
Symbolic Model Checking for

Rectangular Hybrid Systems�

Thomas A. Henzinger and Rupak Majumdar

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley, CA 94720

{tah,rupak}@eecs.berkeley.edu

Abstract. An important case of hybrid systems are the rectangular au-
tomata. First, rectangular dynamics can naturally and arbitrarily closely
approximate more general, nonlinear dynamics. Second, rectangular au-
tomata are the most general type of hybrid systems for which model
checking –in particular, Ltl model checking– is decidable. However, on
one hand, the original proofs of decidability did not suggest practical
algorithms and, on the other hand, practical symbolic model-checking
procedures –such as those implemented in HyTech– were not known to
terminate on rectangular automata. We remedy this unsatisfactory situ-
ation: we present a symbolic method for Ltl model checking which can
be performed by HyTech and is guaranteed to terminate on all rect-
angular automata. We do so by proving that our method for symbolic
Ltl model checking terminates on an infinite-state transition system if
the trace-equivalence relation of the system has finite index, which is the
case for all rectangular automata.

1 Introduction

The hybrid automaton [1] is a mathematical model for dynamical systems with
mixed discrete-continuous dynamics. Model checking has been successfully ap-
plied to hybrid automaton specifications in automotive [30,32], aerospace [28,29],
consumer electronics [26], plant control [25], and robotics [11] applications.

The maximal class of hybrid automata with a decidable model-checking prob-
lem is the class of rectangular automata1: in [22] it is shown that linear temporal
logic (Ltl) requirements can be checked for rectangular automata, while various
minor generalizations of rectangular automata have formally undecidable reach-
ability problems. The rectangular-automaton case is of practical significance, as
hybrid systems with very general dynamics can be locally approximated arbitrar-
ily closely using rectangular dynamics [20], which has the form ẋ ∈ ∏n

i=0[ai, bi],
� This research was supported in part by the DARPA (NASA) grant NAG2-1214, the
DARPA (Wright-Patterson AFB) grant F33615-C-98-3614, the MARCO grant 98-
DT-660, the ARO MURI grant DAAH-04-96-1-0341, and the NSF CAREER award
CCR-9501708.

1 In this paper, we refer as “rectangular automata” to the initialized rectangular
automata of [22].

S. Graf and M. Schwartzbach (Eds.): TACAS/ETAPS 2000, LNCS 1785, pp. 142–156, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Symbolic Model Checking for Rectangular Hybrid Systems 143

constraining the time derivative ẋ of a state in R
n to the n-dimensional rectangle∏n

i=0[ai, bi] with rational corner points. The decidability proof of [22], however,
does not yield a practical Ltl model-checking algorithm (and has never been
implemented), because it involves a reduction from a rectangular automaton of
dimension n to a timed automaton of dimension 2n, and dimension (i.e., number
of clocks) is the most common bottleneck in timed analysis [13].

For practical applications, the tool HyTech [19] can be used for checking
Ltl requirements of rectangular automata. Instead of translating a given rect-
angular automaton H into a timed automaton, HyTech performs a symbolic
computation directly on the n-dimensional state space of H . However, the sym-
bolic procedures employed by HyTech may not terminate, and thus do not
qualify as decision procedures. In this paper, we resolve the gap between theory
([22]) and practice (HyTech) by showing how given a rectangular automatonH
and an Ltl formula ϕ, we can run a symbolic procedure on the state space of H
(using the primitives of HyTech) which is guaranteed to terminate and, upon
termination, returns the states of H that satisfy ϕ. We thus obtain a symbolic
(rather than reductive) model-checking algorithm (rather than semi-algorithm)
for Ltl requirements of rectangular automata.

We obtain our result by first studying symbolic procedures for Ltl model
checking in a very general setting (Section 2, 3 and 4), namely, for arbitrary
(infinite-state) transition systems with a computable Pre operator, which given
a set of states, returns the set of predecessor states. We identify a symbolic Ltl
model-checking procedure based on the Pre operator, and a structural (syntax-
independent) condition for transition systems (finite trace equivalence) which
guarantees termination of the procedure. Since trace equivalence has finite index
for all rectangular automata [22], we conclude that symbolic Ltl model-checking
terminates for rectangular automata. We illustrate our algorithm as applied to
a rectangular automaton specifying a physical scheduling problem (Section 5).

Our symbolic Ltl model-checking procedure executes a µ-calculus expres-
sion which is obtained from a given Ltl formula. It is well-known that Ltl can
be translated into the µ-calculus [6,12,16], and it has been observed that the
resulting µ-calculus expressions have a special form [15]: each conjunction has
at least one argument which is atomic and constant (i.e., contains no fixpoint
operators or variables). This leads us to define the following procedure, called
observation refinement (AOR): starting from a finite initial partition of the state
space, iteratively compute new sets of states by applying either the Pre operator,
or intersection with an initial set. We show that AOR terminates on a transition
system (i.e., finds only a finite number of sets) if and only if the system has a
trace-equivalence relation of finite index. Moreover, AOR termination is a suffi-
cient condition for termination of the µ-calculus based symbolic model-checking
algorithm for Ltl. Finally, we show that the µ-calculus based algorithm is, in
a strong sense, equivalent to the standard, product-automaton based algorithm
for symbolic Ltl model checking [9].

Thus, AOR plays with respect to Ltl a role that is similar to the role of
partition refinement (APR), which iterates Pre, (unrestricted) intersection, and

144 Thomas A. Henzinger and Rupak Majumdar

set difference, with respect to branching-time logics: the termination of APR on a
transition system guarantees that symbolic model checking for the full µ-calculus
(or Ctl, Ctl∗) also terminates. This is because APR computes the bisimilarity
quotient [27]. While APR is known to terminate on timed automata [2], whose
time-abstract bisimilarity quotients are finite, there are rectangular automata
on which APR does not terminate [17]. However, since rectangular automata
have finite trace-equivalence quotients, AOR terminates on every rectangular
automaton, thus enabling symbolic Ltl model checking.

2 Symbolic Model Checking for Infinite-State Systems

2.1 Transition Structures

A transition structure K = (Q,Π, 〈〈·〉〉, δ) consists of a (possibly infinite) set Q of
states, a finite set Π of observables, an observation function 〈〈·〉〉: Q→ 2Π which
maps each state to a set of observables, and a transition function δ: Q → 2Q

which maps each state to a nonempty set of possible successor states. We say
that an observable π holds at a state q if π ∈ 〈〈q〉〉. A state q is a successor of a
state p if q ∈ δ(p). A source-q0 run of K is an infinite sequence r = q0q1q2 . . . of
states such that qi+1 is a successor of qi for all i ≥ 0. The run r induces a trace,
denoted 〈〈r〉〉, which is the infinite sequence 〈〈q0〉〉〈〈q1〉〉〈〈q2〉〉 . . . of observable sets.
For a state q ∈ Q, the outcome Lq from q is the set of all runs of K with source q.
For a set L of runs, we write 〈〈L〉〉 for the set {〈〈r〉〉 | r ∈ L} of corresponding
traces.

A binary relation �l ⊆ Q × Q is a trace containment if p �l q implies
〈〈Lp〉〉 ⊆ 〈〈Lq〉〉. Define p �L q if there exists a trace containment �l with p �l q.
Define the trace-equivalence relation ∼=L as p ∼=L q if both p �L q and q �L p. A
binary relation �s ⊆ Q×Q is a simulation if p �s q implies (1) 〈〈p〉〉 = 〈〈q〉〉, and
(2) for all states p′ ∈ δ(p), there exists a state q′ ∈ δ(q) such that p′ �s q′. A
binary relation ∼=b on Q is a bisimulation if ∼=b is a symmetric simulation. Define
p ∼=B q if there is a bisimulation ∼=b with p ∼=b q. The equivalence relation ∼=B is
called bisimilarity.

The observables induce an equivalence relation ∼=A, called atomic equiva-
lence, on the states Q, with p ∼=A q iff 〈〈p〉〉 = 〈〈q〉〉. The equivalence classes of ∼=A

are called atomic regions. Let A denote the set of atomic regions. For an equiva-
lence ∼= on the states Q which refines ∼=A, define K/∼= = (Q/∼=, Π, 〈〈·〉〉∼=, δ∼=), the
quotient structure of K with respect to ∼=, as follows. The states in Q/∼= are the
equivalence classes of ∼=. The observables are the same as those of K. Define the
observation function 〈〈·〉〉∼= as π ∈ 〈〈R〉〉∼= if π ∈ 〈〈q〉〉 for any/all states q ∈ R.
Define the transition function δ∼= as R ∈ δ∼=(P) if there are a state p ∈ P and a
state q ∈ R such that q ∈ δ(p).

2.2 Symbolic Semi-algorithms

Let K be a transition structure. A region is a (possibly infinite) set of states
of K. If the state space of K is infinite, any algorithm that traverses the state

Symbolic Model Checking for Rectangular Hybrid Systems 145

space must represent regions implicitly, as formulas in some constraint system.
With a transition structure K we associate a symbolic theory [23], which consists
of (1) a set Σ of region representatives containing finite representations of some
regions of K, and (2) an extension function �·� : Σ → 2Q which maps each region
representative to the region it represents, such that the following conditions are
satisfied:

– For every atomic region R ∈ A, there is a region representative σR ∈ Σ
such that �σR� = R. Let ΣA = {σR | R ∈ A} denote the set of region
representatives for the atomic regions.

– For every region representative σ ∈ Σ, there is a region representative
Pre(σ) ∈ Σ such that �Pre(σ)� = {q ∈ Q | δ(q)∩�σ� �= ∅}; furthermore, the
function Pre: Σ → Σ can be computed algorithmically.

– For every pair of region representatives σ, τ ∈ Σ, there are region represen-
tatives And(σ, τ),Diff (σ, τ) ∈ Σ such that �And(σ, τ)� = �σ� ∩ �τ� and
�Diff (σ, τ)� = �σ� \ �τ�; furthermore, the functions And ,Diff : Σ ×Σ → Σ
can be computed algorithmically.

– The emptiness of a region representative is decidable; that is, there is a
computable function Empty : Σ → B such that Empty(σ) iff �σ� = ∅.

– The membership problem for a state and a region representative is decidable;
that is, given a state q and a region representative σ, it can be decided if
q ∈ �σ�.

A symbolic semi-algorithm takes as input the symbolic theory for a transition
structureK, and generates region representatives inΣ by applying the operations
Pre, And , Diff , and Empty to the atomic region representatives in ΣA. The
expression “semi-algorithm” indicates that, while each operation is computable,
the iteration of operations may or may not terminate. Two examples of symbolic
semi-algorithms are well-known. The first is backward reachability, denoted A✸.
Given an atomic region representative α ∈ ΣA, the symbolic semi-algorithm A✸

starts from σ0 = α and computes inductively the region representatives σi+1 =
Pre(σi). The semi-algorithm terminates if there is a k such that

⋃
0≤i≤k+1�σi� ⊆⋃

0≤i≤k�σi�; that is, no new state is encountered. Termination can be detected
using the operations Diff and Empty [23]. Upon termination, a state q can reach
the atomic region �α� iff q ∈ �σi� for some 1 ≤ i ≤ k.

The second example is partition refinement [7,27], denoted APR. The sym-
bolic semi-algorithm APR starts from the finite set S0 = ΣA of atomic region
representatives and computes inductively the finite sets

Si+1 = Si ∪ {Pre(σ),And(σ, τ),Diff (σ, τ) | σ, τ ∈ Si}

of region representatives. The semi-algorithm terminates if there is a k such that
{�σ� | σ ∈ Sk+1} ⊆ {�σ� | σ ∈ Sk}; that is, no new region is encountered.
Termination can be detected using the operations Diff and Empty : for each
region representative σ ∈ Sk+1 check that there is a region representative τ ∈ Sk

such that both Empty(Diff (σ, τ)) and Empty(Diff (τ, σ)). Upon termination,
two states p and q are bisimilar iff for all region representatives σ ∈ Sk, we have

146 Thomas A. Henzinger and Rupak Majumdar

p ∈ �σ� iff q ∈ �σ�. Thus, the symbolic semi-algorithm APR terminates iff the
bisimilarity relation ∼=B has finite index [18], as is the case, for instance, for
timed automata [2].

2.3 Symbolic Model Checking

A state logic L is a logic whose formulas are interpreted over the states of tran-
sition structures. For a formula ϕ of L and a transition structure K, let [[ϕ]]K be
the set of states of K that satisfy ϕ. The L model-checking problem asks, given
an L-formula ϕ, a transition structure K, and a state q of K, whether q ∈ [[ϕ]]K.
A logic L induces an equivalence relation ∼=L on states: for all states p and q of
a transition structure K, define p ∼=L q if for all L-formulas ϕ, we have p ∈ [[ϕ]]K
iff q ∈ [[ϕ]]K. Thus, two states p and q of a transition structure K are equivalent
with respect to ∼=L iff there is no formula in the logic L that can distinguish p
from q. Two formulas ϕ and ψ of state logics are equivalent if [[ϕ]]K = [[ψ]]K
for all transition structures K. The logic L1 is as expressive as the logic L2 if
for every formula ψ of L2, there exists a formula ϕ of L1 equivalent to ψ. The
logics L1 and L2 are equally expressive if L1 is as expressive as L2, and L2 is as
expressive as L1.

A state logic L admits abstraction if for every equivalence relation ∼= that
refines ∼=L, for every L-formula ϕ, and for every transition structure K, the
region [[ϕ]]K is

⋃
[[ϕ]]K/∼= . If L admits abstraction, and ∼= refines ∼=L, then ∼= is

called an abstract semantics for L; if L admits abstraction, then ∼=L is the fully
abstract semantics for L. Let L be a logic that admits abstraction, and let ∼=
be an abstract semantics for L. Then a state p of K satisfies an L-formula ϕ iff
the ∼=-equivalence class containing p satisfies ϕ in the quotient structure K/∼=.
This means that instead of model checking the structure K, we can model check
the quotient structure K/∼=. In case the equivalence relation ∼= has finite index,
we can so reduce model-checking questions over an infinite-state structure to
model-checking questions over a finite-state structure.

A simple state logic of interest is the logic Efl, which contains all formulas
of the form ∃✸ϕ, where ϕ is a boolean combination of observables. The formula
∃✸ϕ holds at a state q of a transition structure K if there exists a source-
q run r of K, and a state p in r, such that ϕ holds in p. A model-checking
algorithm for the logic Efl is easily derived from the symbolic semi-algorithm
A✸ (backward reachability). In particular, if A✸ terminates on every atomic
region representative of K, then Efl model checking can be decided over K.
The logic Efl can express reachability (or dually, safety) properties. To express
more interesting properties, we define the µ-calculus, which can encode temporal
logics such as Ltl, Ctl, and Ctl∗ [14]. The formulas of the µ-calculus are given
by the grammar

ϕ ::= π | ¬π | X | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∃© ϕ | ∀© ϕ | µX. ϕ | νX. ϕ,

where π is an observable, X is a propositional variable, µ is the least-fixpoint
operator, and ν is the greatest-fixpoint operator. We interpret closed formulas

Symbolic Model Checking for Rectangular Hybrid Systems 147

over states in the standard way [14]. For example, the Efl formula ∃✸π is
equivalent to the µ-calculus formula µX.(π ∨ ∃©X).

The µ-calculus admits abstraction, and bisimilarity ∼=B is a fully abstract
semantics for the µ-calculus. Thus, if an infinite-state transition structure K
with a symbolic theory has a finite bisimilarity quotient K/∼=B , or equivalently, if
the symbolic semi-algorithm APR (partition refinement) terminates on K, then
µ-calculus model checking can be decided over K: first, use partition refinement
to compute the finite-state structure K/∼=B ; then, model check over K/∼=B . There
is, however, also a more direct, more efficient way of µ-calculus model checking
over infinite-state transition structures with symbolic theories: we can attempt
to compute fixpoints by successive approximation [8], using the operations Pre,
And , and Diff [18]. If the successive approximation of each fixpoint subformula
of a µ-calculus formula ϕ terminates in a finite number of steps, then we arrive at
the region [[ϕ]]K in a finite number of applications of Pre, And , and Diff . Clearly,
a sufficient condition is the termination of APR, which applies all possible com-
binations of the three operations. The symbolic semi-algorithm for µ-calculus
model checking, which performs only the subset of operations of APR called for
by the input formula, is denoted Aµ. For example, for the Efl formula ∃✸π, the
semi-algorithm Aµ is identical to A✸.

3 A Symbolic Characterization of Trace Equivalence

3.1 Observation Refinement

We define a symbolic semi-algorithm, called observation refinement and de-
noted AOR, which repeatedly applies the two operations Pre and intersection
with atomic region representatives, until no new regions can be generated. The
symbolic semi-algorithmAOR starts from the finite set S0 = ΣA of atomic region
representatives and computes inductively the finite sets

Si+1 = Si ∪ {Pre(σ),And(σ, τ) | σ ∈ Si and τ ∈ ΣA}
of region representatives. Note that only a restricted form of intersection (inter-
section with atomic regions) is allowed. The semi-algorithm terminates if there
is a k such that {�σ� | σ ∈ Sk+1} ⊆ {�σ� | σ ∈ Sk}; this is checked as in the
case of APR (partition refinement). Observation refinement will typically pro-
duce more region representatives than A✸ (backward reachability), but fewer
than APR. In particular, there are infinite-state transition structures on which
backward reachability terminates, but not observation refinement; and structures
on which observation refinement terminates, but not partition refinement.

3.2 The Guarded Fragment of the µ-Calculus

For a logical characterization of the regions computed by observation refinement,
we define Gµ, the guarded fragment of the µ-calculus, as the set of formulas given
by the following rules:

148 Thomas A. Henzinger and Rupak Majumdar

1. All observables and propositional variables are formulas of Gµ.
2. If π is an observable, then ¬π is a formula of Gµ.
3. If ϕ1 and ϕ2 are formulas of Gµ, then

(a) ϕ1 ∨ ϕ2, ∃© ϕ1, µX. ϕ1, and νX. ϕ1 are formulas of Gµ.
(b) ϕ1∧ϕ2 is a formula of Gµ provided at least one of ϕ1 and ϕ2 is a boolean

combination of observables.

This definition is similar to the definition of L1 in [5,15].2 Over finite-state tran-
sition structures, there is a fast, O(mnk) model-checking algorithm for Gµ,
where m is the size of the transition structure, n is the size of the formula,
and k is the alternation depth of the formula [5].

Proposition 1. The guarded fragment of the µ-calculus admits abstraction.

The equivalence relation ∼=Gµ induced by the guarded fragment of the µ-calculus
is characterized operationally by observation refinement. By induction, each re-
gion computed in step i of the symbolic semi-algorithm AOR is a block (i.e., a
union of equivalence classes) of ∼=Gµ. Thus, if ∼=Gµ has finite index, then AOR

terminates. Conversely, suppose that AOR terminates with Sk+1 = Sk. We can
show that if two states are distinguished by a formula in Gµ, then there is a
region constructed by AOR that separates them. Define the state equivalence
∼=OR as p ∼=OR q iff for each region representative σ ∈ Sk, we have p ∈ �σ� iff
q ∈ �σ�. It follows that p ∼=OR q implies p ∼=Gµ q.

Proposition 2. Observation refinement (AOR) terminates on the symbolic the-
ory of a transition structure K iff the equivalence relation ∼=Gµ induced by the
guarded fragment of the µ-calculus on K has finite index.

3.3 Expressiveness of the Guarded Fragment

We can alternatively characterize the expressiveness of Gµ using a linear-time
logic (without path quantifiers). A Büchi automaton B is a tuple (S, Φ,→, s0, F),
where S is a finite set of states, Φ is a finite input alphabet, → ⊆ S × Φ × S
is the transition relation, s0 ∈ S is the start state, and F ⊆ S is the set of
Büchi accepting states. An execution of B on an ω-word w = w0w1 . . . ∈ Φω is
an infinite sequence r = s0s1 . . . of states in S, starting from the initial state s0,
such that si

wi→si+1 for all i ≥ 0. The execution r is accepting if some state
in F occurs infinitely often in r. The automaton B accepts the word w if it has
an accepting execution on w. The language L(B) ⊆ Φω is the set of ω-words
accepted by B.

Let Ebl be the state logic whose formulas have the form ∃B, where B is a
Büchi automaton whose input alphabet are sets of observables; that is, Φ = 2Π .
2 In [15], condition (2) of our definition is changed to “If ϕ is an L1 formula that does
not contain any variables, then ¬ϕ is in L1,” and condition (3b) is changed to “If ϕ1

and ϕ2 are L1 formulas such that at most one of them contains any variables, then
ϕ1 ∧ ϕ2 is in L1.” It can be shown that L1 and Gµ are equally expressive.

Symbolic Model Checking for Rectangular Hybrid Systems 149

The formula [[∃B]]K holds at a state q of a transition structure K if there exists
a source-q run r of K such that 〈〈r〉〉 ∈ L(B). The logic Ebl admits abstraction,
and trace equivalence is a fully abstract semantics for Ebl. Now we show that
Ebl is as expressive as the guarded fragment of the µ-calculus. This result is
implicit in a proof in [15], although it is never explicitly stated.

Lemma 1. Given a Gµ formula ϕ (over the observables Π), we can construct
a Büchi automaton Bϕ (on the alphabet 2Π) such that [[∃Bϕ]]K = [[ϕ]]K for all
transition structures K. Conversely, given an Ebl formula ∃B (over the alpha-
bet 2Π), we can construct an Gµ formula ϕB (over the observables Π) so that
[[ϕB]]K = [[∃B]]K for all transition structures K.
The proof of the first part of the lemma proceeds by induction on the structure
of the Gµ formula. For the converse claim, let B be a Büchi automaton. We
construct a guarded µ-calculus formula that is equivalent to the formula ∃B. For
notational convenience, we present the formula in equational form [10]; it can be
easily converted to the standard representation by unrolling the equations, and
binding variables with µ or ν-fixpoints. For each set R ∈ 2Π , let ψR abbreviate
the formula

∧
R ∧ ∧{¬π | π ∈ Π\R}. For each state s of B, we introduce a

propositional variable Xs. The equation for Xs is

Xs =λ

∨
{ψR ∧ ∃©Xs′ | s R→ s′},

where λ = ν if s ∈ F is an accepting state, and λ = µ otherwise. The top-level
variable is Xs0 , where s0 is the initial state. The correctness of the procedure
follows from [6]. An equivalent construction is given in [12].

Theorem 1. The logics Gµ and Ebl are equally expressive.

From Proposition 2, and since the fully abstract semantics of Ebl is trace equiv-
alence, we conclude the following.

Corollary 1. Observation refinement (AOR) terminates on the symbolic theory
of a transition structure K iff the trace-equivalence relation ∼=L of K has finite
index.

When the symbolic semi-algorithm Aµ for µ-calculus model checking is applied
to an input in guarded form, then it computes only regions also computed by
observation refinement. It follows that symbolic model checking for the guarded
fragment of the µ-calculus terminates on all transition structures with finite
trace-equivalence quotients.

4 Symbolic LTL Model Checking

4.1 Mu-Calculus Based Symbolic Model Checking for LTL

The formulas of linear temporal logic (Ltl) are generated inductively by the
grammar

ϕ ::= π | ¬ϕ | ϕ1 ∨ ϕ2 | ©ϕ | ϕ1Uϕ2,

150 Thomas A. Henzinger and Rupak Majumdar

where π is an observable, © is the next operator, and U is the until oper-
ator. From these operators, additional operators such as ✸ϕ

∆=(trueUϕ) and
✷ϕ

∆=¬✸¬ϕ can be defined as usual. Formulas of Ltl are interpreted over
traces [14]. We extend the interpretation to states existentially: an Ltl formula
ϕ holds at a state q of a transition structure K if there is a source-q run r such
that the trace 〈〈r〉〉 satisfies the formula ϕ. The logic Ltl admits abstraction, and
trace equivalence is a fully abstract semantics for Ltl. The expressiveness of Ltl
lies strictly between Ebl and Efl. In particular, for every Ltl formula ϕ, we
can construct a Büchi automaton Bϕ such that [[ϕ]]K = [[∃Bϕ]]K for all transition
structures K [31]. We call Bϕ the tableau automaton of ϕ.

This suggests the following symbolic semi-algorithm A1
Ltl, the µ-calculus

based algorithm for Ltl model checking: given an Ltl formula ϕ, first construct
the tableau automaton Bϕ, then convert ∃Bϕ into the guarded fragment of the µ-
calculus (using the procedure described above), and finally evaluate the resulting
Gµ formula on the given transition structure (using Aµ). The final step requires
only Pre operations and intersections with atomic regions.

Theorem 2. For a transition structure K with a symbolic theory, and an Ltl
formula ϕ, the symbolic semi-algorithm A1

Ltl terminates and computes [[ϕ]]K if
the trace-equivalence relation ∼=L of K has finite index.

4.2 Product-Automaton Based Symbolic Model Checking for LTL

Traditionally, a different method is used for symbolic model checking of Ltl
formulas [9]. Given a state q of a finite-state transition structure K, and an Ltl
formula ϕ, the question if q ∈ [[ϕ]]K can be answered by constructing the product
of K with the tableau automaton Bϕ, and then checking the nonemptiness of a
Büchi condition on the product structure. A Büchi condition is an Ltl formula
of the form ✷✸ψ, where ψ is a disjunction of observables; therefore nonemptiness
can be checked symbolically by evaluating the equivalent formula

χ = νX1. µX2. (∃©X2 ∨ (ψ ∧ ∃©X1))

of the guarded fragment of the µ-calculus.
To extend this method to infinite-state structures, we need to be more formal.

Let K = (Q,Π, 〈〈·〉〉, δ) be a transition structure and let Bϕ = (S, 2Π ,→, s0, F)
be a tableau automaton. The product structure Kϕ = (S × Q,S ×Π, 〈〈·〉〉ϕ, δϕ)
is defined as follows. Define (s′, π) ∈ 〈〈s, q〉〉ϕ iff s′ = s and π ∈ 〈〈q〉〉; that is, the
state of the tableau automaton is observable. Define (s′, q′) ∈ δϕ(s, q) iff s

R→ s′

and q′ ∈ δ(q) and 〈〈q〉〉 = R. Then q ∈ [[ϕ]]K, for q ∈ Q, iff (s0, q) ∈ [[✷✸ψ]]Kϕ ,
where ψ =

∨
s∈F,π∈Π(s, π). To perform symbolic model checking on the product

structure, we need to ensure that from a symbolic theory for K we can obtain
a symbolic theory for Kϕ. Let (Σ, �·�) be a symbolic theory for K. We choose
as region representatives for the product structure Kϕ the pairs of the form
(s, σ), where s is a state of Bϕ and σ is a region representative for K; that is,
Σϕ = S × Σ. Define �s, σ�ϕ = {(s, q) | q ∈ �σ�}. Since the tableau automaton

Symbolic Model Checking for Rectangular Hybrid Systems 151

Bϕ is finite, it is easy to check that (Σϕ, �·�ϕ) is a symbolic theory for Kϕ. Let
A2

Ltl be the product-automaton based algorithm for Ltl model checking which,
given an Ltl formula ϕ and a transition structure K, evaluates the Gµ formula
χ (representing a Büchi condition) on the product structure Kϕ (using Aµ). It
is not difficult to see that if observation refinement terminates on K in k steps,
then it also terminates on Kϕ in k steps (if AOR generates m regions on K, then
it generates at most m · |S| regions on Kϕ).

Corollary 2. For a transition structure K with a symbolic theory, and an Ltl
formula ϕ, the symbolic semi-algorithm A2

Ltl terminates and computes [[ϕ]]K if
the trace-equivalence relation ∼=L of K has finite index.

Indeed, by induction on the construction of regions, one can show that for each
region representative (s, σ) computed in the product-automaton based algo-
rithm, the variable Xs in the µ-calculus based algorithm represents the region
�σ� at some stage of the computation, and conversely, for each valuation R of
the variable Xs in the µ-calculus based algorithm, a region representative of
{s} ×R is computed in the product-automaton based algorithm. Thus, the two
methods are equivalent in the regions they generate.

5 Rectangular Hybrid Automata

5.1 Definitions

Let R
n be the n-dimensional Euclidean space. A rectangle r of dimension n is

a subset of R
n which is a cartesian product of (possibly unbounded) intervals,

all of whose finite end-points are integral3. The projection of a rectangle r on
its ith coordinate is denoted ri, so that r =

∏n
i=1 ri. The set of all n-dimensional

rectangles is denoted n.
An n-dimensional rectangular automaton H consists of a finite directed

multi-graph (V,E), three vertex labeling functions init: V → n, inv: V → n,
and flow: V → n, and three edge labeling functions pre: E → n, post: E → n,
and jump: E → 2{1,... ,n} [22]. The vertices * ∈ V specify the discrete states of the
automaton; the edges e ∈ E specify the discrete transitions. The initialization
function init specifies the possible initial states of the automaton. If the automa-
ton starts in vertex *, then its continuous state must be in init(*). The invariant
function inv and the flow function flow constrain the continuous time evolution
of the automaton. In vertex *, the continuous state nondeterministically fol-
lows a smooth trajectory within the invariant region inv(*). At each point, the
derivative of the trajectory must lie within the flow region flow(*). The edges
are constrained by the pre-guard function pre, the post-guard function post, and
the jump function jump. The edge e = (*, *′) may be traversed when the current
vertex is * and the continuous state lies within pre(e). For each i ∈ jump(e),
the ith coordinate of the continuous state is nondeterministically assigned a new
value in the postguard interval post(e)i. For each coordinate i �∈ jump(e), the
3 It is straightforward to permit intervals with rational end-points.

152 Thomas A. Henzinger and Rupak Majumdar

continuous state is not changed, and must lie within post(e)i. We require that for
every edge e = (*, *′), and every coordinate i = 1, . . . , n, if flow(*)i �= flow(*′)i,
then i ∈ jump(e). This condition is called initialization in [22], and it is shown
there that it is necessary for simple reachability questions to be decidable.

With a rectangular automaton H , we associate an infinite-state transition
structure KH = (Q, V, 〈〈·〉〉, δ) as follows. The states in Q are pairs (*,x) consist-
ing of a discrete part * ∈ V and a continuous part x ∈ R

n such that x ∈ inv(v).
The observables are the vertices, and 〈〈*,x〉〉 = *. We have (*′,x′) ∈ δ((*,x)) iff
either (1) [time transition of duration t and slope d] *′ = *, and x′ = x + t · d
for some real vector d ∈ flow(*) and some real t ≥ 0 such that for all 0 ≤ t′ ≤ t,
(x + t′ · d) ∈ inv(*); or (2) [discrete transition along edge e] e = (*, *′) ∈ E,
and (*,x) ∈ pre(e), and x′

i ∈ post(e)i for all i ∈ jump(e), and x′
i = xi for

all i �∈ jump(e). The runs and traces of H are inherited from the underlying
transition structure KH .

A natural symbolic theory for the rectangular automaton H is the follow-
ing. Regions are represented as sets Σ = {(*, f) | * ∈ V } of pairs, where * is
a vertex and f is a quantifier-free formula in the theory of reals with addition,
Th(R, 0, 1,+,≤), over the n variables x1, . . . , xn. The atomic sentences in this
theory are the linear inequalities; thus the continuous part of a region is repre-
sented by a boolean combination of linear inequalities. The Pre operation can be
described in the theory using quantifiers, and since the theory permits quantifier
elimination, the quantifier-free formulas suffice as region representatives [4]. The
emptiness and membership checks are also decidable. The tool HyTech [19] im-
plements symbolic semi-algorithms for analyzing rectangular (and more general
hybrid) automata using this symbolic theory. In particular, the symbolic semi-
algorithms APR, AOR, and Aµ are all readily programmable using the scripting
facility of HyTech.

The variable xi of the rectangular automaton H is a finite-slope variable if
for each vertex * ∈ V , the interval flow(*)i is a singleton. If flow(*)i = [1, 1]
for all vertices *, then xi is called a clock. The rectangular automaton H has
deterministic jumps if for each edge e ∈ E, and each coordinate i ∈ jump(e), the
interval post(e)i is a singleton. If H has deterministic jumps and x1, . . . , xn are
all finite-slope variables, then H is a singular automaton. If H has deterministic
jumps and x1, . . . , xn are all clocks, then H is called a timed automaton [2].

5.2 Symbolic Model Checking

It can be shown that the bisimilarity relation of the transition structure KH

has finite index for every singular automaton H [2,1]. This implies that we can
check µ-calculus properties symbolically on timed and singular automata [24].
For rectangular automata, dimension 2 is enough to have bisimilarity degenerate
into equality on states [17]. However, the results of [22] show that the trace-
equivalence quotient of KH is finite for every rectangular automaton H . From
Corollary 1, we get the following result.

Theorem 3. Observation refinement (AOR) terminates when applied to the
symbolic theory of a rectangular automaton.

Symbolic Model Checking for Rectangular Hybrid Systems 153

Corollary 3. Symbolic Gµ model checking, µ-calculus based symbolic Ltl model
checking, and product-automaton based symbolic Ltl model checking all termi-
nate for rectangular automata.

In practice, we are interested in the divergent runs of a rectangular automaton,
i.e., those runs on which time advances beyond any bound. Formally, a run
(*0,x0)(*1,x1) . . . of a rectangular automaton is divergent if the infinite sum

∑
{ti | i ≥ 0 and (*i+1,xi+1) ∈ δ(*i,xi) is a time step of duration ti}

diverges. To restrict our attention to divergent runs, we can modify an n-
dimensional rectangular automaton H in a standard way [3]. We add an addi-
tional clock variable at coordinate n+1, so that the dimension becomes n+1. For
each vertex * ∈ V , we introduce a new vertex *tick and two edges e = (*, *tick) and
e′ = (*tick , *). Define pre(e)i = post(e) = pre(e′)i = post(e′) = R for 1 ≤ i ≤ n;
pre(e)n+1 = post(e)n+1 = pre(e′)n+1 = 1, jump(e)n+1 = ∅, jump(e′) = {n+ 1},
and post(e′)n+1 = 0. This construction ensures that the added clock is reset to
0 every time its value reaches 1. Then, the divergent runs are those for which
the formula ψ =

∨
�∈V *tick is true infinitely often. To check if an Ltl formula

ϕ holds on some divergent run of H , we instead check that the Ltl formula
(✷✸ψ) ∧ ϕ holds on any run of the extended automaton.

In [22], the proof that the trace-equivalence relation has finite index for every
rectangular automaton H proceeds in two steps. First, the authors construct a
singular automaton H ′ which forward simulates H , and is backward simulated
by H . This implies that the trace-equivalence quotient for finite traces has finite
index. In a second, involved step, they prove that a finite trace-equivalence quo-
tient for finite traces implies a finite trace-equivalence quotient for infinite traces
as well. The results of this paper allow a more direct proof, which immediately
gives the desired result for infinite traces. It suffices to show that observation
refinement (AOR) terminates on the transition structure of H . As in [22], it
can be argued that every Pre operation on KH corresponds in a precise sense
to a Pre operation on KH′ . Since the bisimilarity quotient of KH′ is finite, this
implies that Pre operations on KH can also generate only a finite number of
distinct regions. There is only a finite number of observables (corresponding to
the vertices of H). So the intersection of a region with an atomic region is simply
the projection of the region onto a discrete part. Thus, the restricted intersec-
tion operation of AOR does not give rise to any new continuous parts of regions
beyond the ones already computed. It follows that AOR terminates on KH . This
result is sharp: for simple extensions to the model of rectangular automata, even
backward reachability (A✸) may not terminate [22].

5.3 Example: Assembly Line Scheduler

We describe an assembly line scheduler that must assign elements from an in-
coming stream to one of two assembly lines [21]. The stream has an inter-arrival
time of four minutes. The lines process the parts at different speeds: on the first

154 Thomas A. Henzinger and Rupak Majumdar

line1
_r = _c2 = 1
_c1 = _x2 = 0

_x1 2 [1; 2]

idle
_r= _c1= _c2=1
_x1 = _x2 = 0

line2
_r = _c1 = 1
_c2 = _x1 = 0

_x2 2 [2; 3]

shutdown
_r = 1

_c1= _c2= _x1=
_x2 = 0

?request r � 4; c0

1
=0; c0

2
=0

�

request

r=4; c1�2

r
0 =0; c0

1
=0

x
0

1
=0

-

request

r=4; c2�3

r
0 =0; c0

2
=0

x
0

2
=0

-

done

x1 = 3; c0

1
= 0

�

done

x2 = 6; c0

2
= 0

-

request

r = 4

c
0

2
=0; x0

1
=0

�

request

r = 4

c
0

1
=0; x0

2
=0

Fig. 1. Two assembly lines modeled as a rectangular automaton

line, jobs travel between one and two meters per minute, while on the second,
jobs travel between two and three meters per minute. The first line is three me-
ters long and the second line is six meters long. Once a line finishes processing a
job, it enters a clean-up phase, and no jobs may be assigned to it while it cleans
up. The clean-up time is two minutes for the first line and three minutes for the
second line. The system may accept a job if both lines are free, and at most one
is cleaning up. If the system is unable to accept a job, it shuts down.

The system is modeled by a rectangular automaton as shown in Figure 1.
There are four discrete states: in idle , no jobs are being processed; in line1

(line2), line-1 (respectively, line-2) is processing a job, and in shutdown , the
system is shut down. The variable x1 (respectively, x2) measures the distance a
job has traveled along line-1 (respectively, line-2). The variable c1 (c2) tracks the
amount of time line-1 (line-2) has spent cleaning up after its last job. Finally,
the variable r measures the elapsed time since the last arrival of a job.

We modeled the system in HyTech. Backward reachability (A✸) terminates
in set of states that can reach the unsafe vertex shutdown. We added a prepro-
cessor to HyTech which takes an Ltl formula and generates a script to evaluate
an equivalent Gµ formula. We then considered the property that any feasible
schedule must choose line-1 infinitely often. To establish this requirement, we
checked that the formula (✸✷¬line1) ∧ (✷¬shutdown) does not hold on any di-
vergent run from the vertex idle (if this formula were to hold on some divergent
run, then there would be a schedule that assigns jobs to line1 only finitely many
times, and still enforces that the system never shuts down). This required 0.39
seconds of CPU time on a DEC alpha with 2G RAM.

Acknowledgments

We thank Luca de Alfaro for several useful discussions.

Symbolic Model Checking for Rectangular Hybrid Systems 155

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138:3–34, 1995. 142, 152

2. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994. 144, 146, 152

3. R. Alur and T.A. Henzinger. Real-time system = discrete system + clock variables.
Software Tools for Technology Transfer, 1:86–109, 1997. 153

4. R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic verification of em-
bedded systems. In Proceedings of the 14th Annual Real-time Systems Symposium,
pages 2–11. IEEE Computer Society Press, 1993. 152

5. G. Bhat and R. Cleaveland. Efficient local model-checking for fragments of the
modal µ-calculus. In TACAS96: Tools and Algorithms for Construction and Anal-
ysis of Systems, LNCS 1055, pages 107–126. Springer-Verlag, 1996. 148

6. G. Bhat and R. Cleaveland. Efficient model checking via the equational µ-calculus.
In Proceedings of the 11th Annual Symposium on Logic in Computer Science, pages
304–312. IEEE Computer Society Press, 1996. 143, 149

7. A. Bouajjani, J.-C. Fernandez, and N. Halbwachs. Minimal model generation. In
CAV 90: Computer-aided Verification, LNCS 663, pages 197–203. Springer-Verlag,
1990. 145

8. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill and L.J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation, 98(2):142–
170, 1992. 147

9. E.M. Clarke, O. Grumberg, and D.E. Long. Verification tools for finite-state con-
current systems. In A Decade of Concurrency: Reflections and Perspectives, LNCS
803, pages. Springer-Verlag, 1994. 143, 150

10. R. Cleaveland, M. Klein, and B. Steffen. Faster model checking for the modal
µ-calculus. In CAV 92: Computer-aided Verification, LNCS 663, pages 410–422.
Springer-Verlag, 1993. 149

11. J.C. Corbett. Timing analysis of Ada tasking programs. IEEE Transactions on
Software Engineering, 22:461–483, 1996. 142

12. M. Dam. Ctl∗ and Ectl∗ as fragments of the modal µ-calculus. Theoretical
Computer Science, 126:77–96, 1994. 143, 149

13. C. Daws and S. Tripakis. Model checking of real-time reachability properties us-
ing abstractions. In TACAS98: Tools and Algorithms for the Construction and
Analysis of Systems, LNCS 1384, pages 313–329. Springer-Verlag, 1998. 143

14. E.A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer
Science, volume B, pages 995–1072. Elsevier Science Publishers, 1990. 146, 147,
150

15. E.A. Emerson, C.S. Jutla, and A.P. Sistla. On model checking for fragments of
µ-calculus. In CAV 93: Computer-aided Verification, LNCS 697, pages 385–396.
Springer-Verlag, 1993. 143, 148, 149

16. E.A. Emerson and C. Lei. Efficient model checking in fragments of the propositional
µ-calculus. In Proceedings of the 1st Annual Symposium on Logic in Computer
Science, pages 267–278. IEEE Computer Society Press, 1986. 143

17. T.A. Henzinger. Hybrid automata with finite bisimulations. In ICALP 95: Au-
tomata, Languages, and Programming, LNCS 944, pages 324–335. Springer-Verlag,
1995. 144, 152

156 Thomas A. Henzinger and Rupak Majumdar

18. T.A. Henzinger. The theory of hybrid automata. In Proceedings of the 11th Annual
Symposium on Logic in Computer Science, pages 278–292. IEEE Computer Society
Press, 1996. 146, 147

19. T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: a model checker for hybrid
systems. Software Tools for Technology Transfer, 1:110–122, 1997. 143, 152

20. T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. Algorithmic analysis of nonlinear
hybrid systems. IEEE Transactions on Automatic Control, 43:540–554, 1998. 142

21. T.A. Henzinger, B. Horowitz, and R. Majumdar. Rectangular hybrid games. In
CONCUR 99: Concurrency Theory, LNCS 1664, pages 320–335, 1999. 153

22. T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What’s decidable about
hybrid automata? Journal of Computer and System Sciences, 57:94–124, 1998.
142, 143, 151, 152, 153

23. T.A. Henzinger and R. Majumdar. A classification of symbolic transition systems.
In STACS 2000: Theoretical Aspects of Computer Science, LNCS. Springer-Verlag,
2000. 145

24. T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking
for real-time systems. In Proceedings of the 7th Annual Symposium on Logic in
Computer Science, pages 394–406. IEEE Computer Society Press, 1992. 152

25. T.A. Henzinger and H. Wong-Toi. Using HyTech to synthesize control parame-
ters for a steam boiler. In Formal Methods for Industrial Applications: Specifying
and Programming the Steam Boiler Control, LNCS 1165, pages 265–282. Springer-
Verlag, 1996. 142

26. P.-H. Ho and H. Wong-Toi. Automated analysis of an audio control protocol. In
CAV 95: Computer-aided Verification, LNCS 939, pages 381–394. Springer-Verlag,
1995. 142

27. P.C. Kanellakis and S.A. Smolka. Ccs expressions, finite-state processes, and three
problems of equivalence. Information and Computation, 86:43–68, 1990. 144, 145

28. J. Kosecka, C.J. Tomlin, G. Pappas, and S. Sastry. Generation of conflict resolution
manoeuvres for air traffic management. In IROS 97: International Conference on
Intelligent Robot and Systems, volume 3, pages 1598–1603. IEEE Press, 1997. 142

29. S. Nadjm-Tehrani and J.-E. Strömberg. Proving dynamic properties in an
aerospace application. In Proceedings of the 16th Annual Real-time Systems Sym-
posium, pages 2–10. IEEE Computer Society Press, 1995. 142

30. T. Stauner, O. Müller, and M. Fuchs. Using HyTech to verify an automotive
control system. In HART 97: Hybrid and Real-time Systems, LNCS 1201, pages
139–153. Springer-Verlag, 1997. 142

31. W. Thomas. Automata on infinite objects. In Handbook of Theoretical Computer
Science, volume B, pages 133–191. Elsevier Science Publishers, 1990. 150

32. T. Villa, H. Wong-Toi, A. Balluchi, J. Preußig, A. Sangiovanni-Vincentelli, and
Y. Watanabe. Formal verification of an automotive engine controller in cutoff
mode. In Proceedings of the 37th Conference on Decision and Control. IEEE Press,
1998. 142

	Introduction
	Symbolic Model Checking for Infinite-State Systems
	Transition Structures
	Symbolic Semi-algorithms
	Symbolic Model Checking

	A Symbolic Characterization of Trace Equivalence
	Observation Refinement
	The Guarded Fragment of the -Calculus
	Expressiveness of the Guarded Fragment

	Symbolic LTL Model Checking
	Mu-Calculus Based Symbolic Model Checking for LTL
	Product-Automaton Based Symbolic Model Checking for LTL

	Rectangular Hybrid Automata
	Definitions
	Symbolic Model Checking
	Example: Assembly Line Scheduler

	Acknowledgments
	References

