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Abstract. In this paper we explore partial order reduction that make
the task of verifying cryptographic protocols more efficient. These reduc-
tion techniques have been implemented in our tool Brutus. Although
we have implemented several reduction techniques in our tool Brutus,
due to space restrictions in this paper we only focus on partial order re-
ductions. Partial order reductions have proved very useful in the domain
of model checking reactive systems. These reductions are not directly
applicable in our context because of additional complications caused by
tracking knowledge of various agents. We present partial order reductions
in the context of verifying security protocols and prove their correctness.
Experimental results showing the benefits of this reduction technique are
also presented.

Keywords: Model checking, partial order reductions, and security.

1 Introduction

Due to the rapid growth of such entities as “the Internet” and “the World Wide
Web”, computer security has recently become a very popular topic. As more
and more people gain access to these shared resources, and as more services are
offered, the importance of being able to provide security guarantees becomes
paramount. Typically, these guarantees are provided by means of security pro-
tocols that make use of encryption. Several researchers have proposed techniques
to analyze these protocols in an attempt to find errors or to prove them correct.
There are three basic approaches for verifying such protocols.

One of the first attempts at formalizing the notion of a correct protocol was
the Logic of Authentication, more commonly known as the BAN logic [BAN90].
This logic proved useful in analyzing security protocols. Kindred and Wing
helped to automate the use of this logic by developing a theory generator for
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it [KW97]. However, one of the drawbacks of the logic is the lack of a formal
model with which to define the semantics of the logic.

There has been much work recently on formal models for security protocols.
A number of researchers have used general purpose model checkers to verify
authentication protocols [Low97,MMS97,Ros96]. In all these cases, the users
must specify the “bad traces” and check to see if any of them are valid traces
of the model. In [CJM98], we describe a special purpose model checking tool
for verifying authentication protocols which has a built-in adversary that can
construct new messages when trying to subvert a protocol.

Bella and Paulson have used theorem proving to verify authentication proto-
cols [BP97]. Their method requires that one express the set of all possible traces
by providing a set of rules that describe how to extend a valid trace. Using the
same syntax, one then describes the relationships between events that must hold
true of correct traces, and Isabelle tries to prove that all valid traces are also
correct traces. A theorem proving type approach is also taken by [Mea96].

Model checking based techniques for verifying security protocols suffer from
the well known state explosion problem, i.e., the state space of the system grows
exponentially in the number of components. In the domain of model checking
of reactive systems there are numerous techniques for reducing the state space
of the system. One such important technique is partial order reduction. This
technique does not directly apply to our framework because we explicitly keep
track of knowledge of various agents and because our logic can refer to this
knowledge in a meaningful way.

Partial order reduction allows one to prune the set of traces of a system
by reducing the number of inter-leavings to be considered. For example, if the
system is insensitive to permuting two actions α and β, then one can consider
only one interleaving (say αβ) and ignore the other interleaving (βα) while
exploring the system. This kind of reduction has proved valuable in verifying
reactive systems [GPS96,Pel96,Val91]. In this paper we present partial order
reduction technique as it applies to the verification of security protocols. The
proof of correctness is also presented. Due to space limitations, proofs of various
results are not presented, but the general structure of the proof of correctness
is clearly described. The framework for our proof is fairly general so that other
researchers working in this area can also use it.

The rest of this paper is organized as follows: In Section 2 we review the
most common way in which messages are modelled when verifying security pro-
tocols. Sections 3 and 4 describe the computation model which we use to provide
the semantics for the logic. This model is closely based on our tool, Brutus.
The syntax and semantics of a logic capable of expressing properties of authen-
tication and electronic commerce protocols are described in Section 5. Partial
order reductions are described in Section 6. Experimental results are presented
in Section 7. Related and future work are discussed in Sections 8 and 9.
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2 Messages

Typically, messages exchanged during the run of a protocol are constructed
from smaller sub-messages using pairing and encryption. The smallest such sub-
messages (i.e. those which contain no sub-messages themselves) are called atomic
messages. There are four kinds of atomic messages.

– Keys are used to encrypt messages. Keys have the property that every key k
has an inverse k−1 such that for all messages m, {{m}k}k−1 = m. (Note
that for symmetric key cryptography the decryption key is the same as the
encryption key, so k = k−1.)

– Principal names are used to refer to the participants in a protocol.
– Nonces can be thought of as randomly generated numbers. The intuition

is that no one can predict the value of a nonce; therefore, any message
containing a nonce can be assumed to have been generated after the nonce
was generated. (It is not an “old” message.)

– Data plays no role in how the protocol works but is intended to be commu-
nicated between the principals.

Let A denote the space of atomic messages. The set of all messagesM over
some set of atomic messages A is inductively defined as follows:

– If a ∈ A then a ∈M. (Any atomic message is a message.)
– If m1 ∈ M and m2 ∈ M then m1 ·m2 ∈ M. (Two messages can be paired

together to form a new message.)
– If m ∈ M and key k ∈ A then {m}k ∈M. (A message m can be encrypted

with key k to form a new message.)

We would also like to generalize the notion of messages to message templates.
A message template can be thought of as a message containing one or more
message variables. To extend messages to message templates we add the following
to the inductive definition of messages:

– If v is a message variable, then v ∈M.

Since all keys have inverses, we always take advantage of the following reduc-
tion: {{m}k}k−1 = m. It is also important to note that we make the following
perfect encryption assumption: the only way to generate {m}k is from m and k.
In other words, for all messages m,m1, and m2 and keys k, {m}k �= m1 · m2,
and {m}k = {m′}k′ ⇒ m = m′ ∧ k = k′.

We also need to consider how new messages can be created from already
known messages by encryption, decryption, pairing (concatenation), and projec-
tion. The following rules capture this relationship by defining how a message can
be derived from some initial set of messages I.

1. If m ∈ I then I 
 m.
2. If I 
 m1 and I 
 m2 then I 
 m1 ·m2. (pairing)
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3. If I 
 m1 ·m2 then I 
 m1 and I 
 m2. (projection)
4. If I 
 m and I 
 k for key k, then I 
 {m}k. (encryption)
5. If I 
 {m}k and I 
 k−1 then I 
 m. (decryption)

This defines the most common derivability relation used to model the capa-
bilities of the adversary in the literature. Given some base set of messages I, we
denote all the messages that can be derived from I as I, the closure of I under
the rules above. For example, if I0 is some finite set of messages overheard by
the adversary, then I0 represents the set of all messages known to the adversary.
In general, I is infinite, but researchers have taken advantage of the fact that
one need not actually compute I. Once we describe the semantics of our logic,
it will be clear that it suffices to check whether m ∈ I for some finite number
of messages m. However, checking whether m ∈ I must still be decidable. For a
detailed discussion of this question, see [CJM98].

3 The Model

We model a protocol by the asynchronous composition of a set of named commu-
nicating processes which model the honest agents and the adversary. We would
like to model an insecure and lossy communication medium, in which a principal
has no guarantees about the origin of a message, and where the adversary is free
to eavesdrop on all communications. Therefore, in the model, we insist that all
communications go through the adversary. In other words, all messages sent are
intercepted by the adversary and all messages received by honest agents are ac-
tually sent by the adversary. In addition, in an attempt to subvert the protocol,
the adversary is allowed to create new messages from the information it gains
by eavesdropping. The adversary is also allowed to participate in the sessions as
an honest agent.

In order to make the model finite, we must place a bound on the number of
sessions that a principal may attempt. A session will be modelled as an instance
of a principals role in the protocol. Each session is a separate copy or execution
of a principal and consists of a single sequence of actions that make up that
agent’s role in the protocol, along with all the variable bindings and knowledge
acquired during the execution 1. An agent can have multiple sessions, but each
session is executed once. When we combine these with a single session of the
adversary, we get the entire model of the protocol.

Each session of an honest principal is modelled as a 5-tuple 〈N,S,B, I, P 〉
where:

– N ∈ names is the name of the principal.
– S is the unique ID for this session.
– B: vars(N) → M is a set of bindings for vars(N), the set of variables ap-

pearing in principal N , which are bound for a particular session as it receives
messages.

1 Principal and agent will be used synonymously throughout the paper
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– I ⊆M is the set of messages known to the principal of this session.
– P is a process description (similar in style to CSP) given as a sequence of

actions to be performed. These actions include the pre-defined actions send
and receive, as well as user defined internal actions such as commit and
debit.

The model of the adversary, Ω, is similar to that of an honest agent or
principal; however, the adversary is not bound to follow the protocol and so
it does not make sense to include either a sequence of actions PΩ or a set of
bindings BΩ for the adversary. Instead, at any time, the adversary can receive
any message or it can send any message it can generate from its set of known
messages IΩ. The global model is then simply the asynchronous composition of
the models for each session, including the one corresponding to the adversary.

4 Actions

The actions allowed during the execution of a protocol include the two predefined
actions send and receive as well as possibly some user defined actions. The
model makes transitions between global states as a result of actions executed
by the sessions. More formally, we define a transition relation → ⊆ Σ ×
S × A × M × Σ where Σ is the set of global states, S again is the set of
session IDs, A is the set of action names (which includes send and receive),
and M is the set of all possible messages. We will use the notation σ

s·a·m−→ σ′

in place of (σ, s, a,m, σ′) ∈ → when it is more convenient. In the definitions
below, we will denote the adversary’s session as Ω = 〈NΩ, SΩ, φ, IΩ , ∅〉 and the
sessions corresponding to the honest agents as Ψi = 〈Ni, Si, Bi, Ii, Pi〉. We will
use σ = 〈Ω,Ψ1, . . . , Ψn〉 to denote the global state before the transition and
σ′ = 〈Ω′, Ψ ′

1, . . . , Ψ
′
n〉 to denote the global state after the transition. In addition,

we will use the notation B̂ to denote the obvious extension of a set of bindings B
from the domain of variables to the domain of message templates. In other words,
B̂(m) is the result of substituting B(v) for every occurrence of v in the message
template m for all the variables v appearing in m.

– σ
s·send·m−→ σ′

A session with ID s can send message m in global state σ and the new global
state is σ′ if and only if
1. IΩ′ = IΩ ∪m. (The adversary adds m to the set of messages it knows.)
2. There is a session Ψi = 〈Ni, s, Bi, Ii, send(s-msg).P ′

i 〉 in σ such that in
σ′, Ψ ′

i = 〈Ni, s, Bi, Ii, P
′
i 〉 and m = B̂i(s-msg). (There is a session that is

ready to send message m.)
3. Ψj = Ψ ′

j for all j �= i. (All other sessions remain unchanged.)

– σ
s·receive·m−→ σ′

A session with ID s can receive message m in global state σ and the new
global state is σ′ if and only if
1. m ∈ IΩ. (The adversary can generate the message m.)
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2. There is a session Ψi = 〈Ni, s, Bi, Ii, receive(r-msg).P ′
i 〉 in σ such that

in σ′, Ψ ′
i = 〈Ni, s, B

′
i, I

′
i , P

′
i 〉, I ′i = Ii∪m, and B′

i is the smallest extension
of Bi such that B̂′

i(r-msg) = m. (There is a session ready to receive a
message of the form of m and its bindings are updated correctly in the
next state.)

3. Ψj = Ψ ′
j for all j �= i. (All other sessions remain unchanged.)

– σ
s·Act·m−→ σ′

A session with ID s can perform some user defined internal action Act with
argument m in global state σ and the new global state is σ′ if and only if
1. There is a session Ψi = 〈Ni, s, Bi, Ii,Act(msg).P ′

i 〉 in σ such that in σ′,
Ψ ′

i = 〈Ni, s, Bi, Ii, P
′
i 〉 and m = B̂i(msg). (There is a session s that is

ready to perform action Act with argument m.)
2. Ψj = Ψ ′

j for all j �= i. (All other sessions remain unchanged).
Notice that internal actions are purely symbolic, i.e., there is no semantics
associated with these actions.

Each possible execution of the model corresponds to a trace, a finite, alternating
sequence of global states and actions π = σ0α1σ1α2 · · ·αnσn for some n ∈ N,
such that σi−1

αi→ σi for 0 < i ≤ n for the transition relation → just defined.
Actually, technically speaking αi belongs to the set S×A×M , but abusing the
notation slightly we will refer to αi as an action.

5 Logic

In order to specify the requirements or the desired properties of the protocol, we
will use a first order logic where quantifiers range over the finite set of instances
in a model. In addition, the logic will include the past-time modal operator
so that we can talk about things that happened in the history of a particular
protocol run or trace. The atomic propositions of the logic will allow us to refer
to the bindings of variables in the model, to actions that occur during execution
of the protocol, and to the knowledge of the different agents participating in
the protocol. We will begin with the syntax of the logic, followed by the formal
semantics.

5.1 Syntax

As stated above, we will use a first order logic where quantifiers range over the
finite set of instances. The atomic propositions are used to characterize states,
actions, and knowledge in the model. The arguments to the atomic propositions
are terms expressing instances or messages. We begin by a formal description of
terms.

– If S is a instance ID, then S is an instance term.
– If s is an instance variable, then s is an instance term.
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– If M is a message, then M is a message term.
– If m is a message variable, then m is a message term.
– If s is an instance term, then pr(s) represents the principal that is executing

instance s.
– If s is an instance term and m is a message variable, then s.m is a message

term representing the binding of m in the instance s.
– If m1 and m2 are message terms, then m1 ·m2 is a message term.
– If m1 and m2 are message terms, then {m1}m2 is a message term. Note that

here we implicitly assume that m2 is of atomic type key.

As in standard first order logic, atomic propositions are constructed from
terms using relation symbols. The predefined relation symbols are “=” and
“Knows”. The user can also define other relation symbols which would corre-
spond to user defined actions in the model. The syntax for atomic propositions
is as follows: (All relation symbols are used in the infix notation.)

– If m1 and m2 are message terms, then m1 = m2 is an atomic proposition.
Examples of this atomic proposition would be checking if a customer and
merchant agree on the price of a purchase (C0.price = M0.price), or to check
if a particular instance of A believes it’s authenticating with B (A0.partner
= B).

– If s is an instance term and m is a message term, then s Knows m is
an atomic proposition which intuitively means that instance s knows the
message m. This proposition can be used to check if the adversary has com-
promised the session key (Ω Knows K)

– If s is an instance term, m is a message term, and Act is a user defined
action, then s Act m is an atomic proposition which intuitively means that
instance s performed action Act with message m as an argument. For ex-
ample, this could be used to check if a customer C0 has committed to a
transaction with identifier TID (C0commit TID).

Finally, well-formed formulas (or wffs for short) are built up from atomic
propositions with the usual connectives from first-order and modal logic.

– if f is an atomic proposition, then f is a wff.
– if f is a wff, then ¬f is a wff.
– if f1 and f2 are wffs, then f1 ∧ f2 is a wff.
– if f is a wff and s is an instance variable, then ∃s.f is a wff.
– if f is a wff, then ✸P f is a wff.

The formula ∃s.f has the intent that there exists some instance s0 such
that f is true when you substitute s0 for s in f while ✸P f is supposed to mean
that at some point in the past, f was true. We also use the following common
shorthands:

– f1 ∨ f2 ≡ ¬(¬f1 ∧ ¬f2)
– f1 → f2 ≡ ¬f1 ∨ f2
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– f1 ↔ f2 ≡ f1 → f2 ∧ f2 → f1

– ∀s.f ≡ ¬∃s.¬f (For all instances, s0, f is true when you substitute s0 for s.)
– ✷P f ≡ ¬✸P¬f (At all points in the past, f was true.)

The formula ∀s.f is supposed to mean that for any instance s0, f is true
when you substitute s0 for s in f while ✷P f is supposed to mean that at all
points in the past, f was true.

5.2 Semantics

Next we provide semantics to the logic just presented. These semantics will be
given in terms of the formal model presented in Section 3. Again, we begin with
the terms of the logic.

– An instance ID S refers to the instance with that ID.
– An instance variable s ranges over all the instances corresponding to the

honest agents in the model.
– An atomic message M is an atomic message in the model.
– A message variable v varies over messages in the model and can be defined

as a binding variable in a particular principal.
– The function pr maps an instance ID to a principal name. If s is an instance

ID, then pr(s) is the principal executing the instance with ID s.
– We use “.” as a scoping operator. If s is an instance term and v is a mes-

sage variable, then s.v refers to the variable v bound in the instance s. The
interpretation σ(s.v) of s.v in a particular state σ is Bs(v), the value bound
to the variable v in instance s in state σ.

– Message terms can be concatenated using “·” just as messages are concate-
nated.

– Similarly a message termm1 can be encrypted with another message termm2

just as messages are encrypted in the model.

The wffs of the logic will be interpreted over the traces of a particular model.
Recall that a trace consists of a finite, alternating sequence of states and ac-
tions π = σ0α1σ1 . . . σn. Length of a trace π is denoted by length(π). We give
the semantics of wffs in our model via a recursive definition of the satisfaction
relation |=. We will write 〈π, i〉 |= f to mean that the i-th state in π satisfies the
formula f . We begin with atomic propositions.

– 〈π, i〉 |= m1 = m2 iff σi(m1) = σi(m2). Thus the formula m1 = m2 is true
in a state if the interpretations of m1 and m2 are equal. In other words,
two message terms are equal in a state if after applying the appropriate
substitutions to the variables appearing in the message terms, the resulting
messages are equal.

– The formula 〈π, i〉 |= s Knows m iff σi(m) ∈ Ij for some instance Ψj in σi

such that Sj = s (the instance ID of Ψj is s). In other words, the formula
s Knows m is true in a state if the instance with ID s can derive message m
from its known set of messages in that state. Ω Knows m is true if the
adversary Ω knows message m (recall that Ω denotes the adversary).
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– 〈π, i〉 |= s Act m for some user defined action Act iff αi = s ·Act ·m. In
other words, the formula (s Act m) is true in a state if the transition taken
to enter the current state was one in which instance s took action Act with
argument m.

The extension of the satisfaction relation to the logical connectives is the
same as for standard first order logic. We use the notation f [s0\s] to denote the
result of substituting every free occurrence of the instance variable s in f with
the instance ID s0.

– 〈π, i〉 |= ¬f iff 〈π, i〉 �|= f .
– 〈π, i〉 |= f1 ∧ f2 iff 〈π, i〉 |= f1 and 〈π, i〉 |= f2

– 〈π, i〉 |= ∃s.f iff there exists a honest instance s0 in the model such that
〈π, i〉 |= f [s0\s].

– 〈π, i〉 |= ✸P f iff there exists a 0 ≤ j ≤ i such that 〈π, j〉 |= f In other words,
the formula ✸P f is true in a state of a trace π if the formula f is true in
any state of the trace up to and including the current state.

A formula f is said to be true in a trace π (denoted as π |= f) iff f is true in
every state of the trace π.

5.3 Specification Examples

For the sake of concreteness, we now include examples of some of the properties
we have checked using Brutus and how they are specified in our logic. For the
sake of clarity, we break the specification into two parts. The first part (referred
to as φH) expresses properties about honest agents. The second part (referred
to as φΩ) pertains to the adversary. Hence, the entire specification φ is simply
φH ∧ φΩ.

Payment Authorization. For the secure payment 1KP protocol [BGH+95], we
wish to show that whenever the customer’s account is debited, the customer
must have authorized that debit. For this we simply choose φH to be

∀A0 . (pr(A0) = A) ∧ (A0 debit (A0.CC · A0.price))→
∃C0.(pr(C0) = C) ∧ (A0.CC = C0.CC) ∧✸P (C0 auth A0.price)

This formula states that for all sessions A0, if A0 is a session being executed

by the authority A, and A0 debits the credit card account A0.CC by A0.price,
then there exists a session C0 being executed by the customer C with that same
credit card number that authorized a debit of that amount. Since in this case
we do not refer to the adversary, we let φΩ = true.

Privacy. The 1KP protocol should not reveal information about the transaction.
In other words, only the appropriate principals should know the order informa-
tion. For this we choose φH to be
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∀S0 .∀C0 . (pr(C0) = C) ∧ (S0 Knows C0.DESC)→
(pr(S0) = C ∨ pr(S0) = M)

This formula states that for all sessions S0, if S0 knows the customer’s description
(C0.DESC) of the transaction, then S0 is a session being executed by either the
customer or the merchant. We will also need to make sure that the adversary
does not know the information, so we choose φΩ to be

∀C0 . (pr(C0) = C)→ ¬(Ω Knows C0.DESC)

Non-repudiation. We may want to check that a principal cannot deny knowledge
of a particular value (a key or nonce). For instance, in the Needham-Schroeder
authentication protocol [NS78], we may want to make sure that whenever A
ends a session with B, B must know the nonce created by A. Note, that this
is a somewhat weak notion of non-repudiation. A may not be able to prove B’s
knowledge of A’s nonce. Indeed, A may not even be able to convince itself that B
knows the nonce. We are simply checking that there is no trace in which B does
not know the nonce. For this specification we choose φH to be

∀S0 .∀T0. S0 end pr(T0)→ (T0 Knows S0.Nonce)

This formula states that for all pairs of sessions S0 and T0, if S0 ends a session
with T0, then T0 knows the nonce generated by S0. We choose φΩ = true.

5.4 An Ordering on Traces

We introduce an ordering on traces that will aid us in proving the correctness of
partial order reductions. Throughout this sub-section assume that we are given
a specification φ. Since the number of sessions is finite, we can assume that the
specification is quantifier free (see the equations given below).

∃s.f = ∨n
i=1f [si\s]

∀s.f = ∧n
i=1f [si\s]

In the equations given above we have assumed that there are n honest sessions
with session IDs s1, · · · , sn. We also assume that the negations are pushed down
to the innermost level. A quantifier free formula where the negation has been
pushed to the innermost level is said to be in negation normal form. Let APH be
the set of atomic formulas corresponding to honest sessions that appear in the
specification (see subsection 5.1). Similarly, letAPΩ be the set of atomic formulas
pertaining to the adversary that appear in the specification. A specification is
called admissible if it is in negation normal form and the atomic formulas in
APΩ appear negated. From here on, assume that formulas are constructed using
the set of atomic formula APH ∪ APΩ , and are admissible. We let CF be the
class of normal and admissible formula built using the atomic formula in the set
APH ∪APΩ .
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Notice that the truth of a specification φ on a trace π is completely deter-
mined by the values of the atomic propositions in the set APH and the adver-
sary’s knowledge (the set of messages known to the adversary) at each state of
the trace π. Adversary’s knowledge determines the truth of the atomic formula in
the set APΩ . Assume that for each state σ we are given the set of atomic propo-
sitions true in that state and the knowledge of the adversary. L(σ) ⊆ 2APH is
the labelling function which indicates whether an atomic proposition in APH is
true in the state σ or not (p ∈ L(σ) means that the atomic proposition p is true
in the state σ). Knowledge of the adversary in state σ is denoted by IΩ(σ), or
equivalently the set of messages known to the adversary in the state σ is IΩ(σ).
We introduce a partial order between traces, which will help us to prove the
correctness of our reduction techniques.

Definition 1. A trace π1 is greater than a trace π2 (denoted by π1 � π2) iff
there exists partitions {A1, · · · , Am} and {B1, · · · , Bm} of the two traces π1 and
π2 such that the following conditions hold:

– There exists 0 = a0 < a1 < a2 < · · · < am = length(π1) such that Ak =
{〈π1, ak−1 + 1〉, · · · , 〈π1, ak〉}, or in other words Ak represents the sub-trace
starting at index ak−1 + 1 and ending at ak.

– A symmetric condition holds for the partition {B1, · · · , Bm} of the trace π2

with indices 0 = b0 < b1 < b2 < · · · < bm = length(π2).
– For two states in the corresponding partitions Ak and Bk (1 ≤ k ≤ m) the la-

belling of atomic propositions in APH is identical and adversary’s knowledge
in every state of Ak is greater than in the last state of Bk. Since knowledge of
the adversary is monotonic along a trace (adversary never forgets anything),
this also implies that the adversary’s knowledge in an arbitrary state of Ak

is more than the knowledge in all states of Bk. More precisely, the following
conditions hold:

∀s ∈ Ak∀s′ ∈ Bk(L(s) = L(s′))
∀s ∈ Ak(IΩ(s) ⊇ IΩ(〈π2, bk〉))

Informally, the lemma given below states that if π1 � π2 the correctness of
an admissible specification in π1 implies its correctness in π2.

Lemma 1. Given two traces π1, π2 such that π1 � π2 and an admissible spec-
ification φ, π1 |= φ implies that π2 |= φ. In other words, the partial order � is
monotonic with respect to the satisfaction relation |=.

6 Partial Order Reduction

Partial order reductions reduce the search space by ignoring redundant inter-
leavings. The theory of partial order reductions is well developed in the context
of verification of reactive systems [GPS96,Pel96,Val91]. Reductions presented in
this section are very heavily influenced by traditional partial order reduction
techniques. However, since we are working with a very specific model and logic,
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the theory is simplified and different. We present the theory as it applies to our
setting.
Throughout this section assume that we are given a specification φ that is admis-
sible. Recall that APH is the set of atomic propositions pertaining to the honest
agents and APΩ is the set of atomic propositions referring to the adversary. An
internal action Act is called invisible if and only if it does not appear in the
specification φ, or in other words Act is not referred to by the atomic formulas
in the set APH . Next we describe transformations on traces.

Permuting invisible internal actions (Rule 1)
Consider a trace π = σ0α1σ1 . . . σn. If there exists a sequence of transitions
σiαi+1σi+1αi+2, such that αi+2 is an invisible internal action, and actions αi+1

and αi+2 do not belong to the same session, then we can permute the actions to
get a new trace given below:

σ0α1σ1 . . . σiαi+2σ
′
i+1αi+1 . . . σn

Permuting sends (Rule 2)
This operation allows one to permute two consecutive send actions if they belong
to different sessions.

Moving send before receives (Rule 3)
If a receive or an internal action Act appears before a send in a trace and
these actions belong to different sessions, then this operation allows us to move
the send action before the receive or the internal action Act.

We call the set of transformations just described allowable operations on a trace.
Suppose we obtain a trace π′ by applying one of the allowable operations to the
trace π, then we say that π ⇒ π′. The reflexive transitive closure of⇒ is denoted
by⇒
. The following lemma is crucial in proving correctness of the partial order
reduction.

Lemma 2. Consider two traces π and π′ such that π ⇒ π′. In this case π  π′.

Using Lemmas 2 and 1, the proof of the following lemma is transparent (note
that π  π′).

Lemma 3. Assume that we are given a specification φ. If there are two traces
π and π′ such that π ⇒
 π′, then π′ |= φ implies that π |= φ, or equivalently
π �|= φ implies that π′ �|= φ.

The basic algorithm for verifying whether a protocol satisfies a specification
works by exploring the state space starting from the initial state using depth-first
search. As soon as we reach a state where the specification is false, we report an
error. If the depth-first search procedure terminates without reporting an error,
the protocol is correct. In the ensuing discussion we will focus on the depth-first
search algorithm. In the description of the algorithms we do not show book-
keeping details such as reporting an error or checking whether a state has been
visited or not. Algorithm A given in Figure 1 performs the depth-first search
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starting from state s. The predicate en(s, α) is true if action α is enabled in the
state s, i.e., action α can be executed from the state s. The set of enabled actions
EN(s) in a state s is { α | en(s, α) }. Algorithm APO (shown in Figure 2) is the
modified depth-first search procedure with partial-order reductions. The set of
actions ample(EN(s)) is defined as follows:

– If EN(s) contains an invisible internal action , then ample(EN(s)) is an
arbitrary invisible action {Act} picked from EN(s).

– Suppose EN(s) does not contain an invisible internal action, but does con-
tain a send action. In this case ample(EN(s)) is an arbitrary send action
picked from the set EN(s).

– If EN(s) does not contain an invisible internal action or a send action,
ample(EN(s)) is equal to EN(s)

Theorem 1 proves the correctness of the partial order reduction. Notice that the
reduced algorithm APO explores fewer traces than the algorithm A. Theorem 1
basically states that every trace considered by the exhaustive algorithm A can
be transformed into a trace considered by the reduced algorithm APO using
allowable operations described earlier.

1 funct dfs(s)
2 EN (s) = { α | en(s, α) }
3 foreach α ∈ EN (s)
4 do dfs(α(s))

Fig. 1. Depth first search algorithm A

1 funct dfs(s)
2 EN (s) = { α | en(s, α) }
3 foreach α ∈ ample(EN(s))
4 do dfs(α(s))

Fig. 2. Modified depth first search algorithm APO

Theorem 1. For every trace π considered by the algorithm A, algorithm APO
considers a trace π′ such that π ⇒
 π′.

Using this theorem along with other results proved earlier, subsequent discussion
shows that the algorithm with partial order reduction will discover an incorrect
trace if and only if the full algorithm A will discover an incorrect trace. Sup-
pose the protocol we are verifying is incorrect. In this case algorithm A, being
exhaustive in nature, will consider a trace π such that π �|= φ. Using Theorem 1
we can deduce that the reduced algorithm APO considers a trace π′ such that
π ⇒
 π′. Using Lemma 3 we obtain that π′ �|= φ. Therefore, if the protocol is
incorrect, the reduced algorithm will detect it. Since the reduced algorithm only
executes a subset of actions enabled from a state, it only considers a subset of
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the entire set of traces. This means that if the reduced algorithm finds an incor-
rect trace, the protocol is incorrect. Hence the protocol is correct if and only the
reduced algorithm APO does not find an incorrect trace. Therefore, the reduced
algorithm APO can be safely used.

7 Experimental Results

The table shown in Figure 3 summarizes the results of applying partial reductions
to a few protocols. We examined the 1KP secure payment protocol [BGH+95],
the Needham-Schroeder public key protocol [NS78], and the Wide-Mouthed Frog
protocol [BAN90,Sch96]. Columns 2 and 3 give the number of initiator and re-
sponder sessions used in the model. The other columns give the number of states
encountered during state space traversal using exhaustive search and search with
partial order reductions. The entries with an “X” represents computations that
were aborted after a day of computation (over 700,000,000 states).

Fig. 3. Table of results

protocol init resp none partial order

1KP 1 1 17,905,267 906,307

N-S 1 1 1,208 146

N-S 1 2 1,227,415 6,503

WMF 3 3 X 1,286,074

8 Related Work

As mentioned in the introduction, there are several research efforts that have ap-
plied existing model checkers to the verification of security protocols. Our model
checker is especially built to check properties of cryptographic and electronic
commerce protocols. For example, we explicitly keep track of the knowledge for
each agent and our logic can refer to the knowledge of various agents. However,
because we extend the system state to keep track of knowledge, the correctness of
various reduction techniques in the domain of traditional model checking cannot
be directly applied. Here we developed the theory of partial order reductions for
the verification of cryptographic and electronic commerce protocols. A reduction
similar to partial order reduction appears in [SS98]. In [SS98] authors use Murφ
to verify cryptographic protocols. The connection to partial order reductions
was not made in [SS98] and the set of reductions considered in [SS98] are more
restrictive than the ones considered here. Moreover, the arguments presented
in [SS98] only apply to a restrictive logic. Arguments presented in this paper are
much more precise and apply to a much richer logic.
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9 Conclusion

In this paper we presented a logic for specifying properties of security protocols.
In this context, we also presented partial order reduction techniques. Experimen-
tal results clearly indicate that this reduction technique significantly reduces the
size of the state space. In the future, we want to test our ideas on larger proto-
cols. Currently, internal actions do not have any semantics associated with them.
In the future we also want to add semantics to internal actions, e.g., the debit
action will actually debit the customer’s account.
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