) is not uniform as it depends on f(ai) and P[Z  = a; @ R I 
f (a;) = Q; @ R] = 1. In the rest of the cases (i.e., j # a; @ R), the probabilities are as follows: 
P[Z = j I f ( a i )  # ayi @ R] = &. Therefore the probability distribution of Z is 

Obviously, a and Z are independent and according to the property P2, y = Q @ 2 is uniformly 
distributed and independent from 8. 

0 

Theorem 3.4 Given $(f, f, f ,  f') where f E R  F,. If the inputs (L # R), then the outputs 
(y,6) are statistically related and their probability distributiom are not uniform. 
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Proof: We use the following notations: X = f ( R ) ,  Q = L @ X ,  Y = f ( a ) ,  p = Y @ R, 
Z = f ( P ) ,  y = 2 @ a and 6 = /I @ f'(7). We are going to calculate conditional probabilities 
of variables 2 and y provided that f ( R )  is fixed. There are two different cases: the f is t  when 
f ( R )  = i and z # L @ R (i  E I,,), and the second when f ( R )  = L @ R. 

1. f ( R )  = i and i # L @ R. Observe that f(R) = i implies that Q = L @ f ( R )  becomes 
i @ L. The probability of attaining the points of 2 can be found by starting from the 
point Q = i @ L and counting all possible paths (there zre 2" of them) along with their 
probabilities. The probabilities are 

2 " - 2  1 
22" 2" 

2 " - 2  1 
P(Z = i @ L @ R  1 f ( R )  = 2 )  = P ( y  = R I f ( R )  = 2 )  = - +- 

P(7 = L I f ( R )  = i) = - 22" + 2~ 
2" - 2 

P(7  = j  @ i  @ L  1 f(R) = i) = - 22" 

P ( Z  = i I f ( R )  = i) 

P ( Z  = j I f(R) = i) 

= 

= 

where j E I,, and is different from z and i @ L @ R. 
2. f ( R )  = L @ R. It means that a = R and 2 has a uniform distribution thus 

1 
P ( Z  = j I f ( R )  = L @ R )  = P ( y  = j @ R  I f(R) = L $ R )  = - 2" 

for all j E I,,. 
The probability distribution of y is as follows: 

P ( y  = L )  = c P(7 = L I f ( R )  = k ) P ( f ( R )  = k) + 
k#L@R 

P ( y  = L I f(R) = L @ R ) P ( f ( R )  = L $ R )  = 
(2" - 1)(2" - 2) 1 + -  23" 2" 

P ( y  = R I f ( R )  = k ) P ( f ( R )  = k) + P ( y  = R) = 
k#L@R 

P(7 = R I f ( R )  = L @ R)P( f (R)  = L $ R)  = 
(2" - 1)(2" - 2) 1 

f -  23" 2" 
P(y = j) = c P ( y  = j I f ( ~ )  = k ) ~ ( f ( ~ )  = k) + 

k#L@R 

P ( y  = j 1 f(R) = L @ R ) P ( f ( R )  = L @ R) = 
(2" - 1)(2" - 2) 1 +-  23" 22" 

where j E I,, and is different from L and R. 

f but also upon 7 and its probability distribution is not uniform. 
Clearly the second output variable 6 = f'((r)@P not only depends upon the random function 

0 
If the inputs to $(f, f, f, f') are the same i.e., L = R, then the probability distribution of y 

has a single point with bigger probability and 
(2" - 1)(2" - 2) 2(2" - 1) 1 

+ 22" + - P ( ( r = R =  L )  = 
23" 2" 

(2" - 1)(2" - 2) 
23" 

P ( y =  j )  = 

where j E In and is different from L. 
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4 Conclusions 
We can define a perfect randomizer as the one whose outputs are statistically independent 
for different inputs. It also means that oracle gates of a distinguisher evaluated by a perfect 
randomizer are not “transparent” for the input. Fkom the analysis, we can conclude that the 
composition of randomizers $(f, f, f, fa) does not provide a perfect randomizer. Perhaps perfect 
randomizers can be built from $(g, f, f). However, the direct composition of $(f, f ,  g) does not 
yield perfect randomizers. The composition of $(f, g, h) creates a perfect randomizer (see [4]). 
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