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Abstract. In this paper we describe and compare two methodologies for
verifying the correctness of a speculative out-of-order execution system
with interrupts. Both methods are deductive (we use PVS) and are based
on refinement. The first proof is by direct refinement to a sequential
system; the second proof combines refinement with induction over the
number of retirement buffer slots.

1 Introduction

Modern out-of-order super-scalar microprocessors use dynamic scheduling to in-
crease the number of instructions executed per cycle. These processors maintain
a fixed-size window into the instruction stream, analyzing the instructions in the
window to determine which can be executed out of order to improve performance.
Branch prediction and register renaming are employed in order to keep the win-
dow full, while result-buffering techniques maintain the in-order-execution model
required by the architecture.

In this paper we discuss two refinement-based proofs of the correctness of
such processors. Our model is based on the Tomasulo algorithm in [13,4] and [6],
with modifications for in-order-retirement and speculative instruction prediction
adapted from [5]. This paper is a continuation of the work on out-of-order exe-
cution presented in [4,2] and [10]. We extend the methodology of these papers to
deal with exceptions and speculative instruction execution, while also presenting
a new, inductive, methodology. Both proofs have been verified using the PVS [9]
theorem prover1.

In the first proof, which we refer to as the direct proof, we use a top-down
methodology to generate and prove the system invariants needed to prove that
our speculative system refines a sequential system. Starting with the final invari-
ant to be proved, this methodology allows the user to systematically generate
and prove all other necessary invariants.

In the second proof we combine refinement and induction. Under the premise
that the more similar two systems are the easier it should be to prove refine-
ment between them, we use induction to generate two refinement proofs between
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similar systems. Noting that the number of instructions which are in progress
in an out-of-order system is limited to the number of retirement buffer slots, we
first show that a speculative system which has only one buffer slot (and thus
functions sequentially) refines a sequential system, and then, that a system with
B+1 buffer slots refines one with B slots. The base case thus deals only with the
differences in data structures, while in the induction step we focus on the effect
of the greater measure of ‘out-of-order’ness allowed by one additional buffer slot.

Due to the enormous differences between sequential and speculative systems
it is not immediately obvious how the first may refine the second. However, it is
easy to anticipate that a system may refine another with one more retirement
buffer. Thus, our intuition was that the inductive proof would prove to be simpler
than the direct one. However, this proved not to be the case. While the run-time
of the direct-proof is somewhat longer than that of the inductive proof, the
inductive proof required far more intricate human interaction, taking far more
person-time. We believe that not only was the inductive proof more complex in
this case, but that using induction will frequently complicate refinement proofs.
This evaluation is discussed in the final section of the paper.

While there is a lot of work in the field of out-of-order executions, not much
has been published on speculative execution. It is unclear whether, or how, tech-
niques used for out-of-order execution can be applied to speculative instruction
execution. Candidate techniques which have been used to verify out-or-order ex-
ecution include the completion function approach [7], incremental flushing [12],
compositional model checking [8], and techniques combining model checking with
uninterpreted functions [3].

A speculative system is verified in [11]. This system is more complex than
ours, including memory operations, but the proof is specific to one configuration.
An intermediate model comprising a table of history variables is used to verify
the system in ACL2. Our proofs have the advantage of being independent of the
system configuration and of not requiring an intermediate abstraction.

2 Refinement between Systems

Refinement is the comparison of an abstract system S
A
= 〈V

A
, Θ

A
, ρ

A
〉 and a

concrete system S
C
= 〈V

C
, Θ

C
, ρ

C
〉 where V is the set of system variables, Θ

defines the initial conditions of the systems, and ρ, the transition relation, de-
fines how the system progresses from one state to another. The abstract system
serves as a specification capturing all the acceptable correct computations of the
concrete system. Correctness of the concrete system is established by proving
that every computation of S

C
corresponds to some computation of S

A
.

The correspondence between the two systems is with respect to observation
functions O

A
andO

C
. Intuitively, these are the features of the two systems which

are considered significant for the comparison. For example, in instruction execu-
tion systems one would expect the register file to be included in the observation
functions while internal data structures might not be.
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Given a concrete system S
C
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〉 with observation function O

C
,

and an abstract system S
A
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that VC ∩ VA = ∅, we define an superposition system
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where ρ∗A(VC
, V ′

C
, V

A
, V ′

A
) may refer to all variables in V

C
∪ V

A
in their primed

and unprimed versions.
The intention of the superposition system SS is that it emulates the joint

behavior of S
C
and S

A
in a way that allows any previously admissible step of S

C

and matches it with an S
A
-step. Thus, ρ

C
∧ ρ∗A should not exclude any possible

SC -step, but may select among the possible SA-steps one that matches the SC -
step. Intuitively, ρ∗A is a modification of ρ

A
taking as parameters V

C
and V ′

C
in

order to choose a ρ
A
-successor matching the S

C
-step. We further require that

the projection of an SS-computation onto VA
is a legal computation of S

A
.

In any superposition system SS satisfying the above requirements the prob-
lem of showing that S

C
� S

A
is reduced to the problem of showing thatO

C
= O

A

is an invariant of SS . However, to do so it may be useful, or necessary, to prove
a stronger invariant, α(V

C
, V

A
) of the superposition system.

We formalize this as refinement rule ref:

R1. α ∧ ρ
C

−→ ∃V ′
A
: ρ∗A

R2. ρ∗A −→ ρ
A

R3. SS |= ✷ α
R4. α −→ OC = OA

SC � SA

That is, SA refines SC if using ρ∗A a legal (R2) computation of SS can be gener-
ated (R1) such that O

C
always equals O

A
(R3, R4).

3 The Reference Model: System seq

In this section we present system seq which is to serve as a reference model.
System seq executes in a strictly sequential manner an input program which
may contain branches and instructions generating interrupts. It accepts one pa-
rameter, R, the number of registers.

An uninterpreted function, prog , from PC RANGE to instructions defines
the program to be executed. Each instruction has an operation, a target and
two source operands. In addition, a branch target field stores the target address
of branches. A program counter, pc, points to the next instruction in prog . A
register file reg records the current values of each register.

At each step, system seq either delays, in which case no change is made
in the system, or executes the instruction pointed to by pc. If the instruction
execution generates an interrupt, the program counter is updated to point to
the relevant interrupt handler address. In the case of branches, the branch is
evaluated and the program counter updated to the branch target if the branch
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is taken. The do op and do branch functions are used to compute the value of
the instruction (do branch returns “1” if a branch is to be taken, “0” otherwise).
This value is stored in the target register (if any), and the program counter is
updated to point to the next instruction.

4 The Out-Of-Order Design: System des

In this section we briefly describe our algorithm for speculative out-of-order
data-driven instruction execution with in-order-retirement. Our definitions are
based on the descriptions in [6,4] and [5].

Instructions flow from the instruction queue to the retirement buffer, where
they assume their places in the queue for retirement, and the dispatch buffer,
where they await availability of their source operands and a free execution unit.
Branch instructions are predicted at dispatch time and the program counter
updated accordingly. Once both operands are available execution of the instruc-
tion can be initiated by the appropriate functional unit. As in system seq, the
instruction value is calculated by the do op and do branch functions. During
execution an internal interrupt can be generated, in which case a flag is set in
the retirement buffer slot. Results are written back to the retirement and dis-
patch buffers. Once an instruction reaches the head of the retirement queue it is
checked for an internal interrupt or branch misprediction before being retired. If
an interrupt was generated the program-counter is updated to the appropriate
interrupt handler address and the dispatch and retirement buffers are flushed. If
no interrupt was generated the system checks branches for mispredictions. Mis-
predictions result in the program counter being updated to the instruction which
should follow the branch, while dispatch and retirement buffers are flushed. In-
structions which generated neither interrupts nor incorrect predictions can be
retired, updating the register file with the instruction result.

The data structures of system des are illustrated in Fig. 1. The shaded
fields are auxiliary variables which have been added to our model in order to
simplify the proofs. Auxiliary variables are only updated and copied from one
record to another and thus do not affect the flow of control. The two proofs use
different auxiliary variables, the unified set of which are shown in the diagrams
for completeness. The numinst variable counts the number of instructions retired
so far and is used in synchronizing the two sequential and speculative systems.

The functionality of system des can be divided into three subsystems:

• dispatch: This module dispatches instructions in program order.
• execute: This module executes and writes back instructions.
• retire: This module retires the slot at the head of the retirement buffer.

While only one instruction is dispatched or retired per cycle, module execute is
parameterized by the number of functional units: when this module is invoked,
each functional unit in the system may execute and write-back a result. Multiple
instructions may be executed and written back in each cycle.
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Fig. 1. Data structures for des

In practice these three subsystems operate concurrently. That is, in the same
cycle all three can be invoked simultaneously. Any concurrent execution of the
three subsystems is equivalent to a three-step sequential execution of the sub-
systems in which each subsystem is executed once. We therefore consider each
of the three systems separately, ignoring the possible interaction between them.

A note on the retirement buffer The retirement buffer, RB , is the central
data structure in the system. It stores instructions in dispatch order until their
retirement, ensuring that retirement is in-order. The buffer contains a circular
array rbe of retirement buffer entries. This array is treated as a queue, with the
oldest entry being “popped” off during retirement, while dispatched instructions
are “pushed” onto the end of the queue. The pointers head and tail point to the
head of the queue and the next free slot, respectively.

The use of predicted values The inductive proof utilizes the auxiliary pre-
dicted value fields. Every value field v in the system is paired with an auxiliary
predicted value pv field, while the interrupt field int in the retirement buffer
slots is matched with an interrupt predict field, intpv .

When an instruction is dispatched its predicted values are calculated. The
predicted value of arithmetic operations are calculated by applying the instruc-
tion operation to the predicted values of its operands.

The generation of interrupts and taking of branches are decided by the un-
interpreted functions interrupt and do branch, respectively, whose parameters
are available at dispatch time. The same functions and parameters are used to
predict whether an interrupt will be taken (intpv) and the predicted value (pv )
of a branch instruction. Both predictions are trivially correct.
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Note: The predicted instruction value, stored in the pv field of the retirement
buffer should not be confused with the system’s branch prediction stored in the
brpv field. The latter is calculated using a different function and is not guaranteed
to be correct.

5 Our Direct Proof that des Refines seq

In this section we discuss our direct proof that system des refines system seq.
The bulk of this proof is the proving of invariants used to show that the ob-
servable functions of the two systems match. We first discuss our ‘top-down’
methodology and then explain how it was applied to this problem.

5.1 A Two Stage Top-Down Approach to Invariant Generation

Deductive proofs typically include a number of inter-dependent invariants. The
human prover, faced with the necessity of proving a fairly complex property
may be uncertain how to begin. We define a simple two stage procedure which
we believe provides a framework for proving such invariants in a systematic
manner. We note that while only the second step of this procedure is ‘top-down’
the dominance of this step leads us to call the whole procedure ‘top-down’.

1. Formulate, and prove, a set of simple invariants of the data structures and
the model. These invariants can be chosen with little or no consideration of
the invariant to be ultimately proved. Good candidate properties for this step
are simple properties of data-structures or relationships between two data
structures. Properties chosen in this step are typically sufficiently simple that
they are not dependent on any other properties.

2. Attempt to prove the final correctness invariant using the invariants proved
in step one. Should the proof reach a step from which one cannot progress,
analyze the situation, define one or more properties which would allow the
proof to progress and attempt to prove these properties.

The purpose of the first step is threefold. Firstly, it is likely to expose simple
errors in the model, should they exist. It is frequently the case that in writing up
the model in the PVS description language an error was made, often a very simple
one such as using an incorrect index for an array. Such errors may cause the proof
of even simple invariants to fail, and the simpler the proof which fails the easier
it is to locate the problem in the model. Secondly, the construction of incorrect
properties reflects user misunderstanding. Discovering why such properties are
incorrect helps the user comprehend the model more completely. Thirdly, even if
these properties were not formulated with the final invariant in mind, they will
almost certainly be useful in its proof.

In the second step constant progress is made towards the conclusion of the
proof. When the proof fails, and it is expected to, it is generally due to the
necessity of proving another invariant first. The second step thus incrementally
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reveals the “hidden” properties on which the desired invariant is dependent,
generating a string of properties to be proved invariant. The recursive proving
of invariants should conclude after a few iterations, allowing the model to be
proved correct.

The balance between the two steps is variable. The greater the number of
invariants proved in the first step the less frequently the proofs of the second
step will fail due to missing properties or simple errors in the model. However,
there is no need to worry about too few, or “missing” invariants in the first step.
All invariants needed in the proof will be revealed in the second step and can be
proved at this point. While invariants proved in the first step will typically be
useful, they are not strictly necessary.

The framework described is very flexible, but, we believe, firm enough to
provide structure and direction to the proof.

5.2 System des refines system seq

Auxiliary variables used: The auxiliary variables used in this proof are the
reg field in the operand structures, and the oc and arg fields of the retirement
buffers.

Both seq and des have program counters called pc and counters numinst count-
ing the number of instructions which have been completed. We will term the
variables in seq pca and numinsta and those in des pcc and numinstc.

For ρ∗A, we restrict ρA
by modifying the delay variable such that seq delays

when the two systems have completed the same number of instructions:

delay := (numinsta = numinstc)

The system invariant, α, is simply the conjunction of the single system invariants
and the equality O

C
= O

A
, with the observation functions defined as:

OC : (RF ,numinstc, if RB .head = RB .tail ∧ ¬RB .wrap
then pcc else RB .rbe[RB .head ].pc )

O
A
: (reg ,numinsta, pca)

Thus, the register files of the two systems always agree. When the retirement
buffer is empty the program counters also agree. Otherwise, the program counter
of the next instruction to be retired matches the program counter of seq.

Proving premises R1, R2 and R4 of the refinement rule is easy, the difficult
part is in proving that O

C
= O

A
is an invariant of the system. To do this we

must prove that both machines compute the same value for each instruction,
and modify the program counter identically. Since both the value and the pro-
gram counter are influenced by taking an interrupt, we must also show that an
instruction generates an interrupt in system des if and only if it does so in seq.
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5.3 Invariants Used in Proving the Refinement

In the first stage we prove simple properties of the system, for example, lemmas
relating to the structure of the retirement buffer (e.g. if tail and head point to
the same slot then the retirement buffer is full if wrap is true, empty otherwise).

We consider now the second stage of the proof. We start by trying to prove
that the value in the head retirement buffer slot is the value calculated by seq for
the given instruction. This property is quickly formalized and divided into four
properties. The first states that the value in the head slot is the value that would
be obtained by applying the do op or do branch functions to the values in the
operand registers:

φ1 : RB .rbe[RB .head ].oc ∧ ¬RB .rbe[RB .head ].busy −→
RB .rbe[RB .head ].v =
if type op(RB .rbe[RB .head ].op) = branch
then do branch(RB .rbe[RB .head ].pc,

iss before(numinst , RB,RB.head))
else do op(RB .rbe[RB .head ].op,

RF [RB .rbe[RB .head ].arg [1].reg],
RF [RB .rbe[RB .head ].arg [2].reg])

However, this invariant is insufficient: the values stored in fields of rbe must
be matched to counterparts in seq to allow us to prove that the computed
values are correct. This relationship is asserted by showing that the operation,
register, target and branch target fields in the retirement buffer match those in
the program used by both systems. We must also prove that the two systems
use the same criteria to generate interrupts, and will thus generate interrupts
at the same time. Lastly, it is necessary that the program counters in the two
systems match, if not they will execute different instructions. Whereas in a purely
sequential program the updating of the program counter is trivial, once branches
are considered the relation between the instruction indices of two instructions
that complete one after the next may vary and the correspondence between the
program counters is more complicated.

Of these properties, the relationship between the retirement buffer and the
program, and the matching interrupt generation are simple to prove while prop-
erty φ1 is the most difficult. We concentrate on the proof of this property.

Property φ1 is, intuitively, stating two phenomena – firstly, that the result
of the instruction is that obtained from the operands used, and secondly, that
the values of these operands can now be found in the register file. This second
property, operand correctness, depends primarily on operands with “retired”
status having values matching those in the register file:

φ2 : RB .rbe[rb].oc ∧RB .rbe[rb].arg [j].st = retire −→
RB .rbe[rb].arg [j].v = RF [RB .rbe[rb].arg [j].reg] ∧
∀rb′ RB .rbe[rb′].oc ∧ RB .rbe[rb′].tgt = RB .rbe[rb].arg [j].reg −→

rb = rb′ ∨ preceed(rb, rb′,RB)
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where preceed(rb, rb′,RB) is true iff both retirement buffer slots are occupied
and slot rb precedes slot rb′ in the queue of slots waiting for retirement.

The need to prove that there is no preceding retirement buffer slot targeting
the operand registers is crucial: should such a slot exist it would, on retiring,
over-write the values in the register file, invalidating any correspondence between
the retirement buffer slot operand fields and the register file.

Property φ2, in turn, depends on the value in operand fields matching the
closest preceding slot targeting the operand register, when such a slot exists.
Property φ3 asserts that while the operand status is write b (the operand value
has been written back but the instruction has not yet been retired) such a slot
does exist, and its value matches that in the operand fields. In order to prove that
there is no slot targeting the registers matching retired operands, as required in
φ2, it is necessary now to prove a parallel property: there is no slot targeting
the operand register between the instruction slot and the slot pointed to by the
operand fields.

In order to prove the invariance of φ3 it is necessary to define an invariant,
φ4, defining similar properties for busy operands.

Proving the invariance of φ2, φ3, and φ4 is the most difficult part of the
direct proof. Intuitively, these properties assert the correctness of the relation-
ship between instructions and their operands, that instructions always use the
value calculated for the operand by the last preceding instruction writing to the
operand register. These dependency relations are one of the difficulties of out-of-
order executions, and it is unsurprising that proving that they hold is the crux
of our correctness proof.

We proved a total of 23 invariants in our proof, many of which were simple
technical results, such as proving that if the head and tail pointers of the
retirement buffer are equal then the buffer is either full or empty. We omit
further details of these invariants.

6 An Inductive Proof of Refinement

There is an enormous difference between an out-of-order system in which many
instructions progress simultaneously and a simple sequential system. Whereas in
the direct approach we prove a correspondence between these diverse systems,
the inductive approach is based on the premise that it will be easier to prove
a number of smaller refinements between systems which are more similar. This
approach requires more user effort in defining the multiple refinement relations,
an investment which simplifies the invariants which need to be proved.

We have performed induction on the number of slots in the retirement buffer.
In the base case, where there is only one slot, the out-of-order machine will
operate sequentially as only one instruction can be in progress. The inductive
step involves proving that machine des(b+1) with B+1 slots refines one with B
slots (denoted des(b)). The difference between these two machines is intuitively
far less than that between an out-of-order system and a sequential one.
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The invariants needed to prove the refinement relations were proved using the
top-down approach detailed previously. In fact, many of the properties needed
were proved as part of the direct proof.

Auxiliary variables used: The predicted value fields in the dispatch and re-
tirement buffers are used, as are the oc and slot fields of the retirement buffer.

6.1 Base Case: des(1) Refines seq(r)

We consider des(1), an implementation of des with only one retirement buffer
slot. As was the case of the direct proof, we synchronize the two systems at
retirement time by setting the delay variable exactly when the numinst variables
of the two systems agree. Details of this straightforward proof are omitted.

6.2 The Inductive Step: des(b+1) Refines des(b)

We show that a system with B + 1 retirement buffer slots refines one with B
slots. We have chosen to synchronize at instruction dispatch time.

There are two difficulties here: Firstly, des(b+1) can store B + 1 issued
but incomplete instructions whereas des(b) cannot; secondly, even when the
two systems contain the same number of occupied retirement buffer slots, their
positions will be different since as soon as the head pointer wraps the head point-
ers of the two systems will differ. This technical problem complicates the proof
which we therefore divided into two stages. We first prove that des(b+1) re-
fines desf(b+1), a system with B+1 slots in which there is always at least one
free slot. We then show that desf(b+1) refines des(b). That is, the first proof
proves that a system functioning with one fewer slot refines des(b), without
considering mismatched slot positions, a problem delayed to the second proof.

des(b+1)refines desf(b+1): We run the two systems in parallel, synchroniz-
ing at instruction issue. As long as there is at least one free slot in des(b+1),
all the data structures in the two systems are identical. We consider the case of
an instruction being issued into the last free retirement buffer slot of des(b+1).

We cannot issue the instruction in system desf(b+1) as this system will not
allow all B+1 slots to be occupied simultaneously. We free the slot at the head
of the retirement buffer (that pointed to by head) and then issue the instruction.

We consider first the case of the head slot containing an executed instruction
(the busy flag is false) which is not a mispredicted branch, nor generates an
interrupt. This instruction is retired, after which system desf(b+1) issues the
new instruction. The register files of the two systems are equal except that the
value of the target register of the head slot is updated in des(b+1) with the
value found in the head slot in desf(b+1).

However, it may be the case that no value is yet available in the head slot as
the instruction has not yet been executed. In this case the instruction is stored
in the dispatch buffer pointed to by the auxiliary slot field of the retirement
buffer entry. Any operands of the instructions depended on values of previous
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instructions, all of which have been retired, and so the instruction will have
available operands and can be executed. After execution, the instruction can be
retired and the new instruction issued.

The fact that des(b+1) does not have any value for the instruction makes
matching the two systems more difficult. The new value in the register file (as-
suming that the retired instruction had a target register) of desf(b+1) is not
found anywhere in the des(b+1) system. This problem has been overcome by
using predicted values. The value which has been calculated and retired should be
the same value that will be calculated and retired for the instruction at the head
of RB . We formalize this by predicting the value of all instructions at dispatch
time, and later prove that these predictions are correct. We can then assert that

The predicted value of the head retirement buffer slot in des(b+1)
equals that found in the the r’th register of the register file of desf(b+1),
where r is the target index stored in the head slot of des(b+1).

Similarly, dispatch buffer operand values which are now written back in system
desf(b+1) match the predicted values for these operands in system des(b+1).

The final case is that of instructions which either generate interrupts or are
mispredicted branches. We use predicted values to assert that when the slot at
the head of the retirement buffer in des(b+1) is retired, an interrupt will be
generated or a branch misprediction discovered.

Once system des(b+1) retires the head slot all data structures of the two
systems will again match. Until this retirement occurs, des(b+1) cannot is-
sue another instruction (it has no free slots) but can execute and write-back
instructions stored in the dispatch buffer.

Values are predicted correctly In this subsection we sketch our proof that
values are predicted correctly.

We would like to prove that value finally obtained for a field matches its
predicted value:

ψ1 : ∀s : [1..Z], j : [1..2]. DB [s].oc ∧DB [s].arg [j].st �= busy −→
DB [s].arg [j].v = DB [s].arg [j].pv

∧ ∀b : [1..B]. RB .rbe.[b].oc ∧ ¬RB .rbe[b].busy −→
RB .rbe[b].v = RB .rbe[b].pv ∧ RB .rbe[b].int = RB .rbe[b].intpv

The proof is inductive. The base case is the state before the start of execution.
Since all dispatch and retirement slots are unoccupied property ψ1 holds trivially.

Assume that ψ1 holds at the current state. The next state is obtained by
either issuing, executing, or retiring an instruction. These three cases are con-
sidered separately.

Consider a data instruction issued into dispatch buffer s and retirement buffer
slot tail . The busy flag of retirement buffer slot tail is set to true, and thus there
is no constraint on its predicted values. Each of the two operands si of s are
looked up in the RTT . If the RTT entry for si is not busy, the value in RF [si] is
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copied to both the value and predicted value fields of the dispatch buffer. Else,
the status, value and predicted value fields are copied from the retirement buffer
slot pointed to by the RTT . If the status of the retirement buffer slot is not
busy then, by the induction hypothesis, its value and predicted values agree.
Otherwise, the operand status is set to busy and there is no requirement that
its value and predicted values agree. Thus, in all cases, if the operand status is
not busy, its value and predicted value will agree.

We next assume that instruction I is executed and written back. We consider
first a data instruction. Both of its operands are available and are not busy and
thus, by the induction hypothesis, their value and predicted value fields agree.
The value of the instruction is calculated by applying the instruction operation
to the value of the operands. As the predicted value was obtained by applying
the operation to the predicted value of the operands, the value and predicted
values for the instruction will agree. Thus, when the instruction value is written
back to any operand fields waiting for it, and to the instruction retirement slot,
it will match the predicted value field in these data structures.

Interrupt generation and the predicted values of branches are both decided
by the same functions, with the same parameters, as were used to predict the
interrupt or the instruction value when the instruction was dispatched. This
prediction is trivially correct.

Lastly, we consider instruction retirement. The only value or predicted value
fields modified are the value fields in the register file (which have no predicted
values). It is easy to prove that ψ1 continues to hold.

This completes the inductive step. This proof, like all others, has been rigor-
ously proved in the PVS theorem prover. ��

Completing the proof of refinement We would like to use the refinement
rule of section 2. However, this rule requires that the abstract machine, progress
one step with each step of the concrete machine, while we need the abstract
system, desf (b+1), to progress up to three steps with each step of des(b+1).

To overcome this problem we follow Abadi and Lamport [1] in using auxiliary
variables to introduce stuttering into the system. We add an auxiliary variable
stutter to des(b+1) to derive system dess(b+1). Intuitively, stutter is the
minimum number of idling steps that the system must take before taking a
non-idling step. When an instruction is dispatched into the B + 1’st slot of
des(b+1) stutter is set so as to force des(b+1) to idle while desf(b+1) per-
forms all the necessary actions to retire the head slot before dispatching the
new instruction. The transition relation is modified so as to idle, decrementing
stutter, if it is non-zero.

The proof sketched above allows us to show that the stuttering system
dess(b+1) refines desf(b+1). To complete the proof that des(b+1) refines
desf(b+1) we must show that des(b+1) refines dess(b+1).

Abadi and Lamport describe formally under which conditions a stuttering
system refines a non-stuttering one. Our system fulfills these requirements and
so des(b+1) refines dess(b+1) and therefore des(b+1) refines desf (b+1).
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desf (b+1) refines des(b): System desf(b+1) has one more slot than des(b),
but as it can never fill all its slots simultaneously, the two systems function as
if they have the same number (B) of slots. The difference in the size of the
buffer does, however, affect the values of the head and tail pointers – after the
retirement buffer has wrapped these values no longer agree in the two systems.
Similarly, any producer fields, whether in the dispatch buffer or register trans-
lation table, do not agree for the two systems, and while each retirement buffer
entry in system desf(b+1) has a matching entry in des(b) its slot index differs.

A mapping, map, is defined from slot indices in desf(b+1) to those in
des(b). The two systems are run in parallel, both issuing, executing and re-
tiring instructions simultaneously. All data structures in the two systems are
identical, modulo the map function.

Refinement is thus intuitively simple: ρ∗A is ρA with the non-deterministic
choices made as they were in system desf(b+1). As our observation functions
we take the register files of the two systems. Since the register files do not mention
retirement slot indices, these are identical at all stages.

7 Liveness Properties

Our system is highly non-deterministic and each of the three sub-instructions
(dispatch, execute or retire) can cause the system to idle instead of progressing.
There is thus no guarantee that any instruction will ever complete.

However, he have proved that it is always possible for the system to progress.
That is, there is always at least one instruction in the system which can either
be dispatched, executed or retired.

8 Conclusion: Comparing the Two Proofs

In this paper we have shown that both the direct, top-down approach, and an
inductive methodology are applicable to proving the correctness of our specula-
tive instruction execution model. We note that we used the top-down approach
in proving invariants in the inductive proof, too. The two approaches are not
mutually exclusive, however using induction modifies the structure of the proof
enormously. In this section we compare the two approaches.

We found that, perhaps counter-intuitively, the inductive proof was far more
difficult to construct than the direct proof: it was far easier to prove refinement
between a speculative and a sequential system than between two speculative
systems where one has one more retirement buffer slot.

Most of the complexity of the inductive proof was in proving that desf(b+1)
refines des(b+1). The data structures in the two systems are ‘almost’ the same,
but we found it necessary to define precisely how they differ, in all circumstances.
For example, the dispatch buffers are the same unless desf (b+1) has retired one
instruction more than des(b). In this case the dispatch buffer of desf(b+1) will
be empty if the retired instruction generated a flush. Otherwise, the value of the
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retired instruction may be available in operand fields in desf(b+1) but not in
the corresponding fields in des(b+1). All the cases sketched in subsection 6.2
had to be rigorously examined and formalized. The invariant α of the super-
position system details the differences between each data structure of the two
systems.

In contrast, in the direct proof the comparison between the abstract and
concrete systems involves only the observables, and the internal data structures
(dispatch buffer, etc) of the speculative machine are not matched with any in the
sequential system. The speculative system is designed so that externally its spec-
ulative, out-of-order character is hidden and the register file presents an in-order
view of instruction execution. Since we synchronize at retirement time we can
compare the register files and not the internal data structures, utilizing the ex-
ternal ‘in-order’ behavior of the speculative machine so that neither speculation
nor out-of-order execution is overtly verified in the refinement proof. Instead, a
number of extra invariants of the speculative system were needed to show that
it, indeed, behaves ‘correctly’ – that instruction values are calculated correctly
and that the correct instructions are flushed when mispredictions occur. In par-
ticular, the instruction-operand relationship expressed by φ2, φ3 and φ4 is used
for the purpose of showing that instruction values are correctly calculated. These
invariants have trivial counterparts in the base case of the inductive proof, and
no counterparts in the inductive step. When we are performing a comparison
between two speculative systems these properties hold in both systems and need
not be expressed explicitly.

Thus, the different structures of the two proofs resulted in different types of
difficulty. In the direct proof the emphasis was on proving single system invari-
ants, in the inductive proof on proving properties of the superposition system.
While proving system invariants can be tedious and time consuming, it required
less user effort than the complicated, if faster running, refinement analyses in
the inductive proof. That single system invariants were easier to formulate than
those of the superposition system is reasonable since the the relationship between
two systems is potentially more complex than the complexity of each system in-
dividually. Since human effort, rather than run-time, is the more limiting factor
in deductive proofs of this type, we consider the slower, yet simpler, direct proof
to be the more efficient and evaluate the top-down methodology as the one more
appropriate for this problem.

Our conclusion is that more important than the similarity of the systems
between which we prove refinement is the complexity of the two systems and the
granularity of the comparison between them.

In the inductive proof both the abstract and concrete systems are of similar
complexity; in the direct proof the abstract system is far simpler. The complexity
of the abstract system contributes directly to the complexity of the refinement
proof. Both the definition of the refinement relation and its proof are dependent
on the complexity of both systems. For example, in proving premise R1 of the
refinement rule we generate for each concrete step a matching transition in the
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abstract system. In the direct proof the simplicity of seq makes this trivial, in
the inductive proof it is more difficult.

The granularity of the comparison is crucial: When the comparison is fine
grain it is reasonable that defining it correctly, and then proving it invariant, will
be a process requiring a similarly detailed understanding of the systems. When
the comparison is coarser much of the complexity is shifted from properties of the
superposition system to properties of the individual systems, which, we believe,
tend to be simpler to formalize.

When using induction one compares two relatively similar systems. Intu-
itively, this suggests that a fine grain comparison will often be necessary, as it
is only in a detailed examination of the systems that a meaningful comparison
can be made. The similarity of the systems seems to be, in this case, detrimen-
tal rather than beneficent, implying both a complex abstract system and a fine
grain comparison.

The balance between the complexity of the additional single system invariants
needed in a direct proof and the complexity of the inductive comparison will,
of course, differ from problem to problem. However, it is our contention that
not only was the inductive methodology inappropriate for our refinement, but
that the difficulties we encountered will often occur when combining induction
and refinement: Induction inherently suggests that the abstract system will be of
complexity similar to that of the concrete system, with the differences between
them small and thus apparent only in a fine grain comparison.
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