
Compositional State Space Generation with

Partial Order Reductions for Asynchronous
Communicating Systems

Jean-Pierre Krimm and Laurent Mounier

VERIMAG – Joint Laboratory of CNRS, UJF and INPG
Centre Equation, 2, avenue de Vignate F-38610 Gières
{Jean-Pierre.Krimm,Laurent.Mounier}@imag.fr

Abstract. Compositional generation is an incremental technique for
generating a reduced labelled transition system representing the be-
haviour of a set of communicating processes. In particular, since inter-
mediate reductions can be performed after each generation step, the
size of the Lts can be kept small and state-explosion can be avoided in
many cases. This paper deals with compositional generation in presence
of asynchronous communications via shared buffers. More precisely, we
show how partial-order reduction techniques can be used in this context
to define equivalence relations: that preserve useful properties, are con-
gruence w.r.t asynchronous composition, and rely on a (syntactic) notion
of preorder on execution sequences characterizing their “executability”
in any buffer environment. Two such equivalences are proposed, together
with dedicated asynchronous composition operators able to directly pro-
duce reduced Lts.

1 Introduction

This work takes place in the context of formal verification of distributed pro-
grams, those purpose is to evaluate a set of expected requirements on a formal
program description. To automate this activity, one of the promising technique
is the well-known model-checking approach, which consists of performing the
verification on an explicit model of the system behaviour (e.g., a labelled tran-
sition system, or Lts). However, the main drawback of model-checking is the
model explosion occurring when dealing with complex systems. This still limits
its large scale utilisation in the industry.

Several interesting solutions have already been investigated to overcome this
problem, for instance by avoiding an explicit storage of the whole model (“on-the-
fly” techniques), or by processing it using efficient representations (“symbolic”
techniques), or by generating a model simpler than the initial one (“abstraction”
techniques). A particular instance of this latter solution consists of performing
the verification not on the Lts S obtained from the original program description,
but rather on its S/R quotient where R is an equivalence relation preserving the
properties under verification. The main difficulty is then to get this quotient
without generating first the initial Lts.

S. Graf and M. Schwartzbach (Eds.): TACAS/ETAPS 2000, LNCS 1785, pp. 266–282, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Compositional State Space Generation with Partial Order Reductions 267

When the program under consideration is described by a composition ex-
pression between communicating Lts, and provided that R is a congruence
with respect to the operators of this expression, the quotient S/R can easily
be generated with a so-called compositional approach: it consists of (repeatedly)
generating the Lts S′ associated with a given sub-expression, and replacing this
sub-expression in the initial one by the quotient S′/R. This approach has been
widely studied [GS90,CK93,Val96,KM97], and has already been applied in some
succesfull case studies. However, most of this works was done in the context
of synchronous communicating systems (described for instance using process
algebras like Lotos [ISO87] or Csp [Hoa85]).

In this paper we propose a way to efficiently extend this compositional gen-
eration strategy to asynchronous systems communicating by message exchange
through shared buffers. In fact, this communication scheme is very suitable for
describing distributed systems or communication protocols, and it is the underly-
ing model of popular specification formalisms such as the international standard
Sdl [IT92], or the Promela language [Hol91].

One of the main difficulties encountered during a compositional generation is
to correctly handle the effect of the environment (i.e., the rest of the system) in
order to restrict the generation of a given subset of components (otherwise the
model obtained for this subset may be larger than the one corresponding to the
whole system). This problem was addressed in [GS90,CK93,KM97] by express-
ing the constraints provided from the environment in terms of process interfaces,
allowing to “cut off” some parts of a component behaviour. Unfortunately, this
solution is not applicable in case of asynchronous communications, since the ef-
fects of the external buffers cannot precisely be statically approximated. Thus,
many useless interleavings are computed when generating a subsystem indepen-
dently of its buffer environment.

To avoid these interleavings, the solution we propose relies on the (well-
known) partial order approach which consists of identifying independent exe-
cution sequences that can be safely sequentialized (instead of being fully inter-
leaved). Such techniques have already rather intensively been studied, and their
efficiency has been established in practice, in particular for asynchronous com-
municating systems [Val90,GW91,Pel96,KLM+98]. However, to our knowledge,
their application in this framework is original by its combination of two aspects:

– First, partial order reductions are usually performed on the whole system,
considering the explicit behaviour of each of its components. A contrario,
the approach we describe here can be applied on a partial sub-system, and
it allows generation of a reduced Lts (with less interleavings) that can be
re-used during further compositions.

– Second, the reductions we consider are not only based on a symmetrical in-
dependence relation of actions (leading to an equivalence relation between
independent execution sequences), but also on an asymmetrical notion of
precedence relation of actions, leading to a preorder between execution se-
quences. According to this preorder, smallest sequences are always “more
executable” than larger ones in any buffer environment.

268 Jean-Pierre Krimm and Laurent Mounier

This notion of non commutative independence relation between actions was
first introduced by [Lip75] to study the correctness of concurrents processes
synchronized by means of semaphores. It was also used in [AJKP98] within a
symbolic verification framework.

The paper is organized as follows:
First, we give in section 2 the program syntax we consider (a set of asynchronous
communicating processes), and we briefly explain how the Lts denoting a pro-
gram semantics can be compositionally generated in this framework. Then, we
introduce in section 3 a (syntactic) notion of preorder between execution se-
quences, and we show how it characterizes the executability of an execution se-
quence in any buffer environment. Using this preorder, we consider in section 4
a first equivalence relation ≈δ , deadlock preserving, and which is a congruence
w.r.t asynchronous composition. We then propose a new asynchronous compo-
sition operator, allowing to directly compute a reduced Lts w.r.t ≈δ and thus
avoiding many useless interleavings. Finally, in section 5 we extend these results
to a stronger equivalence relation ≈o , able to preserve the language w.r.t a set
of observable actions.

2 Asynchronous Communicating Systems

In this section we give the abstract syntax and semantics used to represent
asynchronous communicating systems by means of a parallel composition of
labelled transition systems. Then we indicate how the global state space of such
systems can be obtained in a compositional way.

2.1 Program Syntax and Semantics

A Labelled Transition System (Lts, for short) is a tuple S = (Q, A, T, q0) where
Q is a finite set of (reachable) states, A a finite set of actions (or labels),
T ⊆ Q×A×Q a transition relation, and q0 ∈ Q the initial state of S. As usual,
we shall note p

a−→T q instead of (p, a, q) ∈ T .
Let M be a set of message names, and Buf a set of unbounded buffers over

M. A buffer B ∈ Buf is an abstract type with the following signature, and those
concrete implementation depends on the exact nature of the buffer (e.g., bags,
stacks, fifo queues, . . .):

– ⊥ is an empty buffer;
– first: M×B → bool.
first(m, B) is true iff message m can be consumed in buffer B.

– remove: M×B → B.
When first(m, B) holds remove(m, B) returns the new buffer obtained
from B by eliminating message m, otherwise B is returned unchanged.

– append: M×B → B.
append(m, B) adds the message m to buffer B.

Compositional State Space Generation with Partial Order Reductions 269

Finally, a program is a couple P = (Sn,Bp) where Sn = {S1, S2, . . . Sn} is a
finite set of elementary processes represented by Lts Si = (Qi, Ai, Ti, q0i), and
Bp = {B1, B2, . . . Bp} is a finite set of buffers over M. Moreover, for each Sj in
Sn, action sets Aj ⊆ A = A+ ∪ A− ∪ {τ} where:

A+ = {+(i, m) | i ∈ [1, p] ∧ m ∈M} ; A− = {−(i, m) | i ∈ [1, p] ∧ m ∈M}

Informally, for an Lts Sj , action +a = +(i, m) denotes the output of message m
to the buffer Bi, action −a = −(i, m) denotes the input of message m from
buffer Bi and τ denotes any internal (non communication) action.

Definition 1 (Program semantics). The semantics of a program P=(Sn,Bp)
is defined as the Lts sem(P) = (Q,A, T, q0) where:

– Q ⊆ Q1 ×Q2 × · · · ×Qn ×B1 × B2 × · · · ×Bp

– q0 = (q01 , q02 , . . . , q0n ,⊥, . . .⊥)
– Q and T are the smallest sets obtained when applying the following rules:

q0 ∈ Q [R0]

p = (p1, . . . , pj , . . . pn, B1, . . . , Bi, . . . Bp) ∈ Q, pj
−(i,m)−→ Tj qj , first(m, Bi)

q = (p1, . . . , qj , . . . pn, B1, . . . , remove(m,Bi), . . . Bp) ∈ Q, p
−(i,m)−→ T q

[R1]

p = (p1, . . . , pj , . . . pn, B1, . . . , Bi, . . . Bp) ∈ Q, pj
+(i,m)−→ Tj qj

q = (p1, . . . , qj , . . . pn, B1, . . . ,append(m, Bi), . . . Bp) ∈ Q, p
+(i,m)−→ T q

[R2]

p = (p1, . . . , pj , . . . pn, B1, . . . , Bi, . . . Bp) ∈ Q, pj
τ−→Tj qj

q = (p1, . . . , qj , . . . pn, B1, . . . , Bi, . . . Bp) ∈ Q, p
τ−→T q

[R3]

2.2 Compositional State Space Generation

The generation of sem(P) using definition 1, needs to consider simultaneously
the whole sets of buffers and elementary processes. However, this resulting
Lts can also be built in a more compositional way by taking into account each
program component (i.e., buffer or elementary process) incrementally. To this
purpose we first introduce two auxiliary operators, the asynchronous product
between Lts and the execution of an Lts within a given buffer environment.

The asynchronous product (||) between two Lts Si = (Qi, Ai, Ti, q0i) is de-
fined in the usual manner: S1 || S2 is the Lts S = (Q, A, T, q0) where
Q = Q1 ×Q2, T = {((p1, p2), a, (q1, q2)) | (p1

a−→T1 q1 ∧ p2 = q2) ∨ (p2
a−→T2

q2 ∧ p1 = q1)}, A = A1 ∪A2, q0 = (q01, q02).

Definition 2 (Execution of an Lts within a buffer environment). For an
Lts S = (Q, A, T, q0) and a buffer environment Bp, we note S[Bp] the
Lts (Qs, A, Ts, qs0) obtained by executing S within Bp, and defined as follows:

270 Jean-Pierre Krimm and Laurent Mounier

– Qs ⊆ Q×B1 ×B2 × · · · ×Bp

– qs0 = (q0,⊥, . . . ,⊥)
– Qs and Ts are the smallest sets obtained when applying the following rules:

qs0 ∈ Qs [R0]

ps = (p,B1, . . . , Bi, . . . Bp) ∈ Qs, p
−(i,m)−→ T q, first(m,Bi)

qs = (q, B1, . . . , remove(m,Bi), . . . Bp) ∈ Qs, ps
−(i,m)−→ Ts qs

[R1]

ps = (p,B1, . . . , Bi, . . . Bp) ∈ Qs, p
+(i,m)−→ T q

qs = (q, B1, . . . ,append(m, Bi), . . . Bp) ∈ Qs, ps
+(i,m)−→ Ts qs

[R2]

ps = (p,B1, . . . , Bi, . . . Bp) ∈ Qs, p
τ−→T q

qs = (q, B1, . . . , Bi, . . . Bp) ∈ Qs, ps
τ−→Ts qs

[R3]

It is easy to show that the global Lts sem(P) can be obtained by considering
first the asynchronous product of its elementary processes, then executing it w.r.t
its buffer environment:

Proposition 1. For a program P = (Sn,Bp), sem(P)=(S1 ||S2 || . . . ||Sn)[Bp].

Furthermore, this approach can be made even more flexible by partially dis-
tributing buffers Bp w.r.t a subset of elementary processes. More formally:

Proposition 2. Let S1 and S2 be two Lts and Bp a buffer environment.
Consider a split of Bp into three sets Bp1, Bp2 and Bp3 such that: buffers of

Bp1 are not accessed by S2, buffers of Bp2 are not accessed by S1, and buffers
of Bp3 are accessed by both S1 and S2. (such a split always exists since Bp1 and
Bp2 can be empty).

Then, the following holds: (S1 || S2)[Bp] = (S1[Bp1] || S2[Bp2])[Bp3]

Finally, depending on the program properties under consideration, intermedi-
ate Lts reductions can now be introduced between successive generation steps.
Furthermore, since internal communications within a sub-system can be ab-
stracted away before its composition with the other program components, power-
ful reduction operations are possible when only the external program behaviour
is relevant. In particular most of the usual bisimulation based weak equiva-
lence relations (such as observational equivalence [Mil89], branching bisimula-
tion [vGW89] or safety equivalence [BFG+91]) happen to be congruences w.r.t.
operators || and [...] and can be used in this framework.

However, due to asynchronous nature of communications, this (straightfor-
ward) compositional approach may still suffer from state explosion problems.
In fact, when generating a subsystem, each append or remove operations
concerning external buffers is considered as fully asynchronous. This leads to
many possible interleavings, and, therefore, the size of the resulting intermedi-
ate Lts may become very large.

We propose in this paper a solution to decrease the number of these useless
interleavings by taking advantage of some (well-known) considerations about the
concurrent execution of independent actions.

Compositional State Space Generation with Partial Order Reductions 271

3 Equivalence and Preorder on Execution Sequences

First, we give some notations related to the execution sequences of an Lts.
Then we introduce some equivalence and preorder relations between execution
sequences.

Definition 3 (Execution sequences of an Lts).
Let S = (Q, A, T, q0) be an Lts, and p a given set of Q:

– Act(p) is the set of actions the state p can perform, and Pre(p) the set of
actions that may reach it:

Act(p) = {a ∈ A | ∃q . p
a−→T q} ; Pre(p) = {a ∈ A | ∃q . q

a−→T p}
Act−(p) = Act(p) ∩ A− ; Act+(p) = Act(p) ∩A+

– An (execution) sequence σ from p is an element σ = a1.a2. · · · an of A∗ such
that: σ = p

a1−→T p1
a2−→T · · · an−→T pn We shall also use the notation

p
σ−→T pn+1, or simply p

σ−→T .

3.1 Equivalence between Execution Sequences

The equivalence relation between execution sequences we consider is based on an
independency relation I on actions. Roughly speaking, two actions a1 and a2 will
be considered as independent ((a1, a2) ∈ I) if, whenever they are both enabled
in a given state p, their execution order has no influence on the subsequent
execution sequences p will be able to perform.

Definition 4 (Independance of actions).
A relation I ⊆ A×A is an independency relation for an Lts S = (Q, A, T, q0) if,
for all p ∈ Q, and for all (a1, a2) ∈ I then:

a1, a2 ⊆ Act(p) ⇒




∀q1, q2 ∈ Q . p
a1−→T q1 ∧ p

a2−→T q2

⇒ (a2 ∈ Act(q1) ∧ a1 ∈ Act(q2))
∧
∀q ∈ Q . p

a1.a2−→ T q ⇔ p
a2.a1−→ T q

We give below some examples of independency relations defined on communi-
cation actions performed by distinct processes, depending on the kind of buffers
that are considered.

Example 1. When buffers are defined as bags, the order of two append opera-
tions does not matter. Therefore, two append (resp. remove) operations are
always independent each others. Moreover, an append and a remove operation
will be independent if they occur in two different bags. Therefore, Ibag is defined
as follows: Ibag = A+×A+∪A−×A−∪{(±(i1, m1),∓(i2, m2)) | i1 �= i2} When

272 Jean-Pierre Krimm and Laurent Mounier

buffers are defined as fifo queues, the order of two append or remove opera-
tions does not matter only if they occur in different queues. The corresponding
independency relation is then:

Ififo = {(±(i1, m1),±(i2, m2)) | i1 �= i2} ∪ {(±(i1, m1),∓(i2, m2)) | i1 �= i2}
Note that internal transitions (τ) performed by distinct processes are always
independent. ✷.

Independency relations allow to define equivalence relations on execution
sequences: two sequences u and v will be considered as equivalent iff u can
be obtained from v by repeatedly permuting two of its adjacent independent
actions.

Definition 5 (Equivalence between execution sequences).
Let I be an independency relation. For two sequences u, v ∈ A∗, write u ∼ 1

Iv if
there exist sequences w1, w2 and actions a, b such that (a, b) ∈ I, u = w1abw2

and v = w1baw2. Let ∼ I be the reflexive and transitive closure of the relation
∼ 1

I . We say that u is I-equivalent with v if u ∼ Iv.

Intuitively, if two equivalent sequences σ1 and σ2 are enabled on a state p,
then, any buffer environment allowing the execution of σ1 also allows the execu-
tion of σ2 (and conversely). Furthermore, buffer contents are updated similarly
during execution of σ1 or σ2. More formally:

Proposition 3. Let S = (Q, A, T, q0) be an Lts, I an independence relation, p
a state of Q, and σ1 and σ2 two execution sequences of S such that ∃ q1, q2 ∈ Q,
p

σ1−→T q1, p
σ2−→T q2 and σ1 ∼ Iσ2.

For a given buffer environment Bp, let S′ = S[Bp] where S′ = (Q′, A, T ′, q′0).
Then, for any state (p, b1, b2, . . . , bp) of Q′, the following holds:

(p, b1, b2, . . . , bp)
σ1−→T ′ (q1, b

′
1, b

′
2, . . . , b

′
p) ⇔ (p, b1, b2, . . . , bp)

σ2−→T ′ (q2, b
′
1, b

′
2, . . . , b

′
p)

3.2 Preorder between Execution Sequences

As stated above, the equivalence relation between execution sequences exactly
preserves the executability within any buffer environment. We introduce here a
weaker relation, able to characterize the fact that a given sequence σ1 is more
executable than another sequence σ2 (that is, whenever σ2 is executable, then σ1

is). This preorder relation between execution sequence relies itself on a precedency
relation P between actions:

Definition 6 (Precedence of actions).
A relation P ⊆ A×A is a precedency relation for an Lts S = (Q, A, T, q0) if,
for all p ∈ Q, and for all (a1, a2) ∈ P then:

a1, a2 ⊆ Act(p) ⇒


∀q2 ∈ Q . p

a2−→T q2 ⇒ a1 ∈ Act(q2)
∧
∀q ∈ Q . p

a2.a1−→ T q ⇒ p
a1.a2−→T q

Compositional State Space Generation with Partial Order Reductions 273

Example 2. When communications buffers are defined as unbounded bags, an
append action performed by a process cannot prevent any append or
remove action performed by another process. The precedency relation on com-
munication actions between distinct processes is then: Pbag = Ibag ∪ A+ × A−

✷.

This preorder on A is then extended to A∗: a sequence σ1 is smaller than a
sequence σ2 iff σ1 can be obtained from σ2 by repeatedly permuting any pair of
its adjacent action belonging to the precedency relation.

Definition 7 (Preorder between execution sequences).
For two sequences u, v ∈ A∗, write u � 1

P v if there exist sequences w1, w2 and
actions a, b such that (a, b) ∈ P , u = w1abw2 and v = w1baw2. Let � P be the
reflexive and transitive closure of � 1

P . We say that u is smaller than v (or more
executable) if u � P v.

Proposition 3 can now be rephrased as follows:

Proposition 4. Let S = (Q, A, T, q0) be an Lts, P a precedence relation, p a
state of Q, and σ1 and σ2 two execution sequences of S such that ∃ q1, q2 ∈ Q,
p

σ1−→T q1 and p
σ2−→T q2 and σ1 � P σ2. For a given buffer environment Bp, let

S′ = S[Bp] where S′ = (Q′, A, T ′, q′0). Then, for any state (p, b1, b2, . . . , bp) of Q′,
the following holds:

(p, b1, b2, . . . , bp)
σ2−→T ′ (q1, b

′
1, b

′
2, . . . , b

′
p) ⇒ (p, b1, b2, . . . , bp)

σ1−→T ′ (q2, b
′
1, b

′
2, . . . , b

′
p)

In the following sections we show how this preorder on execution sequences
allows to define equivalence relations between Lts that are able to preserve var-
ious kinds of reachability properties. Moreover, since this preorder characterizes
the executability of execution sequences, it turns out that these equivalence re-
lations are congruence w.r.t. the [..] operator and therefore can be used during
a compositional state space generation.

Note 1. We will consider in the sequel that buffers are unbounded bags. Thus,
we shall note � instead of � Pbag

. The extension of this work to fifo queues
will be briefly discussed in the conclusion.

4 Deadlock Preservation

We consider here a first property based on a simple reachability analysis, the
deadlock freedom of a given program P . More precisely, this property can be
verified by compositionally generating a reduced Lts S′, equivalent to sem(P)
w.r.t. its deadlock states. To this purpose, we introduce an equivalence relation
≈δ preserving the reachability of any (“equivalent”) potential deadlock states.
Then, we show that ≈δ is a congruence w.r.t. operators || and [...]. Finally,
we propose a new asynchronous composition operator for the direct generation
of a reduced Lts w.r.t to ≈δ .

274 Jean-Pierre Krimm and Laurent Mounier

4.1 A Deadlock Preserving Equivalence between Lts

In our framework the only “blocking” actions performed by a program compo-
nent are the remove operations. Consequently, potential deadlock states are the
state not able to perform any append (or internal) operation. This set of states
can be even reduced by considering that a subsequence of adjacent potential
deadlock states of a same execution sequence can be collapsed into a single one
(the first state of this subsequence). Furthermore, two potential deadlock states
will be considered as equivalent iff a same buffer environment is able to “unlock”
them (i.e., they can perform the same sets of consecutive remove operations).

More formally, these potential deadlock states are defined as the stable states
of an Lts:

Definition 8 (Stable state).
Let S = (Q, A, T, q0) be an Lts. For each state q of Q:

stable(q) ≡ (q = q0) ∨ (Act(q) ⊆ A− ∧ Pre(q) ∩ A+ �= ∅) ∨ (Act(q) = ∅)
We note stable(S) the set of stable states of S. The equivalence ∼δ between stable
states q1 and q2 is then the following:

q1 ∼δ q2 ≡


∀σ1 ∈ A−∗

. q1
σ1−→T ⇒ ∃σ2 . q2

σ2−→T ∧ σ2 ∼ σ1

∧
∀σ2 ∈ A−∗

. q2
σ2−→T ⇒ ∃σ1 . q1

σ1−→T ∧ σ1 ∼ σ2

The purpose of equivalence ≈δ is to preserve reachability of ∼δ-equivalent
stable states in any buffer environment. Thus, a sufficient definition would be to
consider two Lts S1 and S2 as equivalent if, for any stable state of S1 reachable
by an execution sequence σ1, it corresponds an equivalent stable state of S2,
reachable by an execution sequence σ2, such that σ2 � σ1 (and reciprocally
for any stable state of S2). However, we will use here a stronger definition,
which better corresponds to the behaviour of the composition operator we will
introduce later (see section 4.2).

Definition 9 (Equivalence between Lts).
Let Si = (Qi, Ai, Ti, q0i)i=1,2 be two Lts. ≈δ ⊆ Q1 ×Q2 is the largest symmet-
rical relation verifying:

p1 ≈δ p2 ⇔ ∀q1 ∈ stable(S1) . p1
σ1−→T1 q1 ⇒ ∃q2 ∈ stable(S2) .

p2
σ2−→T2 q2 ∧ q1 ∼δ q2 ∧ σ2 � σ1 ∧ q1 ≈δ q2

We extend ≈δ to Lts saying that S1 ≈δ S2 iff q01 ≈δ q02 .

Relation ≈δ preserves deadlocks in any buffer environment:

Proposition 5. Let Si = (Qi, Ai, Ti, q0i)i=1,2 be two Lts and Bp a buffer envi-
ronment. For a given Lts S let sink(S) denote the set of state of S without any
successors by its transition relation. Then:

S1 ≈δ S2 ⇒ (sink(S1[Bp]) = ∅ ⇔ sink(S2[Bp]) = ∅)

Compositional State Space Generation with Partial Order Reductions 275

Example 3.

−b

+a

+a

−b

−x

P1
−x

−b

+a

+z +y

−x

stable state

P2

≈δ

To each execution sequence of P1 leading to a stable state there exists a smaller
execution sequence of P2, leading to an equivalent stable state (and reciprocally).
In particular, sequence −x.− x.(+y. + z)∗ of P1 which not lead to any stable
state is not preserved by ≈δ (since it will never lead to a deadlock even after
further compositions). ✷.

Finally, proposition 6 states that relation ≈δ is a congruence w.r.t opera-
tors || (asynchronous composition) and [...] (execution within a given buffer
environment). The proof of this proposition will rely on the following lemma:

Lemma 1. For two execution sequences σ1 and σ2 of A∗, we note σ1 || σ2 the
set of sequences obtained by “asynchronous composition” of σ1 and σ2. σ1 || σ2

contains any sequence of A∗ resulting of an interleaving of σ1 and σ2. Then, the
following holds:

∀σ ∈ A∗ . σ1 � σ2 ⇒ ∀σ′
2 ∈ (σ2 || σ) . ∃ σ′

1 ∈ (σ1 || σ) such that σ′
1 � σ′

2

Proposition 6 (Congruence of ≈δ). Let S1, S2 and S be three Lts, and Bp

a buffer environment. If S1 ≈δ S2 then the following holds:

S1[Bp] ≈δ S2[Bp] (1)
S1 || S ≈δ S2 || S (2)

4.2 A Deadlock Preserving Composition Operator

The deadlock preserving composition operator S1 ⊗δ S2 is based on the standard
operator || of asynchronous composition between processes. Intuitively, the
resulting Lts could be defined by “cutting off” any non minimal sequences of
S1 || S2 leading to a stable state (according to the pre-order � , definition 7).

In practice, this Lts will be obtained by considering as atomic some partic-
ular subsequences of S1 and S2, thus avoiding their full interleaving. Moreover,
this generation can be performed “on-the-fly” without generating S1 || S2. More
precisely, atomic subsequences that we consider are delimited not only by stable
states, but also using a particular set of states. These distinguished states are
called “interleaving” in the sequel and are defined as follows:

Definition 10 (Interleaving states).
Let P = (Q, A, T, q0) an Lts. We note int(P) the set of interleaving states of P :
int(P) = stable(P) ∪ {q ∈ Q | Act−(p) �= ∅ ∧ Act+(p) �= ∅ ∧ Pre(p) ∩A+ �= ∅}

276 Jean-Pierre Krimm and Laurent Mounier

Formally, atomic subsequences are defined as follows:

atom(σ) ≡ σ = p1
−a1−→ p′1

−a∗
i−→ p′′1

+b∗i−→ q1

where p1 is an interleaving state, q1 a stable state, and each p′′i such that
Act−(p′′i) �= ∅ is an interleaving state.

The deadlock preserving composition operator between processes can now be
defined as follows:

Definition 11 (Deadlock preserving composition operator between
Lts).
Let P = P1 ⊗δ P2 with P = (Q, A, T, q0) and Pi = (Qi, Ai, Ti, q0i)i=1,2 s.t.:

– q0 = (q01 , q02);
– A ⊆ A1 ∪A2;
– Q is the smallest set reachable from q0 using T .
– The set of transitions T is computed using the four following rules. For each

of them we note H the statement:

H = p1
σ1−→T1 q1 ∧ p2

σ2−→T2 q2 ∧ p1 ∈ int(P1) ∧ p2 ∈ int(P2)

∧ atom(σ1) ∧ atom(σ2) ∧ stable(q1) ∧ stable(q2)

H, σ1 /∈ A−∗
, σ2 /∈ A−∗

(p1, p2)
σ1−→T (q1, p2)

σ2−→T (q1, q2), (p1, p2)
σ2−→T (p1, q2)

σ1−→T (q1, q2)
[R1]

H, σ1 ∈ A−∗
, σ2 /∈ A−∗

(p1, p2)
σ2−→T (p1, q2)

σ1−→T (q1, q2)
[R2]

H, σ1 /∈ A−∗
, σ2 ∈ A−∗

(p1, p2)
σ1−→T (q1, p2)

σ2−→T (q1, q2)
[R3]

H, σ1 ∈ A−∗
, σ2 ∈ A−∗

(p1, p2)
σ1−→T (q1, p2)

σ2−→T (q1, q2) or (p1, p2)
σ2−→T (p1, q2)

σ1−→T (q1, q2)
[R4]

Example 4. Let P1 and P2 be the two Lts represented below. Lts P is the
product P1 ⊗δ P2. Dotted arrows indicate non minimal subsequences of P1 || P2

that have been “cut off”.

Compositional State Space Generation with Partial Order Reductions 277

interleaving state

stable state

P1

−a

+b

−c

P2

−y

−x

+b

+d

−a

−y

−y
+b

−x

−x

−x

−y −c
+e

−y−a

+b −a

−x −c

−c

+e

+e

−x

−y +d

+d

−y

−x

P

+d

+e

✷.

Note 2.
For applying this method, all actions of σ1 must be independent with actions of
σ2, which is the case when buffers are bags.

It remains to prove that this new operator of composition between processes
preserves ≈δ w.r.t. the standard asynchronous composition. This is expressed
in the following proposition:

Proposition 7. Let P1 and P2 be two Lts. Then we have P1 || P2 ≈δ P1 ⊗δ P2.

5 Observable Language Preservation

We consider now another kind of reachability property, the (finite) observable
language generated by a given program P . Here again, our objective is to compo-
sitionally generate a reduced Lts S′, able to produce the same set of observable
execution sequences as sem(P). Therefore, we introduce a relation ≈o pre-
serving the language equivalence over a distinguished set O ⊆ A of observable
actions. Then, we show that ≈o is a congruence w.r.t. operators || and [...],
and we propose another asynchronous composition operator preserving ≈o .

5.1 A Language Preserving Equivalence

For a given Lts S, we denote by LO(S) the set of (finite) execution sequences S
can perform up to a set of observable actions O. Thus, observable states of S are
the states able to perform any observable actions, and two (observable) states
will be considered as equivalent iff they can perform the same observable actions.

278 Jean-Pierre Krimm and Laurent Mounier

Definition 12 (Observable language, observable states).
Let S = (Q, A, T, q0) be an Lts. The observable language over O of S is the
following set:

LO(S) = {σo ∈ O∗ | σo = o1.o2. · · · .on ∧
∃σ = x∗

0.o1.x
∗
1.o2. · · · .x∗

n−1.on.x∗
n . q0

σ−→T ∧ xi �∈ O}
For each state q of Q: obs(q) ≡ Act(q) ∩ O �= ∅. We note obs(S) the set of stable
states of S and ∼o the equivalence relation between two states q1 and q2 defined
as follows: q1 ∼o q2 ≡ (Act(q1) ∩ O = Act(q2) ∩ O)

Clearly, to preserve the observable language of an Lts it is sufficient to pre-
serve the reachability of each of its observable states (in any buffer environment)
by execution sequences identical w.r.t. observable actions. Consequently, by re-
placing “stable” by “observable” (and ∼δ by ∼o) in definition 9, one could easily
obtain a suitable equivalence relation.

Unfortunately this straightforward definition of ≈o is not satisfying, at least
for two reasons:

1. Since it completely ignores the effect of execution sequences not containing
any observable state, the resulting equivalence is not a congruence w.r.t.
the || operator 1. Therefore, such execution sequences also have to be
explicitly taken into account, this can be done in practice by preserving
not only observable states but also the “interleaving” states introduced in
section 4.2.

2. A “composed” state (p1, p2, . . . pn) becomes observable as soon as one of its
component pi is able to perform an observable action. Thus, asynchronous
composition produces many “stuttering equivalent” observable states, not
identified by this definition (since they are reachable by execution sequences
not comparable w.r.t. �). Relation � should be weakened into a new rela-
tion � # in order to not distinguish these “stuttering equivalent” observable
states.

Relation � # relies on the following observation: since an append operation
performed by a given component can never be prevented by its environment (and
resp. a remove operation may always be prevented), execution sequence +a.ω
can be considered as “more executable” than ω (resp. sequence ω.a− is “less
executable” than ω). This suggests to extend the precedency relation P to the
relation P# such that: P# = P ∪ {A+ × {ε}} ∪ {{ε} × A−}

Relation � # is then the extension of P# to execution sequences (applying
definition 7, where � # = � P#). It is easy to see that proposition 4 still holds
for � #, that is, according to this new preorder, smallest execution sequences
are always more executable than largest ones in any buffer environment.

The definition of the language preserving equivalence ≈o is now the follow-
ing:
1 this problem did not occur with ≈δ because execution sequences without stable
state cannot lead to a deadlock even after composition with other components.

Compositional State Space Generation with Partial Order Reductions 279

Definition 13 (Equivalence between Lts).
Let Si = (Qi, Ai, Ti, q0i)i=1,2 be two Lts. ≈o ⊆ Q1 ×Q2 is the largest symmet-
rical relation verifying:

p1 ≈o p2 ⇔ ∀q1 ∈ (obs(S1) ∪ int(S1)) . p1
σ1−→T1 q1⇒ ∃q2 ∈ (obs(S2) ∪ int(S2)) .

p2
σ2−→T2 q2 ∧ q1 ∼ø q2 ∧ σ2 � #σ1 ∧ q1 ≈o q2 ∧

∀ω1 ∈ A∗ . q1
ω1−→T1⇒ ∃ω2 ∈ A∗ . q2

ω2−→T2 ∧ ω2 � #ω1

We say that S1 ≈o S2 iff q01 ≈o q02 .

Relation ≈o preserves observable language over O

Proposition 8. Let S1 and S2 be two Lts and Bp a buffer environment.

S1 ≈o S2 ⇒ LO(S1[Bp]) = LO(S2[Bp])

Finally, we show that relation ≈o is a congruence w.r.t operators || (asyn-
chronous composition) and [...] (execution within a given buffer environment).
Here again, the proof of this proposition will rely on lemma 1, which also applies
to preorder � #.

Proposition 9. Let S1, S2 and S = (Q, A, T, q0) be three Lts, and Bp a buffer
environment. If S1 ≈o S2 then the following holds:

S1 || S ≈o S2 || S (3)
S1[Bp] ≈o S2[Bp] (4)

5.2 A Language Preserving Composition Operator

We briefly explain here how the composition operator ⊗δ defined in section 4.2
can be modified into a ⊗o operator preserving ≈o -equivalence. The underlying
idea is now to consider as atomic parts of execution sequences delimited either by
“interleaving” states or observable states. However, the set of interleaving states
considered in definition 10 have to be augmented in order to deal with “terminal”
subsequences which do no contain any interleaving state (such sequences are
necessarily ended by a loop of A+-actions). A practical way is to add to the
interleaving set of states any element of this A+-loop (these states are computed
during the construction of S1 ⊗o S2).

Such sequences are then of the form: atom(σ) ≡ σ = p1
−a∗

i−→ p′1
+b∗i−→ q1

Moreover, as in section 4.2, a complete interleaving between a pair of atomic
sequences σ1 and σ2 is required only when both σ1 and σ2 contain a combination
of append and remove actions (otherwise it is enough to consider only the
smallest element of the ordered set {σ1.σ2, σ2.σ1}).

Formally, operator ⊗o is obtained by modifying definition of ⊗δ (defini-
tion 11) as follows:

280 Jean-Pierre Krimm and Laurent Mounier

Definition 14 (Language preserving composition operator).
Let P = P1 ⊗o P2 with P = (Q, A, T, q0) and Pi = (Qi, Ai, Ti, q0i)i=1,2 s.t.:

– q0 = (q01 , q02);
– A ⊆ A1 ∪A2;
– Q is the smallest set reachable from q0 using T .
– The set of transitions T is computed using the following four rules. For each

of them, we note H the following statement:

H = p1
σ1−→T1 q1 ∧ p2

σ2−→T2 q2 ∧ p1 ∈ int(P1) ∪ obs(P1) ∧ p2 ∈ int(P2) ∪ obs(P2)

∧ atom(σ1) ∧ atom(σ2) ∧ (int(q1) ∨ obs(q1)) ∧ (int(q2) ∨ obs(q2))

H, σ1 /∈ A−∗
, σ2 /∈ A−∗

σ1 /∈ A+∗
, σ2 /∈ A+∗

(p1, p2)
σ1−→T (q1, p2)

σ2−→T (q1, q2), (p1, p2)
σ2−→T (p1, q2)

σ1−→T (q1, q2)
[R1]

H, σ1 ∈ A−∗
, σ2 /∈ A−∗

(p1, p2)
σ2−→T (p1, q2)

σ1−→T (q1, q2)
[R2]

H, σ1 /∈ A−∗
, σ2 ∈ A−∗

(p1, p2)
σ1−→T (q1, p2)

σ2−→T (q1, q2)
[R3]

H, (σ1 ∈ A−∗ ∧ σ2 ∈ A−∗
) ∨ (σ1 ∈ A+∗ ∧ σ2 ∈ A+∗

)

(p1, p2)
σ1−→T (q1, p2)

σ2−→T (q1, q2) or (p1, p2)
σ2−→T (p1, q2)

σ1−→T (q1, q2)
[R4]

Using similar arguments than in section 4.2 it is possible to show that this
operator preserves ≈o w.r.t. the standard asynchronous composition:

Proposition 10. Let P1 and P2 be two Lts. Then we have P1 || P2 ≈o P1 ⊗o P2

6 Conclusion and Future Works

We have proposed a state space generation method for asynchronous commu-
nicating processes which combines the benefits of both compositionality (gen-
eration and reduction steps are performed incrementally), and partial-order re-
duction techniques (only some representative elements of the set of execution
sequences are considered).

More precisely, our approach was based on a syntactic notion of precedence
of communication actions, leading to a preorder between execution sequences
able to characterize their “executability” in any external buffer environments
(smallest sequences are the most executable). Using this preorder, we proposed
two equivalence relations between Lts, based on a similar notion of reachability
of a distinguished set of states through most executable execution sequences.
These two equivalence relations respectively preserve deadlock states and the
system language up to a given set of observable actions. Moreover, they are
congruences w.r.t. asynchronous composition. Finally, we have also defined two

Compositional State Space Generation with Partial Order Reductions 281

asynchronous composition operators, able to directly generate reduced Lts w.r.t.
each of these relations. These operators differ on the standard one by considering
as atomic particular subsequences of each process, thus saving many useless
interleavings.

A first prototype implementation has been experimented within the If en-
vironment developed at Verimag for the verification of asynchronous commu-
nicating systems [BFG+99]. The results obtained on a “benchmark” example
(a leader election algorithm) largely confirm the interest of this compositional
approach (about 5 000 generated states instead of 20 000 using a simultaneous
composition, when verifying observable language preservation). It now remains
to extend this experience to others case-studies, in particular to see how our
approach compares with more “classical” partial-order reduction techniques (for
instance the one implemented in Spin [Hol91]).

One of the practical motivation behind this work is to apply compositional
generation techniques to the verification of industrial size Sdl specifications. To
this purpose, the results proposed here will have to be (fully) extended to the
case of asynchronous communications via fifo queues (instead of their abstrac-
tion in terms of bags). In this case, the “purely syntactic” definition of precedence
relation between actions we considered here may be to strict, and it would be
interesting to see how it can be enlarged using more sophisticated static analysis
techniques (for instance depending on the communication topology between pro-
cesses). To this purpose, a suitable framework could be provided by the notion
of conditional independence proposed in [KP92].

Acknowledgements

Parts of this work were largely improved during fruitful discussions with M. Bozga,
S. Graf and J. Sifakis. Thanks are also due to the anonymous referees for their
helpful comments and suggestions.

References

AJKP98. P. Abdulla, B. Jonsson, M. Kindhal, and D. Peled. A General Approach
to Partial Order Reductions in Symbolic Verification. In Proceedings of
CAV’98, Vancouver, Canada, volume 1427 of LNCS, June 1998. 268

BFG+91. Ahmed Bouajjani, Jean-Claude Fernandez, Susanne Graf, Carlos Rodŕıguez,
and Joseph Sifakis. Safety for Branching Time Semantics. In Proceedings
of 18th ICALP. Springer Verlag, July 1991. 270

BFG+99. M. Bozga, J.-C. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, and L. Mounier.
IF: An Intermediate Representation and Validation Environment for Timed
Asynchronous Systems. In Proceedings of FM’99, Toulouse, France,
LNCS 1708, 1999. 281

CK93. S.C. Cheung and J. Kramer. Enhancing Compositional Reachability Anal-
ysis with Context Constraints. In Proceedings of the 1st ACM International
Symposium on the Foundations of Software Engineering, pages 115–125, Los
Angeles, California, December 1993. 267

282 Jean-Pierre Krimm and Laurent Mounier

GS90. S. Graf and B. Steffen. Compositional Minimization of Finite State Pro-
cesses. In Workshop on Computer-Aided Verification, Rutgers, USA, June
1990. DIMACS, R.P. Kurshan and E.M. Clarke. 267

GW91. P. Godefroid and P. Wolper. Using Partial Orders for the Efficient Verifica-
tion of Deadlock Freedom and Safety Properties. In K. G. Larsen, editor,
Proceedings of CAV’91 (Aalborg, Denmark), July 1991. 267

Hoa85. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
267

Hol91. Gerard J. Holzmann. Design and Validation of Computer Protocols. Soft-
ware Series. Prentice Hall, 1991. 267, 281

ISO87. ISO/IEC. LOTOS — A Formal Description Technique Based on the Tem-
poral Ordering of Observational Behaviour. Information Processing Systems
— OSI , Genève, July 1987. 267

IT92. ITU-T. Specification and Description Language (SDL). ITU-T Recommen-
dation Z.100, International Telecommunication Union, Genève, 1992. 267

KLM+98. R. Kurshan, V. Levin, M. Minea, D. Peled, and H. Yenigün. Static Partial
Order Reduction. In Proceedings of TACAS’98, Lisbon, Portugal, volume
1384 of LNCS, 1998. 267

KM97. Jean-Pierre Krimm and Laurent Mounier. Compositional State Space Gen-
eration from Lotos Programs. In Ed Brinksma, editor, Proceedings of
TACAS’97, Enschede, The Netherlands, April 1997. Springer Verlag. 267

KP92. S. Katz and D. Peled. Defining conditional independence usin collapses.
Theoretical Computer Science, 101(1):337–359, 1992. 281

Lip75. Lipton. Reduction, a method of proving properties of parallel programs.
Communications of the ACM, 18(12):717–721, dec 1975. 268

Mil89. Robin Milner. Communication and Concurrency. Prentice-Hall, 1989. 270
Pel96. Doron Peled. Combining partial-order reductions with on-the-fly model-

checking. Formal Methods in System Design, 8:39–64, 1996. 267
Val90. A. Valmari. A Stubborn Attack on State Explosion. In Workshop

on Computer-Aided Verification, Rutgers, USA, June 1990. DIMACS,
R.P. Kurshan and E.M. Clarke. 267

Val96. Antti Valmari. Compositionality in State Space Verification. In Application
and Theory of Petri Nets, volume 1091 of LNCS, pages 29–56, Springer
Verlag, June 1996. 267

vGW89. R. J. van Glabbeek and W. P. Weijland. Branching-Time and Abstraction
in Bisimulation Semantics (extended abstract). CS R8911, Centrum voor
Wiskunde en Informatica, Amsterdam, 1989. 270

	Introduction
	Asynchronous Communicating Systems
	Program Syntax and Semantics
	Compositional State Space Generation

	Equivalence and Preorder on Execution Sequences
	Equivalence between Execution Sequences
	Preorder between Execution Sequences

	Deadlock Preservation
	A Deadlock Preserving Equivalence between Lts
	A Deadlock Preserving Composition Operator

	Observable Language Preservation
	A Language Preserving Equivalence
	A Language Preserving Composition Operator

	Conclusion and Future Works
	Acknowledgements
	References

