
Proof General:
A Generic

Tool for Proof Development

David Aspinall

LFCS, University of Edinburgh, U.K.
http://www.dcs.ed.ac.uk/home/da

Abstract. This note describes Proof General, a tool for developing ma-
chine proofs with an interactive proof assistant. Interaction is based
around a proof script, which is the target of a proof development. Proof
General provides a powerful user-interface with relatively little effort,
alleviating the need for a proof assistant to provide its own GUI, and
providing a uniform appearance for diverse proof assistants.
Proof General has a growing user base and is currently used for several
interactive proof systems, including Coq, LEGO, and Isabelle. Support
for others is on the way. Here we give a brief overview of what Proof
General does and the philosophy behind it; technical details are available
elsewhere. The program and user documentation are available on the web
at http://www.dcs.ed.ac.uk/home/proofgen .

1 Background

Proof General is a generic interface for interactive proof assistants.
A proof assistant is a computerized helper for developing machine proofs.

There are many uses for machine proofs, both during the specification, develop-
ment, and verification of software and hardware systems, and in the development
and teaching of mathematical proof and formal logic. Proof General helps with
developing proof scripts.

A proof script is a sequence of commands sent to a proof assistant to con-
struct a machine proof. A script is usually stored in a file. Roughly, a proof
script is like a program written in a scripting programming language, and in
particular, a language which has an interactive interpreter. Proof General uses a
technique called script management to help the user write a proof script without
using cut-and-paste or repeatedly typing “load file” commands. Proof General
has a sophisticated implementation of script management which covers large
developments spread across multiple files.

A guiding philosophy behind Proof General is to provide an interface which
is useful to novices and expert-users alike. Some interfaces for theorem provers
are aimed at novices and become infeasible for large developments; others are
aimed at experts but have steep learning curves or require changes in work
methods, discouraging their take-up. With this in mind, Proof General builds

S. Graf and M. Schwartzbach (Eds.): TACAS/ETAPS 2000, LNCS 1785, pp. 38–43, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

http://www.dcs.ed.ac.uk/home/proofgen


Proof General: A Generic Tool for Proof Development 39

on the programmable text editor Emacs, the powerful everyday editor of many
computer scientists. Emacs brings many advantages. It is available on most plat-
forms, including Unix, Linux, and NT. Although it once had a reputation for
being hard to learn, modern versions of Emacs are very user-friendly, supporting
the whole gamut of current GUI technologies and providing easy customization
mechanisms.

Another important aspect of Proof General is that it is generic. It provides a
uniform interface and interaction mechanism for different back-end proof assis-
tants. It exploits the deep similarities between systems by hiding some of their
superficial differences. This generic aspect is no empty claim or untested design
goal; Proof General is already in use for three different proof assistants: Coq,
LEGO, and Isabelle. Support for more is on the way.

The present implementation of Proof General is oriented towards proof as-
sistants based on a single-threaded interactive command interpreter (or shell),
where interaction consists of a dialogue between the user and the system. Several
proof assistants have this kind of architecture, allowing more elaborate interfaces
to be built on top. As a spin-off, building Proof General has suggested some use-
ful design guidelines for the command protocol which should be implemented in
a proof assistant shell.

To summarize, Proof General provides a fairly elaborate yet unobtrusive
interface. It gives the proof assistant user many useful features, and allows the
proof assistant implementor to concentrate on the proof engine.

2 Features of Proof General

Simplified communication. The proof assistant’s shell is hidden from the user.
Communication takes place via two or three buffers (Emacs text widgets). The
script buffer holds input, the commands to construct a proof. The goals buffer
displays the current list of subgoals to be solved. The response buffer displays
other output from the proof assistant. The user sees only the output from the
latest proof step, rather than a screen full of output. Nonetheless, the user can
still access the shell to examine it or run commands.

Script management. Proof script editing is connected to the proof process, main-
taining consistency between the edit window and the state of the proof assistant.
Visual feedback on the state of the assistant is given by colouring the background
of the text in the editing windows. Parts of a proof script that have been pro-
cessed are displayed in blue and moreover can be locked to prevent accidental
editing. Parts of the script currently being processed by the proof assistant are
shown in red. The screenshot in Figure 1 shows script managament in action.

Multiple file handling. Script management also works across multiple files. When
a script is loaded in the editor, it is coloured to reflect whether the proof as-
sistant has processed it in this session. Proof General communicates with the
assistant to discover dependencies between script files. If I want to edit a file



40 David Aspinall

which has been processed already, Proof General will retract the file and all the
files which depend on it, unlocking them. Thus the editor is connected to the
theory dependency or make system of the proof assistant.

Proof by Pointing. Clicking on a subterm of a goal can apply an appropriate
rule or tactic automatically, or display a menu of choices. Proof General relies
on support in the assistant to mark-up subterms and generate tactics for this
feature, since it is specific to the prover’s syntax and logic. Subterm mark-up
also makes it easy to explore compilicated terms, and cut and paste from within
them.

Syntax highlighting and symbol fonts. Proof scripts are decorated: proof com-
mands are highlighted and different fonts can be used for definitions and assump-
tions, for example. Symbol fonts can be used to display proper glyphs for logical
operators, Greek letters, etc, which occur throughout mathematical proofs.

Toolbar and menus. A toolbar includes buttons for examining the proof state,
starting a proof, manoeuvring in the proof script, saving a proof, searching for
a theorem, interrupting the assistant, and getting help. A menu gives access to
further commands, and a useful collection of user preferences. Using the toolbar,
you can replay proofs without knowing any low-level commands of the proof
assistant or any Emacs short-cuts.

Tags and definitions menu. Using a TAGS file, one can quickly locate the def-
inition and uses of an identifier, automatically searching many files. Using a
definitions menu, one can quickly navigate within a proof script to find particu-
lar definitions, declarations and proofs.

Remote proof assistant. A proof assistant can be run remotely, perhaps across
the internet, while Proof General and the proof script reside locally.

3 Proof General in Use

Figure 1 shows a screenshot of Proof General running in a single window on the
screen. The window is split into two parts. The upper half displays the proof
script Group.thy which is being processed. This is a script written for Isabelle
using the new Isar proof language [4]. The lower half displays the current list
of subgoals which are to be solved to complete the proof. Instead of this split
window, it is perfectly possible to have separate windows on the screen, as the
user likes. Proof General is even happy to run on a plain console, although
graphical facilities will be reduced (e.g. no toolbar).

In the script file, the cursor appears at the end of the locked region, which has
a blue background to indicate it has already been processed. The arrow buttons
on the toolbar are used to manipulate the locked region, by sending commands
to the proof assistant, or by issuing undo steps. In this manner, a user can replay

TAGS
Group.thy


Proof General: A Generic Tool for Proof Development 41

Fig. 1. Using Proof General

a proof interactively, without needing to know any low-level commands needed
to start the proof assistant, or issue proof and undo steps. And without the
extreme tedium of cut-and-paste.

4 Further Details

Technical references. Proof General has a detailed user manual [1] which also
contains instructions for instantiating it to new proof assistants. The ideas of
script management and proof by pointing were adapted from the CtCoq sys-
tem [3]; proof by pointing in Proof General is described in an LFCS technical
report [2]. (Proof General goes beyond CtCoq in some ways, but is less sophisti-
cated in others; the biggest difference is that CtCoq provides its own GUI based
on structure editing, which Proof General specifically avoids.) Future papers will
describe the architecture of Proof General in more detail, including design guide-
lines for interactive proof development protocols, and plans for future directions.



42 David Aspinall

Implementation. Proof General is implemented in Emacs Lisp. There is a generic
core (about 7000 lines) which implements the toolbar, menus, script manage-
ment, and process handling features. Each supported proof assistant has some
additional Emacs Lisp (30 – 500 lines) for prover-specific configuration: setting
regular expressions and command strings, and perhaps providing extra features.
For robust operation and features like proof by pointing, the proof assistant may
need modification to output special messages for Proof General.

Availability and System requirements. Proof General is easy to install, and is
available free of charge (with sources and documentation) for research and edu-
cational use. The current release is Proof General 3.0. For best results, it requires
a recent version of XEmacs (21.1 or later), alongside recent versions of one or
more proof assistants: Coq (6.3 or later), Isabelle (version 99 or later), or Lego
(version 1.3.1). Details of where to obtain these components can be found on
the web page mentioned below. Success is guaranteed with a Unix (or Linux)
environment, although XEmacs and some proof assistants are available for other
operating systems, and there is nothing operating system specific in Proof Gen-
eral itself.

Acknowledgements

Many people have contributed to the design and code, both in the generic basis
and for the prover-specific instances. For each instance of Proof General, we try
to encourage somebody familiar with the proof assistant to develop and main-
tain the prover-specific code, perhaps also enhancing to the generic basis. In
order of appearance, the main workers on Proof General have been: T. Kley-
mann, Y. Bertot, D. Sequeira, H. Goguen, D. Aspinall, P. Loiseleur, M. Wenzel,
P. Callaghan. Many other people provided useful feedback, including: P. Brisset,
R. Burstall, M. Hofmann, J. McKinna, and D. von Oheimb. Thomas Kleymann
originated the Proof General project. David Aspinall is the present manager.

For more information about Proof General, please visit the home page at
http://www.dcs.ed.ac.uk/home/proofgen.

References

1. D. Aspinall, H. Goguen, T. Kleymann, and D. Sequira. Proof General. System
documentation, see http://www.dcs.ed.ac.uk/home/proofgen, 1999. 41

2. Yves Bertot, Thomas Kleymann, and Dilip Sequeira. Implementing proof by point-
ing without a structure editor. Technical Report ECS-LFCS-97-368, University of
Edinburgh, 1997. 41

3. Yves Bertot and Laurent Théry. A generic approach to building user interfaces for
theorem provers. Journal of Symbolic Computation, 25(7):161–194, February 1998.
41

http://www.dcs.ed.ac.uk/home/proofgen
http://www.dcs.ed.ac.uk/home/proofgen


Proof General: A Generic Tool for Proof Development 43

4. Markus Wenzel. Isar — a generic interpretative approach to readable formal proof
documents. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Thery,
editors, Theorem Proving in Higher Order Logics, 12th International Conference,
TPHOLs’99, Lecture Notes in Computer Science 1690. Springer-Verlag, 1999. 40


	Background
	Features of Proof General
	Proof General in Use
	Further Details
	Acknowledgements
	References

