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Abstract Gurevich’s Abstract State Machines (ASM) constitute a high-
level specification language for a wide range of applications. The existing
tool support for ASM—currently including type-checking, simulation and
debugging—should be extended to support computer-aided verification,
in particular by model checking. In this paper we introduce an interface
from our existing tool environment to the model checker SMV, based
on a transformation which maps a large subset of ASM into the SMV
language. Through a case study we show how the proposed approach can
ease the validation process.

1 Introduction

Gurevich’s Abstract State Machines (ASM) [7] constitute a simple but powerful
method for specifying and modeling software and hardware systems. Existing
case studies include specifications of distributed protocols, architectures, em-
bedded systems, programming languages, etc. (see [1] and [3]).

The advantage of ASMs is in the simple language and its intuitive under-
standing. The method is based on general mathematics which allows to naturally
model systems on a suitable level of abstraction. Traditionally, the verification
task is done by means of hand-written mathematical proofs. Tool support for
the verification process is obviously needed for a broader acceptance.

Our contribution to this task is the development of an interface between the
ASM Workbench [2] and the SMV model checker [11]. The ASM Workbench
is a tool environment, based on a typed version of ASM, which includes a type
checker and a simulator for ASMs. SMV has been chosen as a typical representa-
tive of a class of model checkers based on transition systems and could be easily
replaced by any other similar model checker, e.g., SVE [5] or VIS [6].

On the other hand our transformation tool supplies SMV with a higher level
modeling language, namely ASMs. This facilitates the specification task by al-
lowing the use of more complex data types and of n-ary dynamic functions for

* Partially supported by the DFG Schwerpunktprogramm “Softwarespezifikation”.

S. Graf and M. Schwartzbach (Eds.): TACAS/ETAPS 2000, LNCS 1785, pp. 331-346, 2000.
© Springer-Verlag Berlin Heidelberg 2000



332 Giuseppe Del Castillo and Kirsten Winter

parameterization (a peculiar feature of the ASM language, which generalizes the
classical notion of state variables).

Since model checking is only applicable to finite-state systems, we have to
put restrictions on the ASM model to be checked in order to make it finite: all
function ranges have to be restricted to a fixed finite set of values. To cope with
a broader subset of the ASM language, we extend the basic work of [14], which
introduced a simple transformation schema, to support the transformation of
n-ary dynamic functions for n > 0. To ease the transition from infinite or large
models to finite and feasible ones, we introduce a language feature for adjusting
the function ranges in the declaration part of the system specification. Thus,
such changes can be done locally and are not spread over the whole model.

From a methodical point of view, model checking can support the early design
phase: checking properties of the system behavior may yield counterexamples
which help to “debug” the system specification. The simulator provided by the
ASM Workbench can be fed with the counterexamples in order to illustrate
the erroneous behavior. After locating and correcting the error that causes the
counterexample, the transformation and model checking should be repeated.
This debugging process gives a deeper insight into the model at hand. Errors
become visible that can be easily over seen when carrying out mathematical
proofs which are not mechanically checked, borderline cases become visible that
are mostly not found when simulating isolated test cases.

We are not claiming that model checking can replace, in general, mathemati-
cal proofs (developed with or without the help of theorem provers), as the range
of applicability of model checking techniques is restricted to the verification of
finite instances of the problem at hand and is in most cases insufficient to prove
correctness of a system or protocol in general. However, we argue that using tool
support in the way we suggest helps to find errors with small additional effort.

This paper is structured as follows: after introducing the main features of
ASM (Sect. 2), we show how the transformation from ASM into the SMV lan-
guage is performed (Sect. 3). Sect. 4 presents results from applying our approach
to a case study, an ASM specification of the FLASH cache coherence protocol.
Sect. 5 outlines related work. We conclude in Sect. 6 with an outlook to further
possible improvements of our tool.

2 Basic Notions of Abstract State Machines

In this section we introduce some basic notions of ASM (see [7] for the complete
definition). We first describe the underlying computational model and then the
syntax and semantics of the subset of the ASM language needed in this paper.

2.1 Computational Model

Computations Abstract State Machines define a state-based computational
model, where computations (runs) are finite or infinite sequences of states {.5;},
obtained from a given initial state Sy by repeatedly executing transitions &;:
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Sp 28 g, s,
States The stales are algebras over a given signature X (or X-algebras for
short). A signature X' consists of a set of basic types and a set of function names,
each function name f coming with a fixed arity n and type T4 ...T,, — T, where
the T; and T are basic types (written f : Ty ...T, — T, or simply f : T if n = 0).
for each function name f : Ty ...T,, — T in X' (the interpretation of the function
name f in S). Function names in X' can be declared as:

— static: static function names have the same (fixed) interpretation in each
computation state;

— dynamic: the interpretation of dynamic function names can be altered by
transitions fired in a computation step (see below);

— external: the interpretation of external function names is determined by the
environment (thus, external functions may change during the computation
as a result of environmental influences, but are not controlled by the system).

Any signature X must contain at least a basic type BOOL, static nullary function
names (constants) true : BOOL, false : BOOL, the usual boolean operations (A,
V, ete.), and the equality symbol =. We also assume that there is a (polymorphic)
type SET(T) of finite sets with the usual set operations. When no ambiguity
arises we omit explicit mention of the state S (e.g., we write 7 instead of 72
for the carrier sets, and f instead of fg for static functions, as they never change
during a run).

Locations If f:Ty...T, — T is a dynamic or external function name, we call
apairl = (f,Z) with T € T3 x ... x 7, a location (then, the type of [ is T and the
value of [ in a state S is given by f(7)). Note that, within a run, two states S;
and S; are equal iff the values of all locations in S; and S; are equal (i.e., they
coincide iff they coincide on all locations).

Transitions Transitions transform a state S into its successor state S’ by
changing the interpretation of some dynamic function names on a finite number
of points (i.e., by updating the values of a finite number of locations).

More precisely, the transition transforming S into S’ results from firing a
finite update set A at S, where updates are of the form ((f,T),y), with (f,T)
being the location to be updated and y the value. In the state S’ resulting from
firing A at S the carrier sets are unchanged and, for each function name f:

fsl(f) = {y lf((faf),y)GA

fs(T) otherwise.

Note that the above definition is only applicable if A does not contain conflicting
updates, i.e., any updates ((f,T),y) and ((f,Z),y’) with y # ¢'.

The update set A—which depends on the state S—is determined by evalu-
ating in S a distinguished closed transition rule P, called the program. The
program consists usually of a set (block) of rules, describing system behavior
under different—usually mutually exclusive-conditions."

1 See, for instance, the example in Sect. 4, containing a rule for each message type.
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2.2 The ASM Language

Terms Terms are defined as in first-order logic: (i) if f : Ty...T, — T is
a function name in X, and ¢; are terms of type T; (for ¢ = 1,...,n), then
ft1,...,ty) is a term of type T (written ¢ : T) (if n = 0 the parentheses are
omitted, i.e. we write f instead of f()); (it) a variable v (of a given type T')
is a term. The meaning of a term ¢t : T in a state S and environment p is a
value S,(t) € T defined by:?

S,(t) = {ZS(q(jk)qp(tﬁ,...,Sp(tn)) giii_(tbm’tn)

As opposed to first-order logic, there is no notion of formula: boolean terms are
used instead. Finite quantifications of the form “(Q v in A : G)”, where @Q is
Vor3,v:T,A:SET(T), and G : BOOL, are also valid boolean terms.’

Transition rules While terms denote values, transition rules (rules for short)
denote update sets, and are used to define the dynamic behavior of an ASM: the
meaning of a rule R in a state S and environment p is an update set Ag ,(R).

ASM runs starting in a given initial state Sy are determined by the pro-
gram P: each state S;11 (i > 0) is obtained by firing the update set Ag, (P)
at Sz

ASO(P) ASI Asn_l(P)

So S i SQ e Sn

Basic transition rules are the skip, update, block, and conditional rules. Addi-
tional rules are the do-forall (a generalized block rule) and choose rules (for
non-deterministic choice).*

R := skip | f(t1,...,tn):=¢t | R1 ... R, | if G then Ry else Rp
| do forallv in Awith G R’ | choose v in A with G R’

The form “if G then R” is a shortcut for “if G then R else skip”’. Omitting
“with G” in do-forall and choose rules corresponds to specifying “with true”.
The semantics of transition rules is as follows:

Asp(skip) ={}
Asp(fta, . tn) :=1) = {((f, (Sp(t1), -, Sp(tn))), Sp(t)) }
AS,p(R1-~- n) Uz 1ASp( )
) =

As,(Rr)if S,(G) =t
Ag,(if G then Ry else Rp {A?ZERB ;thgr(wi)se rue

2 Environments—denoted by the letter p-are finite maps containing bindings which
associate (free) variables to their corresponding values. We adopt the following no-
tation: p[v +— z] is the environment obtained by modifying p to bind v to x, while p\v
is the environment with the binding of variable v removed from p. For closed terms
and rules, we omit explicit mention of p (e.g., if ¢ is a closed term, S(t) = Sy(t)).

3 Also in the rest of this paper we use A for set-typed terms and G for boolean terms.

4 The ASM Workbench support more rules, such as let and case rules with pattern
matching: however, for reasons of space, we have to skip them here.



Model Checking Support for the ASM High-Level Language 335

Agp(do forallw in Awith G R') = |J,cx Qs pp—a)(R)
where X = {z |z € S,(A) A Syy—,)(G) = true}.

Note that executing a block (or a do-forall) rule corresponds to simultaneous
execution of its subrules® and may lead to conflicts.

Choose rules are not directly supported by our transformation tool, but can
always be replaced by external functions for arbitrary choice of a value (by a
transformation similar to skolemization). For example, let A; be terms of type
SET(T;), i = 1,2,3, and f, : Ty, f. : To — T3 external functions with f, € A,
and f.(y) € As for each y € As. Then the following two rules are equivalent:

choose = in A;
do forall y in As do forall y in As

choose z in A3 a(fe,y, f-(¥) = fo +y+ f2(y)
a(r,y,2) =rz+y+z

Multi-Agent ASM Concurrent systems can be modelled in ASM by the no-
tion of multi-agent ASM (called distributed ASM in [7]). The basic idea is that
the system consists of more agents, identified with the elements of a finite set
AGENT (which are actually sort of “agent identifiers”). Each agent a € AGENT
executes its own program prog(a) and can identify itself by means of a special
nullary function self : AGENT, which is interpreted by each agent a as a.

As a semantics for multi-agent ASM we consider here a simple interleaving
model, which allows us to model concurrent systems in the basic ASM formalism
as described above. In particular, we consider self as an external function, whose
interpretation selfs, determines the agent which fires at state S;. We assume
that there is one program P, shared by all agents, possibly performing different
actions for different agents, e.g.:

if self = aq then prog(aq)
if self = a,, then prog(ay)

where {ai,...,a,} are the agents and prog(a;) is the rule to be executed by
agent a;, i.e., the “program” of a;. (The FLASH model presented in Sect. 4 is
an example of this style of modelling, except that all agents execute exactly the
same program, but on different data.)

The ASM-SL Notation The ASM language, including all constructs above,
is supported by the “ASM Workbench” tool environment [2], which provides
syntax- and type-checking of ASM specifications as well as their simulation and
debugging. The source language for the ASM Workbench, called ASM-SL, in-
cludes some additional features which are necessary for practical modelling tasks:
constructs for defining types, functions, and named transition rules (“macros”),
as well as a set of predefined data types (booleans, integers, tuples, lists, finite
sets, etc.): as the ASM-SL notation is quite close to usual mathematical notation,
no further explanation of ASM-SL will be needed.

5 For example, a block rule a := b, b := a exchanges a and b.
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3 Translating Abstract State Machines into SMV

In this section, after a brief comparison of the ASM and SMV specification
languages, we describe the transformation from ASM to SMV in two stages. First
we recall the translation scheme introduced in [14], defined for a subset of ASM
called ASMy in this paper (Sect. 3.1). Then we define a transformation technique
to reduce any ASM specification to ASMj, such that the first translation scheme
can then be applied (Sect. 3.2).

ASM versus SMV  While the computational model underlying both SMV and
ASM is essentially the well-known model of transition systems, there are some
significant differences: (1.) Abstract State Machines define, in general, systems
with a possibly infinite number of states (as both the number of locations and the
location ranges may be infinite); (2.) the way of specifying transitions in ASM
and SMV is different: in SMV transitions are specified by next-expressions,
which completely define the value which a state variable assumes in the next
state, while updates of dynamic functions in ASM may be scattered troughout
the program; (8.) the ASM notions of dynamic function and external function
generalize the notion of state variable typical of basic transition systems (state
variables correspond to nullary dynamic/external functions of ASM).

The first issue is solved by introducing finiteness constraints, the second and
third are addressed by the transformations of Sect. 3.1 and 3.2, respectively.

Finiteness constraints In order to ensure that the ASM programs to be
translated into SMV define finite-state systems, the user has to specify, for each
dynamic or external function f : T7...7,, — T, a finiteness constraint of the
form f(x1,...,2n) € tlx1,...,2y], where t : SET(T) is a term denoting a fi-
nite set, possibly depending on the arguments of f (see Fig. 1 for an example).
For external functions, finiteness constraints correspond to environment assump-
tions, expressed in the resulting SMV model by the range of the generated state
variables; for dynamic functions, it must be checked that the constraints are not
violated by the rules, resulting in the SM'V code in appropriate proof obligations,
which we call range conditions.®

3.1 The Basic Translation Scheme

The translation scheme introduced in [14] can be applied to transform into SMV
a subset ASMg of ASM, where: (i) only nullary dynamic and external functions
are allowed; (7) the only available data types are integers, booleans and enu-
merated types; (i) the only defined static functions are those corresponding
to predefined operations in SMV (boolean operations, +, -, etc.).

As the semantic models for ASMy are essentially basic transition systems,
the translation of ASM into SMV is very close:

5 Note, however, that the range conditions can often be discarded by a simple static
analysis of the rules, which prevents their expensive proof by model-checking.
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— non-static functions (i.e., dynamic and external functions) are identified with
locations and thus mapped one-to-one to SMV state variables;

— values of the ASM data types are mapped one-to-one to SMV constants;

— applications of static functions are translated to applications of the corre-
sponding built-in operators of SMV.

What remains to be done is to restructure the ASM program into a form where
updates of the same location, together with their guards, are collected together.
This is done in two steps. First, we transform an ASM program P into an equiv-
alent ASM program P’ consisting only of a block of guarded updates (i.e., rules
of the form if G then f(f) := ) by means of a “flattening” transformation:

[skip] = (empty block)
[f(?) :=t] = if true then f(f) =t
[Ri ... Ra] = [Ri] ... [Ra]

if Gp then Ry if G A GL then Rk
[Rr] =< ...
if GJ then Rl if G AGD then RY
if G th 1 = T T
if GL then RL [if G then Rr else Rr] =0 i¢ _ A Gl then R
[Re] =1 .. .
if G7 then RYE if -G A G% then Ry

Second, we collect all guarded updates of the same location, thus obtaining,
for each location loc occurring on the left-hand side of an update in P/, a pair
(loc, {(G1,t1),...,(Gn,ty)}) which maps loc to a set of pairs (guard, right-hand
side). Such a pair is translated into the following SMV assignment:”

ASSIGN next(C[loc])) :=
case C[G1] : C[t:] 5 ... CIGx] : Cltn] 5 1 : Clloc] esac;

where C[.] denotes here the ASM — SMV compiling function for terms, which
is straightforward for ASMy. For each location [ of a dynamic function f, in
addition to the next assignment above, the transformation also generates the
location’s initialization (an init assignment in SMV) as well as two proof obli-
gations, a range condition (see discussion of finiteness constraints above) and a
no-conflict condition, which ensures that no conflicts arise on this location. In
fact, due to the semantics of case in SMV, the translation scheme is correct only
if for all 7,7 with ¢ # j, S = —(G; A G,;) V (t; = t;) in any reachable state S:
if, in some state S, this condition is not satisfied, the ASM transition produces
a conflict (i.e., an error), while the corresponding SMV transition simply picks
one of the updates (the first one in the case whose guard is satisfied).®

3.2 The Extended Translation Scheme

In this section we show how to reduce an arbitrary (finite-state) ASM to ASMj.
This transformation allows to deal with the complete ASM language as in [7],

" Note that we have to specify the default case explicitly (if none of the guards is true)
which is given implicitly in ASM rules (see ASM semantics above).
8 Like range conditions, no-conflict conditions can be often discarded statically.
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with the exception of import rules (rules which allow the dynamic creation of
elements at run-time) and choose rules. (However, one can deal with choose as
explained in Sect. 2.2.) Arbitrary data types and operations (in particular, lists,
finite sets, finite maps and user-definable freely generated types, as provided by
ASM-SL) can be used without any restriction. Finite quantifications are also
supported.

The main problem here, as opposed to ASMj, is that in general we do not
know which location is updated by an update rule f(t1,...,t,) :=t (if n > 0):
the updated location may differ from state to state if some ¢; contains non-static
function names. However, if all terms ¢; contain only static function names, they
can be evaluated statically to values z;, and the term f(¢y,...,t,) to the location
I = (f,T). Thus, the basic idea of the transformation is to iteratively unfold and
simplify rules until all terms can be reduced to values or locations.

To formally define the transformation, we extend the syntactic category of
terms to “partially evaluated terms” (simply called “terms” in the sequel) by
adding values and locations:

t u= f(ty,...yty) | v | (Quin A:G) | = | I

(We adopt the convention that x stands for a value and [ for a location).

Terms can be simplified by means of the transformation [.], defined in Ta-
ble 1, which is then extended to rules in a canonical way. Note that, whenever p
contains bindings for all free variables occurring in ¢: (3) if ¢ is a static term, then
[t], is a value x (coinciding with S,(¢) in every state S); (i1) if t = f(t1,...,tn)
is a term where f is a dynamic or external function name and all the subterms t;
are static (we call such a term a locational term), then [t], is a location .7

The rule-unfolding transformation £, which operates on closed rules such as
the program P, is formally defined in Table 2. It works as follows:

— if the rule R consists of a block of update rules of the form location := value,
it terminates and yields R as result (there is nothing left to unfold);

— otherwise, it looks for the first location [ occurring in R (but not as left-hand
side of some update rule) and unfolds R according to the possible values'®
of I. In turn, the unfolding has to be applied to the subrules [R[!/z;]] ob-
tained by substituting the values x; for [ in R and simplifying.

Applying £ to the (simplified) ASM program [P]y yields a program P’ =
E([P]y) which is essentially an ASM, program (formally, the locations have still
to be replaced by nullary dynamic or external function names and the values by
nullary static function names, i.e. by constants).!

9 A simple consequence of this fact is that every closed static term simplifies to a value
and every closed locational term to a location.

!9 The finite range of location I = (f,T) is derived from the finiteness constraint for f.

1 The unfolding transformation often results in very large decision trees (case-
structures in SMV): however, this does not have a negative influence on the efficiency
of verification with SMV, as the verification costs depend on the size of the BDDs
representing the transition relation and not on the size of the SMV source code (and
BDDs, for a given variable ordering, are a canonical representation).
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Table 1. Term and Rule Simplification

Term Simplification

[x], == [, =1
_Jxz=0p) if v € dom(p)
[vl, = {’U 8 otherwise 8

[ti], = @; for each i € {1,...,n} =
[f( ta)], = x="f(x1,...,zn) if f static function name
Leeotnde = | = (f, (z1,...,75)) if f dynamic/external function name
[t:i], =1 or [t:], = f'(') for some i € {1,...,n} =
[[f(th st 7tn)ﬂp = f([[tlﬂpy et [[tnﬂp)

[Glow—ai) 00 - 00 [Gllow—an

) ) _ if [A], =2 ={z1,...,zn} (Le., if [A], is a value)
[(@vin 4Dl =19 (@ v in [A], : [G1\0)
otherwise.

(where op = A if Q = forall, op = V if Q = exists).

Rule Simplification
[skip], = skip
[tz == tr], = [tc], := [trl,
[Ri ... Rn], = [Ra], ... [Ru]p

[RT], if [G], = true
[if G then Rr else Rr], =< [Rr], if [G], = false
if [G], then [Rr], else [Rr], otherwise.

[do forall v in A with G R'], =
[if G then R'[ sy --- [if G then R vz,

if [A], =2 ={z1,...,zn} (i.e., if [A], is a value)
do forall v in [A], with [G](,n\w) [R'I(p\v)

otherwise.

Table 2. Rule Unfolding

Rule Unfolding

If R has the form I := x1 ... [, := zp, then £(R) = R.
Otherwise:
E(R) = if | =z then E([R[l/x1]]o)
else if [ = x5 then E([R[l/z1]]p)

else if [ =z, then E([R[l/zn]]0)
where [ is the first location occurring in R (but not as lhs of an update rule)
and {z1,...,2n} is the range of location I.
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Fig. 1 illustrates graphically the transformation technique (for simplicity, we
consider a rule without variables, such that we can omit mentioning environ-
ments). The root of the tree-enclosed in the dashed box-is the (simplified) ASM
program [P] to be transformed. The successors of each node in the tree are ob-
tained as result of an unfolding step (under the given finiteness constraints): for
instance, the successors of the root node are the rules [[P][a/1]], [[P][a/2]1,
and [[P]|a/3]], respectively. Locations are emphasized by enclosing them in
boxes: note that, at the leaves, locations occur only as left-hand side of updates,
thus they cause no further unfolding. The dashed box on the right contains
the ASMg program produced by the transformation: note that the locations ac-
tually affected by the ASM program—which are revealed by the unfolding—are
mapped to nullary functions (“state variables”), whose ranges are derived from
the finiteness constraints (see box at the top right corner).

| Finiteness constraints | | Locations — State variables
aef{l, 2,3} ASM a — a {1,2,3} (g.(1)) — gl:{1,..
S e fxx+1) Cirmer TG > f1i(12) (8:(2) = g2: (1
o(v)e { 1,5} | then g(f@) =@ | (£(2) - f2:{2,3} (8(3) = g3:{1
T ASMo
a=1 a=2 a=3 3 if a= 3
_ | S~ ! then if fI=1 then gl :=1 |
ET) =1 ef2):=2 skip § if f1=2 then g2
— \ else if a=2
(F)=1 (F(1)=2 (F2)=2 ((2)=3 | then if f2=2 then g2:=2
f if f2=3 then g3 :=2
(g (1):=1 [g.(2):=1 :=2 :=2 \ else if a=3 then skip

Fig. 1. Rule Transformation Example

4 Case Study: The FLASH Cache Coherence Protocol

As an example for our model checking approach we chose a formalization of the
FLASH protocol [9] with ASM. Our model is based on the work of Durand [4].
In Sect. 4.1, after a short introduction to FLASH, we describe an ASM model
derived from [1] and motivate our refinements. Then we sketch the debugging
process supported by the transformation and checking with SMV (in Sect. 4.2).

4.1 FLASH Cache Coherence Protocol

The Stanford FLASH multiprocessor integrates support for cache coherent
shared memory for a large number of interconnected processing nodes. Each
line-sized block of the distributed memory is associated with a home node con-
taining the part of the physical memory where that line resides. Every read or
write miss concerning a remote memory line triggers a line request to its home
node that in turn initiates the corresponding part of the protocol. The request
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may ask for shared or exclusive access depending on whether reading or writing
access is wanted.

The ASM description of the protocol is based on agents. A set of transition
rules describes the behavior of a single agent. The behavior is determined by the
currently processed message type — a notion that yields the clear model structure
that is sketched in Fig. 2.

Message Structure. A message is modeled as a quintuple consisting of
the type of the message, the addressed agent, sender agent, agent initiating the
request and requested line'?. Message types related to shared access are:

get: requesting a line from its home

put: granting a line to the requester (source of the request)
fwdget: forwarding the request to an exclusive owner of the line

swb: requesting a write-back of an owned line that is to be shared

nack, nackc: negatively acknowledging the request or forwarded request re-
spectively, if it cannot be performed now.
In analogy, message types related to exclusive access are:
getx, putx, fwdgetx, and also
inv: requesting a current sharer of the line to invalidate its local copy
invAck: acknowledging the invalidation of the line
fwdAck: owner’s granting according to a forwarded shared request.

Additionally, for releasing a shared or exclusive copy from its cache an agent
sends a write_back (wb) and a replace message (rpl) to home, respectively. A read
or write miss of a line, or the end of accessing, is simulated with the help of an
oracle function which non-deterministically triggers an agent to send get/getx
or rpl/wb messages.

State Functions. Besides the message type, the agent’s behavior depends
on several local state variables: curPhase(line) (phase of the current request),
State(line) (state of the local line copy in use), and pending(line) (flag for cur-
rently processed request). Owner(line) and the set of Sharers of a line are also
taken into account.

Adjustable Parameters. The transition rules are parameterized by self,
the agent that is currently active (this is implicit in Fig. 2), and the requested
line. The domains of these parameters, Agents and Lines, and their extent are
easily adjustable in the declaration part of the specification.

Necessary Refinements. Sending a message is given as a macro definition.
In the abstract model of [1] SendMsg adds a message to a (possibly infinite) set
of messages in transit. The strategy for receiving a message from this set is not
specified. For the proof it is just assumed that the messages are received in the
right order. In order to keep the model finite and to formalize the assumption on
the model behavior we have to refine the model. We replace the set of messages
in transit by a finite queue for each agent, and we extend the overall behavior
by means of a sub-step for synchronization. In the synchronization step the
messages are passed through to the addressed agent in the proper order.

12 Tn our adaptation of the model the parts related to data are discarded.
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if MessType =

then if pending(l) then SendMsg(nack, source, self, source, )
else if Owner(l) # undef
then SendMsg(fwdget, Owner(l), self, source,l)

pending(l) := true
else SendMsg(put, source, self , source,l)
Sharer(l,source) := true
if MessType =| fwdget if MessType = if MessType =
then ... then ... then ...
if MessType = if MessType =
then curPhase(l) := ready then pending(l) := false

if MessType =

then if pending (1)
then SendMsg(nack, source, self , source, 1)
else if Owner(l) # undef
then SendMsg(fwdgetx, Owner(l), self, source, )
pending(l) := true
else if Ju : Sharer(l,u)

then Vu : Sharer(l,u)SendMsg(inv, u, self, source, 1)

pending(l) := true
else SendMsg(putx, source, self , source, 1)
Owner(l) := source
if MessType =| fwdgetx if MessType =| fwdAck
then ... then ...

if MessType =
then SendMsg(invAck, home, self , source, 1)
if State(l) = shared
then State(l) := invalid
else if cur Phase(l) = wait
then curPhase(l) := invalidPhase

if MessType =

then Sharer(l, MessSender) := false
if Va : Agents | a # MessSender A\ Sharer(l,a) = false
then SendMsg(putx, source, self , source, 1)
pending(l) := false

if MessType = if MessType = if MessType =

then ... then ... then ...

Fig. 2. Agent behavior modeled by ASM transition rules
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In an ASM model, introducing a sub-step is structure preserving: in addition
to the ASM for message computation (explained above) we specify an ASM
for the message passing through. An overall ASM invokes both “sub-ASMs” in
turn. Taking this, we benefit from the clear and understandable structure of
the abstract model. The entire refined ASM-model is available on the web at
http://www.first.gmd.de/ kirsten/publications/flash_param.asm.

4.2 Model Checking the Transformed System Specification

We take model checking of the transformed ASM model as an evolutionary pro-
cess of debugging: we edit the ASM model, transform it automatically into an
SMV model, run SMV to check the properties under investigation, investigate
the resulting counterexample (if any) within the ASM model, and debug the
ASM model. Since there are no restrictions on the behavior of the environment
(producing requests on a line), we do not suffer from “wrong” counterexamples
that are not suitable for debugging the ordinary system behavior. (We call coun-
terexamples wrong, if they are caused by non-reasonable environment behavior
that should be excluded. They obstruct the debugging process, since only one
counterexample will be produced.)

As the debugging process is more efficient if the model checking terminates
in a reasonable span of time, we keep our model as small as possible. We find
that, even when the model is restricted to few agents and lines, we detect errors
in the abstract model as well as in our refinement. In the following we describe
two of them as examples. We check the model for safety and liveness, i.e.:

— No two agents have exclusive access on the same line simultaneously.
— Each request will eventually be acknowledged.
— Whenever an agent gets shared access, home will note it as a sharer.

We formalize these requirements in CTL, e.g.'3:
/\i;éj [AG (!(State(a(i),1l)=exclusive & State(a(j),1l)=exclusive))]

N;[AG (curPhase(a(i),1l) = wait -> AF (curPhase(a(i),1) = ready))]
N;[AG (State(a(j),1)=shared -> AX (Sharer(l,a(i)) = true))]

Our first counterexample shows simultaneous exclusive access (for reasons of
space we have to omit the listing here). The error that caused the counterexample
can also be found in the abstract ASM model of [4]:

Whenever a putx-message is sent to grant exclusive access the addressed
requester has to be noted as owner of the line. This is specified in the
getx-rule but it is missing in the invAck-rule that might also cause a
putx-message to be send (see also Fig. 2). The protocol is unsafe since
simultaneous exclusive access may occur, and written data may be lost.

13 Though the third specification is rather weak, it yields helpful counterexamples.
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The following counterexamples are dedicated to the problem of racing (i.e., con-
flicts) on the finite message queue. Although our data space is limited to a very
short queue, we can derive more general remarks, e.g.:

Each sharer of a requested line has to process the rule for invalidation
(inv-rule). It sends an invAck-message to home for acknowledging the in-
validation. When receiving an invAck-message, home deletes the sender
from the list of sharers. If home is sharer too,'* a deadlock may occur if
the number of sharers is greater or equal than the length of the message
queue: home may fail to complete with the inv-rule when the queue is
full and sending a message is not possible (since every other sharer may
have sent before); home stays busy and can not process the incoming
invAck-rule to clear the queue. In general, we found out that the mes-
sage queue must be larger or equal than the number of agents since in
the worst case each agent is a sharer and will send simultaneously an
invAck-message to the home node.

The examples show that helpful borderline cases can be detected more easily
by a model checker than by pure simulation. The computational effort for the
automated transformation of our models ranges from three to five seconds. The
size of the resulting SMV models is given below.!” The variable ordering is
determined by the automatic reordering facility that is given by the SMV.

resources used: 2 agents, 1 line|3 agents, 1 line|2 agents, 2 lines
user time/system time: 4.69 s/0.13 s |5687.52 5/0.6 s|17263.2 5/0.86 s
BDD nodes allocated: 70587 1612740 2975127
Bytes allocated: 4849664 37748736 54657024
BDD nodes repr. transition relation: 19261 4 78 288986 + 82 78365 4+ 96

Although checking our model of the FLLASH protocol is only feasible for a small
number of agents and lines, the results show that the counterexamples yield
extremely helpful scenarios for locating errors.

5 Related Work

Extending tool environments for high-level specification languages with an inter-
face to a model checker is an upcoming topic. One can find approaches that are
quite similar to ours but work on a different language: [3] suggests a transforma-
tion from Statecharts into SMV, in [10] Controller Specification (CSL) models
are transformed and model checked by SVE, [12] equips the multi-language en-
vironment SYNCHRONIE with an interface to the VIS model checker, etc.

Closer to our approach from the language point of view, [13] also investigates
automatic verification of ASM. Spielmann represents an ASM model indepen-
dently of its possible input by means of a logic for computation graphs (called

14 This is possible if we allow intra-node communication.
15 The experiments were carried out on an UltraSPARC-II station with 2906MHz and
2048 Mb memory, the operating system is Solaris 2.6.
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CGL¥*). The resulting formula is combined with a CTL*-like formula which spec-
ifies properties and checked by means of deciding its finite validity. This approach
addresses the problem of checking systems with infinitely many inputs, but it is
only applicable to ASM with only 0-ary dynamic functions (i.e. ASMy programs)
and relational input, which is the second result of [13].

6 Conclusions

We presented an interface from the ASM Workbench to SMV, based on a trans-
formation from ASM to the SMV language extending the one defined in [14] by
the treatment of dynamic functions of arity n > 0. This is essential, as most ASM
specifications benefit from the abundant use of parametric dynamic functions.

The practicability of our approach is demonstrated by a non-trivial case
study: the ASM model of the FLASH protocol. By example we show that errors
can be found in the ASM model that will hardly be detected by pure mathe-
matical proofs, and deduce more general constraints for the model at hand from
the counterexamples.

We support the exploitation of the model checking facility by means of intro-
ducing finiteness constraints into the ASM specification language for easy control
of the function ranges in order to restrict the state space of the model. Addition-
ally, the developer benefits from the automatically generated proof obligations
to be checked by SMV: the no-conflict conditions and the range conditions.

Some improvements of our tool, which are still to be implemented in order
to make the transition between ASM and SMV smoother and thus ease the
validation process, include the automatic translation of the counterexamples
into a form which can be immediately read and simulated by the Workbench
and the embedding of CTL operators into the ASM-SL language.
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