
Model Checking Security Protocols Using

a Logic of Belief

Massimo Benerecetti1 and Fausto Giunchiglia1,2

1 DISA - University of Trento,
Via Inama 5, 38050 Trento, Italy

2 IRST - Istituto Trentino di Cultura,
38050 Povo, Trento, Italy

{bene,fausto}@cs.unitn.it

Abstract. In this paper we show how model checking can be used for
the verification of security protocols using a logic of belief. We model
principals as processes able to have beliefs. The idea underlying the ap-
proach is to treat separately the temporal evolution and the belief aspects
of principals. Therefore, when we consider the temporal evolution, belief
formulae are treated as atomic propositions; while the fact that princi-
pal A has beliefs about another principal B is modeled as the fact that A
has access to a representation of B as a process. As a motivating example,
we use the framework proposed to formalize the Andrew protocol.

1 Introduction

In this paper we show how model checking (see, e.g., [5,6]) can be used for the
verification of security protocols using a logic of belief (see [3] for an example
of the use of a belief logic in security applications). Our approach allows us to
reuse with almost no variations all the technology and tools developed in model
checking.

Model checking allows us to verify concurrent reactive finite state processes.
We model principals participating to a protocol session as (concurrent reactive
finite state) processes able to have beliefs. The specification of a principal has
therefore two orthogonal aspects: a temporal aspect and a belief aspect. The key
idea underlying our approach is to keep these two aspects separated. In practice
things work as follows:

– when we consider the temporal evolution of a principal we treat belief atoms
(namely, atomic formulae expressing belief) as atomic propositions. The fact
that these formulae talk about beliefs is not taken into consideration.

– We deal with beliefs as follows. The fact that principal a1 has beliefs about
another principal a2 is modeled as the fact that a1 has access to a represen-
tation of a2 as a process. Then, any time it needs to verify the truth value
of some belief atom about a2, e.g., B2φ, a1 simply tests whether, e.g., φ
holds in its (appropriate) representation of a2. Beliefs are essentially used
to control the “jumping” among processes. This operation is iterated in the
obvious way in case of nested beliefs.

S. Graf and M. Schwartzbach (Eds.): TACAS/ETAPS 2000, LNCS 1785, pp. 519–534, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

520 Massimo Benerecetti and Fausto Giunchiglia

The paper is structured as follows. In Section 2 we describe a well known
protocol, the Andrew protocol, as a motivating example. Section 3 presents the
theoretical framework we employ (called MultiAgent Finite State Machines). The
description is given incrementally over the standard model checking notions.
In particular, we adopt CTL [5] as the propositional temporal logic used to
state temporal specifications. Section 4 shows how the Andrew protocol can be
formalized in our framework. Section 5 describes the model checking procedure
we propose, while Section 6 illustrates how the algorithm described in Section 5
works in verifying a property of the Andrew protocol. Finally, some conclusions
are drawn.

2 The Andrew Protocol

In this section we briefly recall a simple authentication protocol, known as the
Andrew protocol, which has been proved to be vulnerable to various attacks (see,
e.g., [3]). The protocol involves two principals, A and B, which share a secret
key Kab, and carry out a handshake to authenticate each other. The ultimate
goal of the protocol is to exchange a new secret session key K ′

ab between A
and B. B is intended to be the key server, while A is the recipient.

We use standard notation, and present the version of the protocol proposed
in [3]. Ni denotes a nonce (a fresh message) newly created by principal i for the
current session; Kij is a shared key between principals i and j; {M}Kij denotes
a messageM encrypted with the key Kij ; M1,M2 is the message resulting from
the concatenation of the two messagesM1 and M2; while i→ j :M denotes the
fact that principal i sends the message M to principal j. The Andrew protocol
can be formulated as follows:

1 A→ B : {Na}Kab

2 B → A : {Na, Nb}Kab

3 A→ B : {Nb}Kab

4 B → A : {K ′
ab, N

′
b}Kab

Intuitively, the protocol works as follows: with message 1, A sends B the (fresh)
nonce Na encrypted with the key Kab, which is supposed to be a good key. The
goal of this message is to request authentication from B. With message 2, B
sends back to A the nonce Na concatenated with a newly created nonce Nb,
both encrypted. At this point, since B must have decrypted message 1 to be
able to generate message 2, A knows that it is talking with B. Then, in message
3, A sends back to B Nb encrypted. This allows B to conclude that it is actually
talking to A (as it must have decrypted message 2 to obtain Nb and generate
message 3). The two principals are now authenticated. Finally with message
4, B sends A the new session key K ′

ab together with a new nonce N ′
b encrypted

with the shared key. The final message is the one subject to attacks. Indeed,
in message 4 there is nothing that A can recognize as fresh. An intruder might
send A an old message, possibly containing a compromised key.

Model Checking Security Protocols Using a Logic of Belief 521

The kind of analysis we’re interested in is based on the idea, originally pro-
posed in [3] (but see also [1]), of studying how messages sent and received during
a protocol session by a trusted party may affect its beliefs about the other par-
ties. In the present case, one might want to prove the following property: after
message 4 has been received by A, A (respectively B) believes that the new key
is a good key between A and B. Another property is that after message 4, A
(respectively B) believes that B (respectively A) believes that the new key is a
good key for communication between A and B. As pointed out in [3], the second
property is stronger than the first, as it ensures that both principals believe that
the protocol ended correctly and that they both possess a good session key. It
turns out that neither of the properties above can be attained by principal A.

3 Multiagent Finite State Machines

Principals engaged in an authentication session can be modeled as finite state
processes. We build the notion of principal (agent) incrementally over the notion
of process. Suppose we have a set I of principals. Each principal is seen as a
process having beliefs about (itself and) other principals. We adopt the usual
syntax for beliefs: Biφ means that principal i believes φ, and φ is a belief of i.
Bi is the belief operator for i.

The idea is to associate to each (level of) nesting of belief operators a process
evolving over time. Therefore, let B = {B1, ...,Bn}, where each index 1, ..., n ∈ I
corresponds to a principal. The set B∗ denotes the set of finite strings of elements
of B, i.e., strings of the form B1, ...,Bn with Bi ∈ B. We call any α ∈ B∗, a view.
Each view in B∗ corresponds to a possible nesting of belief operators. We also
allow for the empty string, ε. Figure 1 depicts the general structure of the views.
The intuition is that ε represents the view of an external observer (e.g., the
designer) which, from the outside, “sees” the behavior of the overall protocol.
To each nesting of belief operators we associate a view of the corresponding
principal. Intuitively, in Figure 1, the beliefs of principal 1 correspond to the
view B1 and can be modeled by a process playing 1’s role. The beliefs that 1
has about (the behavior of) principal 2 correspond to the view B1B2 and can be
modeled by a process playing 2’s role in (1’s view of) the protocol. Things work
in the same way for the beliefs of 2 and the beliefs that 2 can have about 1.

We associate a language Lα to each view α ∈ B∗. Intuitively, each Lα is the
language used to express what is true (and false) of the process of view α. We
employ the logic CTL, a well known propositional branching-time temporal logic
widely used in formal verification [5]. For each α, let Pα be a set of propositional
atoms. Each Pα allows for the definition of a different language, called a Multi-
Agent Temporal Logic (MATL) language (on Pα). A MATL language Lα on Pα

is the smallest CTL language containing the set of propositional atoms Pα and
the belief atoms Biφ, for any formula φ of LαBi . In particular, Lε is used to
speak about the whole protocol. The language LBi

is the language adopted to
represent i’s beliefs. The language LBiBj is used to specify i’s beliefs about j’s
beliefs, and so on. For instance, the formula AG (p ⊃ Bi¬q) ∈ Lε, (denoted by

522 Massimo Benerecetti and Fausto Giunchiglia

ε

B2. . .B1

. . . B2B1 B2B2B1B1 B1B2. . .
.

Fig. 1. A set of views

ε : AG (p ⊃ Bi¬q)), intuitively means that in every future state, if p is true then
principal i believes q is false. Given a family {Pα} of sets of propositional atoms,
the family of MATL languages on {Pα} is the family of CTL languages {Lα}.

We are interested in extending CTL model checking to the model checking
of belief formulae. In model checking, finite state processes are modeled as finite
state machines. A finite state machine (FSM) is a tuple f = 〈S, J,R, L〉, where S
is a finite set of states, J ⊆ S is the set of initial states, the transition relation R
is a total binary relation on S, and L : S → P(P) is a labelling function, which
associates to each state s ∈ S the set L(s) of propositional atoms true at s.
Our solution is to extend the notion of FSM to that of MultiAgent Finite State
Machine (MAFSM), where, roughly speaking, a MAFSM is a finite set of FSMs.

A first step in this direction is to restrict ourselves to a finite number of
views α. Let Bn denote a finite subset of B∗ obtained by taking the views in
any finite subtree of B∗ rooted at ε. This restriction is not enough, as a finite
set of views still allows for an infinite number of belief atoms. Even if we had a
finite number of processes we would not be able to model them as FSMs. This
problem can be solved introducing the notion of explicit belief atoms as a finite
subset of the set of belief atoms. Explicit belief atoms are the only belief atoms
which are explicitly represented in a FSM.

Formally, if Lα is a MATL language of view α, then for each belief operator
Bi, the set Expl(Bi, α) of explicit belief atoms of Bi for α is a (possibly empty)
finite subset of the belief atoms of Lα. We have the following:

Definition 1. Let {Lα} be a family of MATL languages on {Pα}. A MultiAgent
Finite State Machine (MAFSM) F = {Fα} for {Lα} is a recursive total function
such that:

1. Fε �= ∅;
2. for all views α ∈ Bn ⊂ B∗ with Bn finite, it associates with α a finite set Fα

of FSMs on the MATL language on the following atoms: Pα and , for every
principal i, Expl(Bi, α);

3. for all the views α ∈ B∗ \Bn, Fα = ∅.
where B∗ \Bn denotes the difference between B∗ and Bn, namely the set of all
views not contained in Bn.

Model Checking Security Protocols Using a Logic of Belief 523

Biφ

Biϕ

s

α

Implicit belief atom

φφ
α iB

s’ s’’

ϕϕ

Fig. 2. Explicit belief atoms and satisfiability

The first condition ensures that the protocol specification is not empty; the
second allows us to deal, in each view, with finite sets of FSMs; and the third
restricts us to a finite number of views. In general, there may be more than one
FSM associated with each view. This allows for situations in which a view can
be only partially specified, and consequently there can be more than one process
modeling that view. If it is completely specified, a view contains only one FSM.

Given the notion of MAFSM, the next step is to give a notion of satisfiability
in a MAFSM. We start from the notion of satisfiability of CTL formulae in an
FSM at a state (defined as in CTL structures). Since FSMs are built on the
propositional and explicit belief atoms of a view, to assess satisfiability of the
propositional and explicit belief atoms (and the CTL formulae build out of them)
we do not need to use the machinery associated with belief operators. However,
this machinery is needed in order to deal with the (infinite) number of belief
atoms which are not memorized anywhere in MAFSM.

Let Impl(Bi, α), the set of implicit belief atoms of a view α, be the (infi-
nite) subset of all belief atoms of Lα which are not explicit belief atoms, i.e.,
Impl(Bi, α) = {Biφ ∈ Lα \ Expl(Bi, α)}. The idea is to use the information ex-
plicitly contained in the labelling function of each state s of a FSM f of a view
α to assess the truth value of the implicit belief atoms at a state s. Figure 2
illustrates the underlying intuition. Intuitively, the principal modeled by FSM f
(in view α), when in state s, ascribes to principal i the explicit belief atoms of
the form Biφ true at s. This means that the FMSs of view αBi, which model
the beliefs of i, must be in any of the states (s′ and s′′ in Figure 2) in which the
formulae φ, occurring as arguments of the explicit belief atoms, are true. This
motivates the following definition. Let ArgExpl(Bi, α, s) be defined as follows:

ArgExpl(Bi, α, s) = {φ ∈ LαBi | Biφ ∈ L(s) ∩ Expl(Bi, α)}

ArgExpl(Bi, α, s) consists of all the formulae φ ∈ LαBi such that the explicit
belief atom Biφ is true at state s (i.e., it belongs to the labelling function of s).
The set ArgExpl(Bi, α, s) contains the formulae which identify the states in
which the FSMs in view αBi can be, whenever the process in view α is in state s.

We are now ready to define the notion of satisfiability of implicit belief atoms.
Let Biψ be an implicit belief atom of a view α. For each state s of a FSM of
α, we can compute ArgExpl(Bi, α, s). As shown in Figure 2, we just need to

524 Massimo Benerecetti and Fausto Giunchiglia

check whether all the reachable states 1 of the FSMs of view αBi, which satisfy
ArgExpl(Bi, α, s) (namely, the set {φ} in Figure 2), also satisfy the argument ψ
of the implicit belief atom. If this is the case, then s satisfies Biψ.

Definition 2. (Satisfiability in a MAFSM) Let F be a MAFSM, α a view
in B∗, f = 〈S, J,R, L〉 ∈ Fα an FSM, and s ∈ S a state. Then, for any formula
φ of Lα, the satisfiability relation F, α, f, s |= φ is defined as follows:

1. F, α, f, s |= p, where p is a propositional atom or an explicit belief atom: the
same as FSM satisfiability;

2. satisfiability of propositional connectives and CTL operators: the same as
FSM satisfiability;

3. F, α, f, s |= Biψ, where Biψ is an implicit belief atom, iff for all f ′ ∈ FαBi

and s′ reachable state of the FSM f ′, F, αBi, f
′, s′ |= ∧

ArgExpl(Bi, α, s)
⊃ ψ.

We have furthermore:

4. for every s ∈ J , F, α, f |= φ iff F, α, f, s |= φ;
5. F, α |= φ iff for all f ∈ Fα, F, α, f |= φ;
6. F |= α : φ iff F, α |= φ.

In the definition of satisfiability above, Item 3 is the crucial step. The formula∧
ArgExpl(Bi, α, s) is the conjunction of all the elements of ArgExpl(Bi, α, s).2

Item 4 states that a FSM satisfies a formula if this formula is satisfied in all its
initial states. Item 5 states that a formula is satisfied in a view if it is satisfied
by all the FSMs of that view. Finally, Item 6 states that a labeled formula α : φ
is satisfied if φ is satisfied in the view corresponding to the label.

4 Modeling the Andrew Protocol Using MAFSMs

As described in Section 3, a MAFSM can be constructed out of the following
elements: the structure of the views; the atomic propositions of each view and
how they vary over time; the choice of explicit belief atoms of each view and
how they vary over time; and the specification of the initial states for the FSMs
in each view. In this section we present a MAFSM-based model of the Andrew
protocol, thus providing, in turn, all these elements. For lack of space, we give
only a partial description, emphasizing those elements of the model which are
relevant to illustrate our approach.

In the MAFSM modeling the Andrew protocol there is only one FSM per
view. Indeed, the processes associated to the all the views can be completely
1 A state s of a FSM is said to be reachable if there is a path leading from an initial
state of the FSM to state s.

2 Item 3 gives to belief operators the same strength as modal K(m), where m is the
number of principals. In particular, we have that if Γ ⊃ φ is a theorem in a view
then BiΓ ⊃ Biφ is a theorem in the (appropriate) view above, where BiΓ is the set
{Biφ | φ ∈ Γ}.

Model Checking Security Protocols Using a Logic of Belief 525

A

A B B A

BB

B B B B

ε

B

Fig. 3. The set of views of the Andrew protocol (Section 2)

specified, starting from the protocol specification given in Section 2. In the pre-
sentation below, we give the FSM specifications using the input language of the
model checker NuSMV [4].

The structure of the views. The Andrew protocol involves two principals, A
and B. Therefore, we have I = {A,B}. We model each principal as having beliefs
about the other. Since, for the sake of the example, we do not need to model
beliefs that a principal has about itself, we will need only to consider, besides
the external view ε, the views of A and B, the view A has about B and the
view B has about A. Therefore, Bn = {ε,BA,BB,BABB,BBBA}. Figure 3 shows
the resulting situation. ε (the external observer) is modeled as a process which
“sees” all the messages sent and received by the principals. BA and BBBA model
the behavior of principal A, while views BB and BABB model the behavior of
principal B.

The set of atomic propositions Pα. In each view, we need to model a
principal sending a message to another principal and/or receiving a message,
as well as the properties the principal attributes to the (sub)messages it receives
or sends. In particular, a (sub)message can be fresh and a key can be a good
key for secret communication between the two principals. Each view has its own
set of atomic propositions, reflecting the atomic properties of interest about its
associated process. Since BA and BBBA model the same principal, we associate
to both of them the same set of atomic propositions. Similarly for the views BB

and BABB. For what concerns the views BA and BABB in the Andrew protocol,
we can consider the following set of atomic propositions:

PBA
=




sendB Na Kab,
recNa Nb Kab,
sendB Nb Kab,
recK ′

ab N
′
b Kab,

fresh Na,
fresh K ′

ab N
′
b Kab,

shk K ′
ab

...




PBABB
=




recNa Kab,
sendANa Nb Kab,
sendAK

′
ab N

′
b Kab,

fresh Nb,
fresh K ′

ab N
′
b Kab,

shk K ′
ab

...




where the variables of the form recM or sendB M (where M is a message of
the Andrew protocol) are called message variables and represent the act of re-

526 Massimo Benerecetti and Fausto Giunchiglia

ceiving M , and sending M to B, respectively. For instance, recNa Nb Kab and
sendB Na Kab in view BA represent A receiving {Na, Nb}Kab

(message 2 in the
Andrew protocol), and A sending {Na}Kab

to B (message 3 in the Andrew
protocol), respectively. Variables of the form fresh M or shk M are called fresh-
ness variables, and express freshness properties of (sub)messages. For instance,
fresh Na in view BA means that Na is a fresh (sub)message, while shk K ′

ab ex-
presses the fact that K ′

ab is a good shared key between A and B. For what
concerns view ε, we set:

Pε=




sendB,AK
′
ab N

′
b Kab,

recAK
′
ab N

′
b Kab,

...




where the variables for the sent messages (e.g., sendB,AK
′
ab N

′
b Kab) are labeled

(in subscript) with both the sender (B) and the intended receiver (A), while
those of received messages (e.g., recAK

′
ab N

′
b Kab) are labeled only with the

actual receiver (A). With respect to the other views, the additional subscripts
for both send and rec reflect the fact that ε knows who sends a message to whom
and who receives what message.

Evolution of message variables. To specify the evolution of variables in a
view we use the next() operator of the NuSMV input language. The next operator
allows us to specify the next value of a variable in each state, possibly depending
on its value in the current state. Since all variables are of type boolean, the
possible values are T (for true) and F (for false). We report below the definitions
of the next state value for some message variables in the language of view BA,
modeling the behavior of (the beliefs of) A. 3

BA
1 next(sendB Na Kab) := case

!sendB Na Kab : {T,F};
1 : sendB Na Kab;

esac;
2 next(recK′

ab N′
b Kab) := case

sendB Nb Kab & !rec K′
ab N′

b Kab: {T,F};
1 : rec K′

ab N′
b Kab;

esac;

Statement 1 contains a case statement, whose first clause (!sendB Na Kab :
{T, F}) contains a precondition on the left-hand side and the next value on the
right-hand side. The precondition is the negation of a message variable and is
true when sendB Na Kab is false, that is if message Na Kab has not been sent
to B yet . The next value is a set of values ({T, F}). This intuitively means
that the first message of the Andrew protocol ({Na}Kab

) may or may not be
sent (i.e., sendB Na Kab may nondeterministically take value T or F) in the
next state, if it has not been sent yet in the current state. The second item is
the “default” clause, and it is taken if the precondition in the first clause does
3 The label BA at the top of a block of statements means that the block belongs to
the specification of view BA, and similarly for the other views.

Model Checking Security Protocols Using a Logic of Belief 527

not apply. The result of this clause is that sendB Na Kab keeps, in the next
state, its current value. In Statement 2, the precondition of the first clause (i.e.,
sendB Nb Kab & !recK ′

ab N
′
b Kab) is a conjunction of two boolean expressions.

The first expression means that {Nb}Kab
has been already sent to B, and the

second means that {K ′
ab, N

′
b}Kab

has not been received yet. The next value again
is the nondeterministic choice between values T and F (the message is received
or not). The messages in each session of the Andrew protocol are supposed to
be sent and received following the order reported in Section 2. Therefore, for
each message variable, the preconditions in the next statement checks whether
the previous message (and therefore all the previous messages) involving the
current principal (A in the case of view BA), has been already conveyed or not.
The default clause is similar to that of Statement 1. The specification of the
evolution of the other message variables in the other views is specified in a
similar way.

Evolution of freshness variables. In any path of states of a view, freshness
variables for (sub)messages originated by that principal always keep their initial
values. In the Andrew protocol, this is the case for Na in view BA (and also
BBBA), as expressed by the next statements below, and Nb in views BB and
BABB.
BA
3 next(fresh Na) := fresh Na;

Statement 3 simply says that fresh Na keeps the current value in the next state.
Similar statements are made also for fresh Nb, fresh N ′

b and shk K ′
ab (which are

messages originated by B) in the views modeling B.
On the other hand, a principal can attain freshness of the messages it has not

originated itself, only after it receives (possibly other) messages which contain
them. Therefore, freshness variables of a messageM not originated by a principal
may change their value (e.g., from false to true) only when the principal has
received a message containing M . After the last message of the session has
been conveyed, the freshness variables of M keep their current value (no new
information can be gained by the principal). Moreover, once it becomes true,
a freshness variable remains stable. All of the above intuitions are specified as
follows:
BA
4 next(shkK′

ab) := case
!shkK′

ab & !rec K′
ab N′

b Kab : {T,F};
1 : shkK′

ab ;
esac;

5 next(fresh K′
ab N′

b Kab) := case
!fresh K′

ab N′
b Kab & !rec K′

ab N′
b Kab : {T,F};

1 : fresh K′
ab N′

b Kab;
esac;

Statement 4 and 5 are very similar in form. As to statement 4, the
precondition in the first clause of the case statement is a conjunction
(!shkK ′

ab & !recK ′
ab N

′
b Kab) of two negations (meaning respectively that “K ′

ab

is not known to be a good shared key”, and that the “{K ′
ab, N

′
b}Kab

has not

528 Massimo Benerecetti and Fausto Giunchiglia

been received yet”). If this condition is true, the nondeterministic choice on the
left-hand side of the clause is taken. The “default” clause leaves the value of
the variable in the next state unchanged. Statement 5 checks, in the first clause
of the case statement, if the conjunction in the precondition (!fresh K ′

ab N
′
b Kab

& !recK ′
ab N

′
b Kab) is true ({K ′

ab, N
′
b}Kab

is not known to be fresh, and it has
not been received yet), and in this case chooses nondeterministically the next
value of the variable.

Clearly Statements 4 and 5 are very general and do not allow us to model
appropriately the freshness of (sub)messages. Indeed, additional constraints are
needed. Following the BAN logic approach, there are a number of properties of
messages, which relate their freshness to that of their components. For instance,
a principal can conclude that a message is fresh from the freshness of one of its
components. This is the case for {Na}Kab

, which is known to be fresh whenever
Na is known to be.4 NuSMV allows for specifying constraints on the admissi-
ble (reachable) states by means of invariants, which are boolean formulae that
must hold in every reachable state. The following invariant statement captures
a relevant constraint on some freshness variables:

BA
6 INVAR (fresh K′

ab | fresh N′
b) & rec K′

ab N′
b Kab ↔ fresh K′

ab N′
b Kab

Invariant 6 is an equivalence (↔) whose left-hand side is a conjunction. The
disjunction in the left conjunct (fresh K ′

ab | fresh N ′
b) means that K

′
ab or N ′

b is
fresh; the second conjunct is meant to be true when the message {K ′

ab, N
′
b}Kab

has been received. Intuitively, it states that A can consider (the encrypted mes-
sage) {K ′

ab, N
′
b}Kab

fresh (right-hand side of the equivalence) if and only if it
has received the message (second conjunct on the left-hand side) and either of
its components is fresh (first conjunct on the left-hand side). Similar invariants
must be added for each message received by the principal.

View BABB can be specified in a similar way. Some additional statements
must be added, though, reflecting the role of principal B. Indeed, the Andrew
protocol assumes that B is the key server (see Section 2). Therefore, B is sup-
posed to generate and send a good shared key in message 4, whenever it believes
that {K ′

ab, N
′
b}Kab

is fresh. Remember that we have a variable for the freshness
of the last message of the protocol (namely, fresh K ′

ab N
′
b Kab), and a variable

for K ′
ab being a good key (shk K ′

ab). Then we can specify the above invariant as
an implication:

BABB
7 INVAR fresh K′

ab N′
b Kab → shk K′

ab

4 For (sub)messages which are not originated by the principal, usually BAN-like log-
ics substitute the notion of freshness with that of recentness. A message is then
considered recently conveyed by another principal, if it is part of a fresh message
encrypted with a secret key, shared with that principal. The difference between these
two concepts is not relevant for the present paper.

Model Checking Security Protocols Using a Logic of Belief 529

Explicit belief atoms of a view. We need now to choose the explicit belief
atoms of each view. In general, the choice of the appropriate set of explicit
belief atoms of (the views in) a MAFSM depends on what kind of aspects of the
protocol one wants to analyze, and on what kind of properties need to be verified.
In the case of authentication protocols, principals can only gain information
carried by the messages they receive. In BAN-like logics the freshness of the
received messages is based on their form, and it is a basic property to be attained
by a principal. We choose, therefore, the following belief atoms as explicit beliefs
atoms: the beliefs about other principals having sent or received a given message,
and the beliefs about the freshness of messages. In our case, we have:

Expl(BA, ε)=



BArec K ′

ab N ′
b Kab ,

BAfresh N a

...


 Expl(BB ,BA)=



BBsendA K ′

ab N ′
b Kab ,

BBfresh K ′
ab N ′

b Kab

...




where, for instance, BAfresh N a in ε intuitively means that A believes that Na

is a fresh nonce; while BBsendA K ′
ab N ′

b Kab in BA expresses the fact that A
believes that B believes that it has sent {K ′

ab, N
′
b}Kab

to A. There are no explicit
belief atoms in BBBA and BABB , as they have no beliefs atoms at all in their
language. Indeed, the example we are considering does not need to model more
than two nesting of the belief operators.

Evolution of explicit belief atoms. Variables representing explicit belief
atoms are supposed to vary similarly to freshness variables. In particular, as long
as there are still messages to be received by a principal of a view, explicit belief
atoms of that view are free to change value from F to T. Once the last message of
the protocol has been received, no new belief can be attained, and explicit belief
atoms keep their value, thereafter. Again, once they become true, they remain
stable. The following statement specifies how the value of BBsendANa Nb Kab

may vary in BA:
BA
8 next(BBsendA Na Nb Kab) := case

!BBsendA Na Nb Kab & !rec K′
ab N′

b Kab : {T,F};
1 : BBsendA Na Nb Kab;

esac;

Very similar statements can be added for all the explicit beliefs in all views.
Similarly to freshness variables, additional constraints, in the form of state invari-
ants, on reachable states need to be added for explicit beliefs atoms. In particular
we report below some relevant ones for the Andrew protocol. All these invariants
can be seen as encodings of standard properties holding in BAN-like logics.
BA
9 INVAR rec K′

ab N′
b Kab → BBsendA K′

ab N′
b Kab

10INVAR fresh K′
ab N′

b Kab → BBfresh K′
ab N′

b Kab

Both invariants are implications. Intuitively, Invariant 9 states that if it receives
the message {K ′

ab, N
′
b}Kab

(left-had side of the implication) then A ascribes to B
the belief that B has sent that message to A (right-hand side of the implication).

530 Massimo Benerecetti and Fausto Giunchiglia

Invariant 10 states that if it can conclude that {K ′
ab, N

′
b}Kab

is fresh, then A also
ascribes to B the same belief.

Initial states of a view. Finally, we have to set the initial states of the FSM
in each view. They can be specified as a boolean formula which identifies all and
only the admissible initial states of the FSM. Following the BAN logic tradition,
we want to model a single session of the Andrew protocol and study what beliefs
each principal can attain at the end of the session. A protocol session starts with
no message sent or received. Thus, the process in each view starts with the value
of all the message variables set to false. Since no message has been received yet,
freshness variables of messages not originated by a principal are set to false as
well. All the other variables can take nondeterministically the value T or F in the
initial states. The following specification in view BA formalises these intuitions
for the Andrew protocol:
BA
INIT !sendB Na Kab &

!rec Na Nb Kab &
!sendB Nb Kab &
!rec K′

ab N′
b Kab &

!fresh K′
ab N’b Kab &

!shk K′
ab

...

All the other views can be specified in a similar way.

5 Model Checking a MAFSM

The basic operation of a standard CTL model checking algorithm is to extend
the labelling function of an FSM (which considers only propositional atoms) to
all the sub-formulae of the formula being model checked. Let us call Extended
FSM (or, simply, FSM when the context makes clear what we mean) the result
of this operation. The generation of an extended FSM relies on the fact that the
labelling function explicitly defines the truth value of all atoms. The problem is
that in the FSMs of a MAFSM the labelling function is not defined on implicit
belief atoms, whose truth value is therefore left undefined; and we need to know
the truth values of the implicit belief atoms occurring in the formula to be model
checked. The definition of satisfiability in a MAFSM (Item 3 in Definition 2) tells
us how to solve this problem.

The crucial observation is that ArgExpl(Bi, α, s), in Item 3 of Definition 2,
is generated from the formulae in Expl(Bi, α) and the labelling functions of the
FSMs in α; ArgExpl(Bi, α, s) is a finite set; and it only depends on the MAFSM
specified (thus independent of the formula to be model checked). For each belief
operator Bi, CBi

is called the (MAFSM) compatibility relation of Bi, and it is a
relation defined as follows. Let ex⊆Expl(Bi, α) be a subset of the explicit belief
atoms of a view α. Then:

CBi
(α, ex) =

{〈f ′, s′〉 | f ′ ∈ FαBi , s
′ a reachable state of f ′ and

F, αBi, f
′, s′ |= {φ | Biφ ∈ ex}

}

Model Checking Security Protocols Using a Logic of Belief 531

.

..

.

..
.
..

.

..

.

..

.

..

B BBA

BA
BB

B BB A

.

..

10

0 1

1’0’

1’0’

10

ε
n

m

m’

t

t’

Fig. 4. Some FSMs for the Andrew Protocol

Starting from a view α and a subset of explicit belief atoms ex of α, CBi
(α, ex)

collects all the FSMs f ′ and reachable states s′ of f ′ (in the view αBi) which
satisfy the arguments of the explicit belief atoms ex (formally: {φ | Biφ ∈ ex}).
Intuitively, CBi

(α, ex) contains all the pairs 〈f ′, s′〉 of view αBi, in which the
process associated to view αBi can be, whenever the process modeling view α is
in a state that satisfies all the explicit belief atoms in ex.

It can be easily seen that, for f ′ a FSM of view αBi, s′ any reachable state
of f ′, and s a state of a FSM of view α:

〈f ′, s′〉 ∈ CBi
(α,L(s) ∩ Expl(Bi, α)) iff F, αBi, f

′, s′ |=
∧
ArgExpl(Bi, α, s)

where L(s)∩Expl(Bi, α) is the set of explicit belief atoms true at state s. Hence,
the following holds:

F, α, f, s |=Biφ iff for all 〈f ′, s′〉 ∈ CBi
(α,L(s) ∩Expl(Bi, α)), F, αBi, f

′, s′ |=φ
(1)

where Biφ is any implicit belief atom.
Figure 4 represents the underlying intuition on the MAFSM for the Andrew

protocol. The relationCBi
(α,L(s)∩Expl(Bi, α)) is depicted as arrows connecting

states of adjacent views. Let us consider view ε. When the process associated to
ε is in state n, the external observer believes that principal A, modeled by view
BA, can be in any one of the states m and m′ of the FSM of that view, which
are compatible with state n. The states of view BA are completely identified by
the explicit beliefs of ε true at state n. Therefore, ε believes Biφ in state n if
and only if each state of BA, in which ε believes A to be (i.e., states m and m′

in Figure 4), satisfies φ. Given a state s′ of a FSM f ′ of view αBi, we say
that s′ is compatible with a state s of a FSM of view α if the pair 〈f ′, s′〉 belongs
to CBi

(α,L(s) ∩ Expl(Bi, α)).
The model checking algorithm MAMC−View(α, Γ) (see [2] for a complete

description and a proof of correctness) takes two arguments: a view α, and a set
of MATL formulae Γ ⊂ Lα. MAMC−View(α, Γ) performs the following phases:

532 Massimo Benerecetti and Fausto Giunchiglia

Phase A. MAMC−View(α, Γ) considers in turn the belief operators Bi. For
each of them, the set ArgImpl(Bi, α, Γ), the set of all the formulae φ which are
arguments of the implicit belief atoms Biφ occurring in Γ , is computed.

Phase B. MAMC−View(α, Γ) calls itself recursively on the view below (e.g.,
αBi) and on the set ArgImpl(Bi, α, Γ). In this process, the algorithm recursively
descends the tree structure which needs to be model checked. The leaves of this
tree are the views for which there is no need to model check implicit belief atoms,
as there are no more implicit belief atoms occuring in Γ .

Phase C. This phase is a loop over all the FSMs f of the current view α to
extend the labelling functions of the visited FSMs. This loop iteratively performs
the following two phases:
Phase C.1. In this phase, all the states of the FSM f of the current view α
where the algorithm is, are labeled with the implicit belief atoms. This phase
is executed only if there occur implicit belief atoms in the input formulae. The
labelling of states of f is computed according to definition of satisfiability of im-
plicit belief atoms in a MAFSM. Therefore, for each reachable state s of f , the set
L(s)∩Expl(Bi, α) is computed. Then, the algorithm computes the implicit belief
atoms occurring in Γ which can be added to the labelling function of s. That is,
for each implicit belief atom Biφ, Biφ is added to L(s) if φ is satisfied by all the
pairs 〈f ′, s′〉 belonging to the compatibility relation CBi(α,L(s) ∩Expl(Bi, α)).

Phase C.2. This phase simply calls a standard CTL model checking algorithm
on the FSM f of the current view. Indeed, at this point every state s in the
current FSM f is labeled (by phase C.1) with all the atoms (i.e, propositional
atoms, explicit and implicit belief atoms) occurring in the input formulae.

Notice that in phase C.2 we can employ any model checker (in our case
NuSMV) as a black box.

6 Model Checking the Andrew Protocol

In this section, we show how the model checking algorithm described in Section 5
works, trying to check a desired property of the Andrew protocol of Section 2. Let
us consider the following property (from Section 2): A believes that B believes
thatK ′

ab is a good shared key, any time it receives the last message of the Andrew
protocol. This property can be written as the following MATL formula in view ε:

ε : AG (recAK
′
ab N

′
b Kab ∧BA fresh Na → BA BB shk K ′

ab) (2)

where the (sub)formula BA BB shk K ′
ab is an implicit belief atom.

Phase A and B. We only have to consider the belief operator BA. We con-
struct the set ArgImpl(BB , ε, Γ) = {BB shk K ′

ab}. Since BB shk K ′
ab is an im-

plicit belief atom of ε, MAMC−View(ε, {AG (recAK
′
ab N

′
b Kab ∧BA fresh Na →

BABB shk K ′
ab)}) calls itself recursively on view BA and {BB shk K ′

ab} (call-
ing MAMC−View(BA, {BB shk K ′

ab})). In view BA, we need to consider the
operator BB and to compute ArgImpl(BB,BA, {BB shk K ′

ab}) = {shk K ′
ab}.

Model Checking Security Protocols Using a Logic of Belief 533

MAMC−View(BA, {BB shk K ′
ab}) descends to view BABB (calling

MAMC−View(BABB, {shk K ′
ab})). Phase B is not performed in view BABB as

no implicit beliefs occur in the input formulae (namely, {shk K ′
ab}).

Phases C.1 and C.2 at BABB. The only formula to check in this view is the
atomic formula shk K ′

ab. The FSM of this view already contains the information
about its truth value in each state (see Section 4). Therefore, both phases end
immediately.

Phase C.1 at BA. The FSM f of this view is labeled with the implicit
belief atom BB shk K ′

ab. For each reachable state s of f and each
pair 〈f ′, s′〉 ∈ CBB

(BA, L(s) ∩ Expl(BB,BA)), the intersection of
ArgImpl(BB,BA, {BB shk K ′

ab}) = {shk K ′
ab} and L(s′) is computed. This gives

either the empty set (meaning that shk K ′
ab is not true in s

′) or {shk K ′
ab} itself

(meaning that shk K ′
ab is true in s

′). The final step consists in adding to L(s) the
implicit belief atom BB shk K ′

ab, if every state of f
′, compatible with s, satisfies

shk K ′
ab. It turns out that the states of BA satisfying that implicit belief are those

which satisfy recK ′
ab N

′
b Kab (A has received message 4) and fresh K ′

ab N
′
b Kab

(message 4 is known by A to be fresh). All those states also satisfy the explicit
belief atom BB fresh K ′

ab N
′
b Kab (by Invariant 10), and are therefore compati-

ble only with those states of view BABB where fresh K ′
ab N

′
b Kab is true. Notice

that there can be a reachable state of BA where recK ′
ab N

′
b Kab and fresh Na are

both true but fresh K ′
ab N

′
b Kab is false. This is possible, as nothing in message 4

is recognisable by A as fresh. As a consequence, there is a reachable state of view
BA, which does not satisfy BB fresh K ′

ab N
′
b Kab either. Let the state m of view

BA in Figure 4 be one such state. Therefore, state m satisfies recK ′
ab N

′
b Kab

and fresh Na but not BB shk K ′
ab.

Phase C.2 at view BA. Once again, the formula to check is atomic (though
an implicit belief atom). Therefore, this phase ends immediately.

Phase C.1 at ε. We have now to process the implicit belief BABB shk K ′
ab.

It performs similar steps as in phase C.1 for view BA. It turns out that there
is (at least) a reachable state in the FSM of ε which does not satisfy this im-
plicit belief. Indeed, as we have pointed out above, there is a state of view
BA (state m in Figure 4) which does not satisfy BB shk K ′

ab but satisfies both
fresh Na and recK ′

ab N
′
b Kab. Let us assume that state n in ε (see Figure 4)

satisfies BA fresh Na and recAK
′
ab N

′
b Kab but does not satisfy the explicit be-

lief atom BA fresh K ′
ab N

′
b Kab. n is actually a reachable state of the FSM of

ε. Since n satisfies recAK
′
ab N

′
b Kab, by an invariant of ε similar to Invari-

ant 9, n also satisfies BA recAK
′
ab N

′
b Kab. Since n does not satisfy the belief

atom BA fresh K ′
ab N

′
b Kab, the explicit belief atoms true at n are not enough

to rule out the compatibility with state m in BA (see again Figure 4). In-
deed, m does not satisfy fresh K ′

ab N
′
b Kab, therefore, it belongs to the com-

patibility relation CBA
(ε, L(n)∩Expl(BA, ε)). Statem, as we know, does not sat-

isfy BB shk K ′
ab. As a consequence of (1), state n of ε does not satisfy

BABB shk K ′
ab.

534 Massimo Benerecetti and Fausto Giunchiglia

Phase C.2 at ε. Here the usual CTL model checking algorithm on the formula
(2) is called. As expected, the final answer is negative since, from phase C.1
in ε, there are reachable states satisfying recAK

′
ab N

′
b Kab ∧ BA fresh Na but

not BABB shk K ′
ab.

7 Conclusion

In this paper we have described a model-checking based verification procedure
for security protocols employing a logic of belief. Our approach allows us to reuse
the technology and tools developed in model checking.

To model beliefs in security protocols, we have defined the notion of Multi-
agent Finite State Machine as an extension of the usual notion of Finite State
Machine. Then, we have described a model checking algorithm which allows us
to verify formulae containing belief (sub)formulae in a MAFSM. Finally, we have
formalized within this framework a well known security protocol, the Andrew
protocol.

References

1. M. Abadi and M. Tuttle. A semantics for a logic of authentication. In Proceedings
of the 10th Annual ACM Symposium on Principles of Distributed Computing, pages
201–216, 1991. 521

2. M. Benerecetti, F. Giunchiglia, and L. Serafini. Model Checking Multiagent Sys-
tems. Journal of Logic and Computation, Special Issue on Computational & Logical
Aspects of Multi-Agent Systems, 8(3):401–423, 1998. Also IRST-Technical Report
9708-07, IRST, Trento, Italy. 531

3. M. Burrows, M. Abadi, and R. M. Needham. A logic of authentication. ACM
Transactions on Computer Systems, 8(1):18–36, 1990. 519, 520, 521

4. A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. Nusmv: a new symbolic
model verifier. In Proceedings of the International Conference on Computer-Aided
Verification (CAV’99)Trento, Italy. July 1999. 525

5. E. Clarke, O. Grumberg, and D. Long. Model Checking. In Proceedings of the Inter-
national Summer School on Deductive Program Design, Marktoberdorf, Germany,
1994. 519, 520, 521

6. K.L. McMillan. Symbolic Model Checking. Kluwer Academic, 1993. 519

	Introduction
	The Andrew Protocol
	Multiagent Finite State Machines
	Modeling the Andrew Protocol Using MAFSMs
	Model Checking a MAFSM
	Model Checking the Andrew Protocol
	Conclusion
	References

