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Abstract. We present three methods for the integration of symmetries
into reachability analysis. Two of them lead to maximal reduction but
their runtime depends on the symmetry structure. The third one works
always fast but does not always yield maximal reduction.
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1 Introduction

Symmetric structure yields symmetric behavior. Thus, symmetries can be em-
ployed to reduce the size of reachability graphs for analyzing particular proper-
ties [HJJJ84,Sta91,ID96] or for model checking [ES96,CEFJ96]. Instead of stor-
ing all states, only (representatives of) equivalence classes of states are stored.
There are two major problems that need to be solved in the context of symme-
tries. Before starting reachability graph generation, we need to investigate the
symmetries of the system. During graph generation, we need to decide repeat-
edly whether for a (recently generated) state an equivalent one has been explored
earlier.

In the context of high level Petri nets or structured programming languages,
we can use operations and relations on the data domains or replicated compo-
nents to describe the symmetries symbolically [HJJJ84,Jen92]. Then the user
can provide the description of the symmetries together with the system using
terms (such as data operations) of the structured language. For instance, having
the integer numbers as data type, one can map a state where a certain variable
has value i to a state where that variable has value i + 1. For some classes of
high level nets or other system descriptions, a symbolic description of a set of
symmetries can be deduced automatically [CDFH90,Jun98,ID96], though this
approach seems to be rather sensitive to the syntax used for system descrip-
tions. Furthermore it is sometimes necessary to model the system very carefully
to make the symmetries visible to the deduction tool [Chi98,CFG94]. For the
decision of equivalence between states, one uses the symmetries to transform the
current state into an equivalent one which is minimal with respect to some, say
lexicographical, order. The transformed state is called canonical representative, is
unique, and is used to represent its equivalence class. Currently, this approach is
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more or less restricted to symmetry groups that can be composed of full permuta-
tion groups and rotation groups over the involved data domains. As an efficient
alternative, non–unique representatives have been proposed in [CEFJ96,ID96]
which potentially lead to a larger graph and some problems for reachability
tests on the reduced graph.

Using low level symmetries [Sta91]1 arbitrary symmetry groups can be han-
dled in a uniform manner as graph automorphisms of the Petri net graph repre-
sentation. There is no straightforward symbolic description of low level symme-
tries. Thus, calculation is the only way to get the information about symmetries.
However, the algorithm proposed in [Sch97] and implemented in INA [RS97] is
able to calculate polynomially large generating sets of (in worst case exponen-
tially large) maximal symmetry groups in reasonable space and time. For in-
stance, the symmetry group calculation for a net with 10000 vertices requires
usually less than 5 minutes. For nets of that size, reachability analysis is faced
with a lot of other challenges than symmetry calculation.

This paper surveys three solutions of the problem of using low level symme-
tries in reduced graph generation and reports experimental results.

With the present low level symmetry technology, we fill the following gaps
left by the symbolic high level calculus:

– We can deal with systems where a structured representation is not available
(for instance, translations from other formalisms into low level nets);

– We offer a fully automated approach to high level (structured) systems with
small or medium size data domains (prototypes of larger systems) indepen-
dently of the net inscription syntax;

– We can handle small or medium size systems having non–standard symmetry
groups

2 Petri Nets

For the purpose of simplicity (in particular due to the immediate correspondence
between net symmetries and graph automorphisms) , we present the approach for
place/transition nets. However, it should not be difficult to transfer the results
to other formalisms, whether Petri net based or not.

Definition 1 (Petri net). A tuple N = [P, T, F,W,m0] is a Petri net iff P
and T are finite, nonempty, and disjoint sets (of places and transitions), F ⊆
(P × T ) ∪ (T × P ) (the set of arcs), W : (P × T ) ∪ (T × P ) −→ N such that
W ([x, y]) > 0 iff [x, y] ∈ F (the arc multiplicities), and m0 is a state, i.e. a
mapping m0 : P −→ N.

1 throughout the paper, we use the term low level for the symmetry approach to
place/transition nets, i.e. Petri nets with unstructured, uniform tokens. In contrast,
high level symmetries rely on the ability to use data specific terms for symbolic
description of symmetries.
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Throughout the paper, we assume that places and transitions are totally
ordered.

For a place or transition x, •x = {y | [y, x] ∈ F} denotes the pre–set of x,
and x• = {y | [x, y] ∈ F} denotes its post–set.

Definition 2 (Transition relation). We say that t can fire at a state m yield-
ing state m′ (written: m@ > t >> m′) iff for all p ∈ P , m(p) ≥ W ([p, t]) and
m′(p) = m(p)−W ([p, t]) +W ([t, p]).

If, for a given state m and transition t there exists a state m′ such that
m@ > t >> m′, then we say that t is enabled at m. We extend the transition
relation to sequences of transitions. Define m@ > e >> m for an arbitrary m
and the empty sequence e, and m@ > wt >> m′ (w being a transition sequence
and t a transition) iff there is an m∗ such that m@ > w >> m∗ and m∗@ >
t >> m′. If there is a transition sequence w such that m@ > w >> m′, we write
m@ > ∗ >> m′.

Definition 3 (Reachability graph). A directed labeled graph is the reachabil-
ity graph of a Petri net N = [P, T, F,W,m0] iff its set of vertices is the set of
all reachable states, i.e. {m | m0@ > ∗ >> m}, and [m,m′] is an edge labeled
with t iff m@ > t >> m′.

3 Graph Automorphisms

Consider a directed graph [V,E] (with a finite set V of vertices and a set E ⊆
V × V of edges) together with a mapping φ : V ∪ E −→ C that assigns a color
of a set C to every graph element.

Definition 4 (Graph automorphism). A graph automorphism is a bijection
σ : V → V of the vertices of a directed colored graph that respects adjacency and
coloring, i.e.

– e = [x, y] ∈ E iff σ(e) = [σ(x), σ(y)] ∈ E;
– φ(σ(z)) = φ(z) for z ∈ V ∪ E.

The set of all automorphisms of a graph forms a group under composition
and inversion. The identity is always an automorphism and serves as neutral ele-
ment of the group. For the remainder of this section, consider an arbitrary graph
and its automorphism group. There can be exponentially many automorphisms.
However, there is always a generating set of at most |V |·(|V |−1)

2 elements for the
whole automorphism group. In the sequel we consider a rather well formed gener-
ating set that enjoys a regular structure though it is not necessarily of minimal
size. The algorithm proposed in [Sch97] returns a generating set as described
below. Assume a total ordering of V , i.e. V = {v1, . . . , vn}. A well formed gener-
ating set G for all graph automorphisms consists of |V | families G1, . . . , G|V |. If,
for i ∈ {1, . . . , |V |} and j ∈ {i, . . . , |V |}, there exist automorphisms σ such that
σ(v1) = v1, . . . , σ(vi−1) = vi−1 and σ(vi) = vj then family Gi contains exactly
one of them. In other words, the elements of family Gi are equal to the identity
on all vertices smaller than vi and cover all possible images of vi.
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Fig. 1. 3 dimensional grid

Example 1. Consider the graph depicted in Fig. 1. Every drawn line between
two vertices x and y corresponds to a pair [x, y] and [y, x] of edges. Table 1 lists
a generating set for the 48 graph automorphisms that fits to the rules above.
The generating set is not minimal. For instance, σ2 = σ1 ◦ σ1.

Table 1. Generating set of the grid automorphisms

Argument Images
Family 1 Family 2 Family 3

1 1 2 3 4 5 6 7 8 1 1 1 1 1
2 2 3 4 1 1 5 8 7 2 4 5 2 2
3 3 4 1 2 4 8 5 6 3 8 6 3 6
4 4 1 2 3 8 7 6 5 4 5 2 4 5
5 5 6 7 8 6 2 3 4 5 2 4 5 4
6 6 7 8 5 2 1 4 3 6 3 8 6 3
7 7 8 5 6 3 4 1 2 7 7 7 7 7
8 8 5 6 7 7 3 2 1 8 6 3 8 8

id σ1 σ2 σ3 σ4 σ5 σ6 σ7 id σ8 σ9 id σ10

Proposition 1 (Generating set). Every set of automorphisms that fits to the
rules described above is a generating set for all automorphisms. In particular,
every automorphism can be represented as the composition σ1 ◦ · · · ◦ σ|V | where
σi belongs to family Gi of the generating set.

Proposition 2 (Non–repetition). If for all i, σi and τi are members of fam-
ily Gi of a generating set as described above, then σ1 ◦ · · · ◦ σn = τ1 ◦ · · · ◦ τn

implies σ1 = τ1, . . . , σn = τn.

These two propositions state that every automorphism can be generated in
exactly one way as the composition of one member per family of the generating
set. As a corollary, the product of the sizes of the families yields the size of the
automorphism group. For instance, our grid has 8 · 3 · 2 = 48 automorphisms.
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Rotation groups (automorphism groups of ring–like graphs) have a generating
set consisting of one family, permutation groups (symmetry groups of clique–
like graphs) have generating sets where the size of subsequent families of the
generating set decreases by one.

4 Petri Net Symmetries

A Petri net N = [P, T, F,W,m0] can be regarded as colored graph with V =
P ∪ T , E = F , φ(p) = place for p ∈ P , φ(t) = transition for t ∈ T , and
φ(f) = W (f) for f ∈ F .

Definition 5 (Symmetry). A Petri net symmetry is an automorphism of the
underlying colored graph.

We denote the symmetry group of a Petri net by Σ. A symmetry group Σ
induces equivalence relations on the Petri net vertices as well as on the states.

Definition 6 (Equivalence of vertices/states). Two vertices x and y in
P ∪ T are equivalent with respect to Σ (x ∼Σ y) iff there is a σ ∈ Σ such that
σ(x) = y. For a state m, let σ(m) be the state satisfying, for all x ∈ P ∪ T ,
σ(m)(σ(x)) = m(x). A state m1 is equivalent to a state m2 with respect to Σ
(m1 ∼Σ m2) iff there is a σ ∈ Σ such that σ(m1) = m2.

∼Σ is an equivalence relation. We denote the ∼Σ equivalence class containing
some state m by [m]Σ .

5 The Integration Problem

During generation of the reduced reachability graph, we want to merge equivalent
states. As soon as a new state m is generated, we compare it against the set of
already existing states M . If, among those states, there is one equivalent to m,
we do not store m. Instead, we redirect all arcs to m to the equivalent state.
Thus, the problem we are confronted with (and which we call the integration
problem) is:

Given a symmetry group Σ, a set M of states, and a state m, decide
whether there exist an m′ ∈ M and a σ ∈ Σ such that σ(m) = m′; in
the case that such an m′ exists, return m′.

Here, Σ is given by a well formed generating set. M is the set of already calcu-
lated states and is usually organized as a search structure (tree, hash table or
whatsoever).

We study three approaches to the integration problem. The first two proce-
dures implement one of the existential quantifiers appearing in the integration
problem as a loop. The third method implements the canonical representative
method to low level Petri nets.
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6 Iterating the Symmetries

The integration problem quantifies a symmetry existentially. If we implement
this quantification as a loop on all symmetries, we obtain the following brute
force solution:

FOR ALL σ ∈ Σ DO
IF σ−1(m) ∈ M THEN

RETURN yes;
END;

END;
RETURN no;

The test σ−1(m) ∈ R is a standard operation on sets of states and can be
efficiently implemented. So the costs of the procedure depend on the number of
iterations of the outer loop which is, in the worst case (the case where m is not
in M), equal to the size of the symmetry group. Due to the up to exponential size
of symmetry groups, this approach does not work well. However, using decision
trees for storing the states in M enables a nice reduction concerning the number
of loops.

A decision tree treats states as strings and merges common prefixes. Fig. 2
depicts a decision tree storing the set {(1, 0, 0), (1, 0, 1), (1, 2, 2), (1, 3, 1)}.

If we find σ−1(m) in the decision tree, we

1

0 2 3

0 1 2 1

Fig. 2. Decision tree

exit the loop. Otherwise, there is some prefix
of σ−1(m) that is not contained in the tree
and the length i of this prefix is available
through the search process. This means that
any other state with the same prefix is not
contained in M as well. However, the σ−1–
image of m on the first i places is determined
by the generators of the first i families of
the generating set. That is, every symmetry
that is composed of the same elements of the
first i families as σ, but different elements of
the last |P |− i families of the generating set,

yields the same i–prefix as σ−1(m) and is consequently not contained in M .
Using this observation, we can skip all such combinations of generators and
continue with one where at least one of the first i ones is different. This method
reduces significantly the number of iterations of the outer loop in the above code
fragment.

Having implemented this iteration, we found out that the loop reduction was
powerful enough to make reduced graph generation faster than complete itera-
tion even if complete iteration runs on an explicitly stored list of all symmetries
(i.e. re–initialization of the loop is just a jump to the next list element instead
of composing a symmetry from generators). The current version of INA uses the
generating set and the described loop reduction. Older versions of INA maintain
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an explicit list of all symmetries. The algorithm works quite well if the symmetry
group is sparse. Unfortunately, larger symmetry groups require still too many
iterations of the symmetry loop and graph generation tends to fail. Therefore,
we need other integration technologies.

7 Iterating the States

In this section, we develop another solution of the integration problem where
the outer loop iterates on states. The principal solution is:

FOR ALL m′ ∈ M DO
IF ∃σ : σ(m) = m′ THEN

RETURN yes;
END;

END;
RETURN no;

For the test ∃σ : σ(m) = m′ we do not need to iterate the symmetries. The
algorithm in [Sch97], otherwise used to compute the generating set, can as well
be customized such that it computes a symmetry mapping m to m′ (or recognize
that such a symmetry does not exist).

Of course, iterating all states in the outer loop is unacceptable, since there
are usually too many of them. Fortunately, the number of iterations can be
reduced significantly when symmetry respecting hash functions are used (the use
of hash functions has already been studied in [HJJJ84]). A hash function assigns
an index h(m) from a finite index set I to every state m. This way, the set of
states M can be partitioned into card(I) classes where two states are in the
same class iff they have the same hash value. Simple hash techniques store each
hash class separately such that other search techniques need to be applied only
to the (hopefully small) hash classes rather than to the complete set of states.

Symmetry respecting hash functions assign equal hash values to equivalent
states. Using such a function h, it is sufficient to iterate the subset of M corre-
sponding to h(m) rather than the whole M .

As a simple way to get a symmetry respecting hash function, one can use a
weighted sum of component values. For this purpose, one assigns a number cp

to each place p and sets h(m) =
∑

p∈P cp · m(p) mod k where k is the
size of the hash table. In order to make this function symmetry respecting,
one guarantees cp = cp′ for all equivalent places. The equivalence relation for
places can be efficiently deduced from the generating set without iterating all
symmetries. In fact, it is sufficient to start with a family of singleton sets {{p} |
p ∈ P} and then to build repeatedly the union of the set containing p with the set
containing σ(p) (for all p ∈ P and all σ of the generating set). This task can be
efficiently done by Tarjan’s union/find algorithm [Tar75] and produces directly
the equivalence classes. The implementation used for computing the examples
at the end of the paper uses weighted component sums as hash function where
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the cp are otherwise randomly chosen. Random choice appears to spread hash
values well enough.

The proposed method depends on the number of states in M that share the
same hash value. Besides the general uncertainties of hash functions, there are
general problems with symmetry respecting hash functions for sparse symmetry
groups. Consider Fig. 3 and assume that (maybe by some additional hidden net
structure) the rotations along the ring are the only symmetries.
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Fig. 3. Difficult situation for symmetry respecting hash functions

In this net, for every pair of outer places there is a symmetry mapping one
to another. The same holds for inner places. However, there is no symmetry
mapping an outer place to an inner place. Therefore, a hash function following
our proposal assigns some weight co to all outer places and some weight ci

to all inner places. Consequently, the best symmetry respecting hash function
would produce at most 9 different used hash values for the 36 states of the
symmetrically reduced reachability graph of this net (the hash value depends
only on how many inner places are marked, but equivalence depends on the
distances between two marked inner places). In a ring of the same kind but
length 20, the 52488 states of the reduced graph would share only 21 different
values of any symmetry respecting hash function (in general, at least 2n

n states
share at most n+ 1 hash values).

A situation as described above is typical for all rotation–like symmetry
groups. Fortunately, this effect is due to the low number of symmetries (where
the integration method of the previous section behaves well). If we use all per-
mutations between the pi (and corresponding mappings on the ti and qi) as
symmetry group of the system depicted in Fig. 3, the problem does not appear
since those states that share the same hash value become equivalent. Thus, the
reduced reachability graph contains only one of them. Assigning, for example,
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weight 1 to the pi and weight 2 to the qi, we get 9 different hash values for the 9
states of the reduced reachability graph (in general, n values for n states). Thus,
iterating the states of a hash class is a method for integrating symmetries that
displays its best behavior with large symmetry groups. This complements the
behavior of the method discussed in the previous section.

8 Canonical Representatives

This version of symmetry integration is inspired by [HJJJ84,ID96,CEFJ96]. The
vector representation of states induces a (lexicographical) order between states:
Let m < m′ iff there is a place p such that for for all places q (q < p), one has
m(q) = m′(q) while m(p) < m′(p). Given this order, every equivalence class of
states with respect to the symmetry has a least element, called the canonical
representative. In the version of the integration problem we want to discuss now,
only canonical representatives are added to M . Then, deciding the integration
problem consists of transforming the new state m into its canonical represen-
tative m and checking whether m is contained in M . So, the transformation of
arbitrary states into canonical representatives is the bottleneck of this method.
Efficient solutions of the problem are restricted to few classes of symmetry groups
(such as rotation or permutation groups).

The brute force implementation in absence of a symbolic description of the
symmetries would be to iterate all symmetries and to compare their images of
the given m. This is, however, not appropriate here since this method would not
work at all for larger groups. Therefore, we try once more to benefit from the
structure of the generating set introduced in Sect. 3, in particular from the fact
that elements of larger families do not change values on the first places. Thus,
we could try the following procedure to transform states (σij is the j–th member
of family Gi of the generating set, #i is the size of family Gi):

PROCEDURE transform(m:state): state:
VAR globalmin,localmin: state;

i,j:Nat;
BEGIN

globalmin := m;
FOR i := 1 TO n DO (* for all families *)

localmin := globalmin;
FOR j := 1 TO n DO

IF σij(globalmin) < localmin THEN
localmin := σij(globalmin);

END
END
globalmin := localmin;

END
RETURN globalmin;

END.
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This procedure has the advantage that it works in polynomial time in the
size of the net. It has, however, one big disadvantage: it does not always produce
canonical representatives! For an example, consider the grid example of Sect. 3.
Assume for the purpose of simplicity that all vertices of the grid are places
and transform the state m = (1, 2, 2, 3, 3, 2, 1, 3). In the first family, only the
identity and σ6 produce 1 on the first place. σ6(m) = (1, 3, 3, 2, 2, 3, 1, 2). Thus,
the minimal state produced by the first family is the state itself. In the second
family, both σ8 and σ9 would produce 3 on the third place, thus m itself remains
the minimal state. In the third family, σ10 does not change the state. Therefore
the transform procedure would return m itself. However, applying σ9 to σ6(m)
leads to (1, 2, 2, 2, 3, 3, 1, 3) which is smaller than m. Thus, the procedure does
not always return canonical representatives. The way to the global minimum
does not always lead via the minima at the intermediate steps of the algorithm.

The problem is limited to symmetry groups other than rotation and per-
mutation groups. For rotation groups, we have a generating set consisting of
a single family containing all symmetries. Thus, no symmetry is forgotten. For
full permutation groups, the transform procedure performs a real sorting on the
state. Thus, the global minimum is returned.

There are two ways out of the problem of non–minimality. The first one would
be to replace the above transform procedure by one returning the actual canon-
ical representative. However, the complexity of this problem is closely related
to deciding graph isomorphism [CEFJ96,ES96] and therefore it is unlikely that
there is a polynomial solution at all. Therefore we tried the other way which is to
study which problems arise from non–unique representatives. The first observa-
tion is that a reduced graph using non–unique representatives can contain more
than one element of some equivalence classes. Thus, the reduced graph is larger
than a perfectly reduced one (i.e. one that contains exactly one representative
per reachable class). On the other hand, most global properties do not depend on
perfect reduction. In particular, the proof rules described in [Jen95] for bounded-
ness, liveness, reversibility and other properties as well as model checking using
formula respecting symmetries [ES96] are still valid. On the other hand, check-
ing reachability of a given state m∗ against a reduced reachability graph might
be dangerous. It can happen that the transformed image of m∗ is different from
all representatives of its equivalence class in the reduced state space. Thus, not
finding the image of m∗ in M does not yet mean that the equivalence class of m∗

is not represented in M . The problem can be circumvented in the following way:
use the canonical representative method for generating the graph, but use one
of the other methods to check reachability. This compromise should work well
as long as only some states are to be tested for reachability.

9 Experiments

We have implemented all three methods in a new reachability oriented Petri net
tool called LoLA (Low Level Analyzer). So reduced and full graph generation
share the same code for all tasks not depending on the integration method.
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ItSymm corresponds to the iteration of symmetries (Sect. 6), ItState to the
iteration of states (Sect.7), and CanRep to the canonical representative method
of Sect. 8. Times have been taken on a LINUX PC with 64MB RAM and a
400MHz Pentium processor. The times are written as <minutes>:<seconds>.
We used a hash table of size 65536.

The first three tables show the behavior of symmetric reduction for different
kinds of symmetry groups. We demonstrate the reduction in space, compared
with full graph generation and give an impression concerning the running time.
Furthermore we provide experimental evidence for the run time predictions we
derived in the theoretical sections. There, we expected ItSymm to be fast on
sparse groups but slow on large groups, we expected ItStates to be slow on
sparse, but acceptable on large groups, and we expected CanRep to be fast
anyway but to produce larger graphs. For these goals, small examples should be
sufficient.

The first table concerns a deadlocking version of the n dining philosophers
example. This is an example of a ring–like agents network.

Table 2. Results for the dining philosophers

number of phil.
5 10 13

Places 25 50 65
Transitions 20 40 52

States in full graph 242 59048 313 − 1
Edges in full graph 805 393650 ?
Hash entries in full graph 242 38048 ?
Time for full graph 0:00.085 0:05.9 ?

Symmetries 5 10 13

States in red. graph 50 5933 122642
Edges in red. graph 165 39550 1062893
nonempty hash classes in red. graph 20 65 104

time for ItSymm 0:00.077 0:02 1:38
time for ItState 0:00.22 11:31 ?
time for CanRep 0:00.077 0:01.1 0:33.5

The symmetry group is a rotation–like group. Thus, we would store all sym-
metries explicitly as our generating set. They are organized in a single family.
Therefore, the canonical representative method must yield full reduction. The
times of iteration of states and canonical representatives are acceptable. The
long time for the iteration of states is due to the hashing problem discussed in
Sect. 7 and makes the method unacceptable for this kind of net. Though the
times for the reduced graphs include the calculation of the symmetries, they are
smaller than the corresponding full graph generation. Note that the number of
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instances of the integration problem to be solved corresponds to the number of
edges of the reduced graph.

The second example is a data access scheme where r readers can access some
data concurrently while w writers access it in mutual exclusion (and excluded
from the readers). The readers are not distinguishable from each other and the
writers are not distinguishable from each other. Thus, the symmetry group is
close to full permutation.

Table 3. Results for the data access scheme

readers / writers
5/5 13/13 20/20 40/40

Places 31 79 121 241
Transitions 25 65 100 200

States in full graph 217 114857 21 · (220 + 20) 41 · (240 + 40)
Edges in full graph 770 905554 ? ?
Hash entries in full graph 217 54952 ? ?
Time for full graph 0:00.1 2:54 ? ?

Generators of Symm. 20 156 380 1560
Families of gen. set 8 24 38 78
Symmetries 14400 13! · 13! 20! · 20! 40! · 40!
States in red. graph 14 30 44 84
Edges in red. graph 82 470 1072 4142
nonempty hash classes in red.
graph

14 30 44 84

time for ItSymm 0:00.64 > 60:00 ? ?
time for ItState 0:00.2 0:05.8 0:33 9:44
time for CanRep 0:00.084 0:00.4 0:01.7 0:34

States generated by CanRep 17 41 62 122
Edges generated by CanRep 85 481 1090 4180

For this system, iteration of symmetries fails due to the huge number of sym-
metries even in cases where the full graph can be generated without problems.
Iteration of states works for this system though it cannot reach the speed of iter-
ating the symmetries for a rotation symmetry group. However, compared to the
time needed for the complete graph we can be satisfied with the result. Observe
that the number of used hash entries shows that every instance of the integra-
tion problem involves at most one attempt to calculate a symmetry. The fastest
method is once more the canonical representative approach. However, the exam-
ple shows that it produces slightly larger graphs. This is due to the interlacing
of two permutation groups. This problem could be avoided by rearranging the
order of places which would require knowing the symmetries in advance; but that
is not the intended application area of the low level Petri net method. However,
the advantage with respect to time could justify a few more states. Again, one
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of the perfectly reducing methods and the canonical representative method were
able to outperform the full graph generation.

The third example is designed to study the behavior of our procedures on
grid–like networks. For this purpose we arranged several identical agents in a
grid network. The agents have two states. The second state can only be entered
in mutual exclusion to the direct neighbors, controlled by a set of semaphores.
We vary the number of dimensions of the grid and the number of agents per row
(our running example would have dimension 3 and two agents per row).

Table 4. Results for the grid network

dimensions / agents per row
2/5 3/3 4/2 5/2

Places 75 81 48 96
Transitions 50 54 32 64

States of full graph 55447 70633 734 ?
Edges of full graph 688478 897594 5664 ?
Time for full graph 0: 10 0:15 0:00.18 ?

Generators 4 10 21 41
Nontrivial families 2 3 4 5
Symmetries 8 48 384 3840

States of red. graph 7615 2352 21 332
Edges of red. graph 94850 29912 172 4937
nonempty hash entries of red.
graph

192 106 9 17

Time for ItSymm 0:03.8 0:03.7 0:00.18 0:26.6
Time for ItState 12:29 4:38 0:00.72 1:20
Time for CanRep 0:04.7 0:04.9 0:00.15 0:27

States gen. by CanRep 15138 10832 29 3032
Edges gen. by CanRep 188706 137345 234 44650

For this example, the a lot of symmetries can be skipped during the iteration
of symmetries in ItSymm, so ItSymm is even able to outperform the canonical
representative method (which has, in addition, the disadvantage of generating
more states). The grid symmetries can be considered as a sparse symmetry group,
which explains the bad behavior of ItState. The reason for the slow ItState can
be found in the small number of used hash classes compared with the large
number of states.

The grid example demonstrates the benefits of using low level net symmetries
on non–standard symmetry groups. In the 3–dimensional case we have 48 sym-
metries. The size of the reduced graph is approximately 30 times smaller than
the full one. Since every equivalence class of reachable states should appear in
the reduced graph, and the size of an equivalence class is bounded by the number
of symmetries, a reduced graph can never be smaller than the size of the full
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graph divided by the number of symmetries. As outlined in [CFG94,CDFH90],
the symbolic symmetry approach based on rotation and permutation groups con-
siders only a rotation (sub-)group of grid structures that consists only of four
symmetries. Thus, instead of a reduction factor 30, a reduction factor smaller
than 4 is achieved.

The symmetry approach has been criticized for its lack of practical feasibility.
Extrapolation of the previous tables to larger examples supports this criticism. In
particular, sparse symmetry groups do not yield sufficient reduction to keep pace
with the growth of the reachability graph. However, things look different if we
take into consideration that symmetries can be applied jointly with several other
reduction techniques, for instance the stubborn set method [Val88]. Benefits
of combined application have been reported earlier [Val91,DBDS93,EJP97]. We
report results for our particular symmetry approach. Applying symmetries alone
leads to memory overflow on all reported instances, not to mention full graphs.

Table 5. Stubborn sets versus stubborn sets with symmetries (for the dining
philosophers)

number of phil.
100 200 300 900

Places 500 1000 1500 4500
Transitions 400 800 1200 3200

States in full graph 3100 − 1 3200 − 1 3300 − 1 3900 − 1

Symmetries 100 200 300 900

States in symm./stubb. red. graph 299 599 899 2699
Edges in symm./stubb. red. graph 496 996 1496 4496
time for ItSymm+ stubborn 0:02 0:10 0:26 7: 00

States in stubb. red. graph 29702 119402 overflow -
Edges in stubb. red. graph 39700 159400 - -
Time for stubb. red. graph 0:05 1:08 - -

In the grid example, stubborn sets do not reduce the number of states. Con-
cerning the data access scheme (40 readers/40 writers), stubborn sets produce
121 states while combined application of stubborn sets and symmetries leads to
4 states, independently of the number of readers and writers.

10 Conclusion

We have presented three solutions of the integration problem (deciding whether
for the current state there is a symmetrical one in the set of already computed
states). All methods have their advantages and disadvantages. The advantage
of the iteration of symmetries and iteration of states is that they yield a com-
pletely reduced graph. Unfortunately they work well only on sparse (iteration
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of symmetries) or large (iteration of states) symmetry groups. The canonical
representative method is the fastest method that works for all kind of symme-
tries, but it often produces more than one representative for some equivalence
classes of states. The canonical representative method cannot be used for test-
ing the reachability of states. This problem can be repaired by using one of the
other method for testing the reachability on a graph produced by the canonical
representative method.

With the set of methods presented in this paper, low level symmetries are
no longer a restricting factor for reduced reachability graph generation. In most
cases, the remaining size of the reduced graph limited the analysis. This in turn
is due to the limitation of the symmetry approach as it and not due to its low
level version (low level symmetries do not produce larger graphs than high level
(symbolic) symmetries).

In connection with other reduction techniques (such as stubborn sets), much
larger systems can be analyzed than using either method in isolation. The easy
use of maximal symmetry groups other than rotation and permutation groups
is another argument in favor of the low level symmetry approach.

References

CDFH90. G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. On well–formed
colored nets and their symbolic reachability graph. Proc. of the 11th Int.
Conf. on Application and Theory of Petri Nets, pages 387–410, 1990. 315,
328

CEFJ96. E.M. Clarke, R. Enders, T. Filkorn, and S. Jha. Exploiting symmetry in
temporal logic model checking. Formal Methods in System Design 9, pages
77–104, 1996. 315, 316, 323, 324

CFG94. G. Chiola, G. Franceschinis, and R. Gaeta. Modelling symmetric computer
architectures by swn’s. Proc. 15th Int. Conf. on Application and Theory of
Petri Nets, LNCS 815, pages 139–158, 1994. 315, 328

Chi98. G. Chiola. Manual and automatic exploitation of symmetries in spn models.
Proc. 19th International Conference on Application and Theory of Petri
nets, LNCS 1420, pages 28–43, 1998. 315

DBDS93. S. Duri, U. Buy, R. Devarapalli, and S. Shatz. Using state space methods
for deadlock analysis in ada tasking. ACM Proc. Int. Symp. on Software
Testing and Analysis, pages 51–60, 1993. 328

EJP97. E.A. Emerson, S. Jha, and D. Peled. Combining partial order and symmetry
reductions. Proc. TACAS ’97, LNCS 1217, pages 19–34, 1997. 328

ES96. E.A. Emerson and A.P. Sistla. Symmetry and model checking. Formal
Methods in System Design 9, pages 105–131, 1996. 315, 324

HJJJ84. Huber, A. Jensen, Jepsen, and K. Jensen. Towards reachability trees for
high–level petri nets. In Advances in Petri Nets 1984, Lecture Notes on
Computer Science 188, pages 215–233, 1984. 315, 321, 323

ID96. C.N. Ip and D.L. Dill. Better verification through symmetry. Formal Meth-
ods in System Design 9, pages 41–75, 1996. 315, 316, 323

Jen92. K. Jensen. Coloured Petri Nets, volume 1 of EATCS Monographs on Theo-
retical Computer Science. Springer, 1992. 315



330 Karsten Schmidt

Jen95. K. Jensen. Coloured Petri Nets Vol. 2: Analysis Methods. Springer, 1995.
324

Jun98. T. Junttila. Towards well-formed algebraic system nets. Workshop CSP’98
Berlin, Technical Report 110, Humboldt–University Berlin, pages 116–127,
1998. 315

RS97. S. Roch and P. Starke. INA – Integrierter Netz–Analysator Version 1.7.
Handbuch. Humboldt–University Berlin, Institute of Computer Science,
1997. 316

Sch97. K. Schmidt. How to calculate symmetries of petri nets. To appear in Acta
Informatica. 316, 317, 321

Sta91. P. Starke. Reachability analysis of petri nets using symmetries. J. Syst.
Anal. Model. Simul., 8:294–303, 1991. 315, 316

Tar75. R.E. Tarjan. Efficiency ofa good but not linear set union algorithm. Journal
of the ACM 22(2), pages 215–225, 1975. 321

Val88. A. Valmari. Error detection by reduced reachability graph generation. Proc.
of the 9th European Workshop on Application and Theory of Petri Nets,
Venice, 1988. 328

Val91. A. Valmari. Stubborn sets for coloured petri nets. In The Proceedings of
the 12th International Conference on Application and Theory of Petri Nets,
pages 102–121, 1991. 328


	Introduction
	Petri Nets
	Graph Automorphisms
	Petri Net Symmetries
	The Integration Problem
	Iterating the Symmetries
	Iterating the States
	Canonical Representatives
	Experiments
	Conclusion
	References

