
The PROSPER Toolkit�

Louise A. Dennis1, Graham Collins1, Michael Norrish2, Richard Boulton3,
Konrad Slind2, Graham Robinson1, Mike Gordon2, and Tom Melham1

1 Department of Computing Science, University of Glasgow, G12 8QQ, UK
2 Computer Laboratory, University of Cambridge, CB2 3QG, UK
3 Division of Informatics, University of Edinburgh, EH1 1HN, UK

Abstract. The Prosper (Proof and Specification Assisted Design En-
vironments) project advocates the use of toolkits which allow existing
verification tools to be adapted to a more flexible format so that they
may be treated as components. A system incorporating such tools be-
comes another component that can be embedded in an application.
This paper describes the Prosper Toolkit which enables this. The na-
ture of communication between components is specified in a language-
independent way. It is implemented in several common programming
languages to allow a wide variety of tools to have access to the toolkit.

1 Introduction

Modern system design, both for hardware and software, must meet ever-
increasing demands for dependable products of high quality, with shorter design
times and early error detection. Incremental improvements to conventional de-
sign methods and tools are not enough. More powerful techniques of specification
and analysis based on formal techniques are essential parts of new methods for
design.

Formalisms provide specification and analysis at high levels of abstraction,
so that designers can express and check a wider range of properties than with
conventional techniques. This permits better structuring of complex systems,
earlier detection of errors (leading to lower time to market), and higher quality.

Making effective use of formal techniques does not have to mean doing ‘total
verification’ against ‘complete formal specifications’ or designing step-by-step
with a formal refinement theory. This rather modernist Formal Methods pro-
gramme has still to deliver significant benefits to large-scale design practice, and
verification has, in consequence, remained largely an academic activity regarded
sceptically by industry. Instead, one can view formal analysis (or ‘property-
checking’) of systems as an advanced or more effective form of testing—whose
objective is not necessarily to have a strong assurance of correctness, but rather
to eliminate more bugs, earlier in the design process [10].

At present, a developer wishing to incorporate verification capabilities into
a CAD or CASE tool, or any application, will face a difficult choice between
� Work funded by ESPRIT Framework IV Grant LTR 26241

S. Graf and M. Schwartzbach (Eds.): TACAS/ETAPS 2000, LNCS 1785, pp. 78–92, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



The PROSPER Toolkit 79

creating a verification engine from scratch and adapting parts of one or more
existing tools. Developing a verification engine from scratch is time-consuming
and will usually involve re-implementing existing techniques. Existing tools, on
the other hand, tend not to be suitable as components that can be patched into
other programs. Furthermore, a design tool should embed verification in a way
that is natural to a user, i.e. as an extension to the design process (much like
debugging is an extension to the coding process). The verification engine must
be customised to the application.

The Prosper project1 is addressing this issue by researching and developing
a toolkit that allows an expert to easily and flexibly assemble proof engines to
provide embedded formal reasoning support inside applications. The ultimate
goal is to make the reasoning and proof support invisible to the end-user—or at
least, more realistically, to incorporate it securely within the interface and style
of interaction they are already accustomed to.

This paper describes the Prosper toolkit and the methodology of building
systems with it. §2 gives a high level view of the toolkit and what a resulting sys-
tem may look like. While it is inappropriate to give much technical detail here,2

§3 tries to give a flavour of the specification for communication. §4 discusses the
methodology for building systems with the toolkit. §5 presents a case study. §6
gives an overview of related work.

2 Design Tools with Custom Proof Engines

A central part of Prosper’s vision is the idea of a proof engine—a custom built
verification engine which can be operated by another program through an Ap-
plication Programming Interface (API). A proof engine can be built by a system
developer using the toolkit provided by the project. A proof engine is based upon
the functionality of a theorem prover with additional capabilities provided by
‘plugins’ formed from existing, off-the-shelf, tools. The toolkit includes a set of
libraries based on a language-independent specification for communication be-
tween components of a final system. The theorem prover’s command language is
treated as a kind of scripting or glue language for managing plugin components
and orchestrating the proofs.

The central component is based on a theorem prover because this comes
with ready made concepts of term, theorem, and goal, which are important for
managing verifications. A side benefit is that all the functionality in the theorem
prover (libraries of procedures, tactics, logical theories, etc.) becomes available
to a developer for inclusion in their custom proof engine. This does not prevent
theorem proving being very lightweight if desired.

A toolkit has been implemented based around HOL98, a modern descen-
dent of the HOL theorem prover [11]. HOL98 is highly modular which suits the
Prosper approach of building up a proof engine from a set of components (be

1 http://www.dcs.gla.ac.uk/prosper
2 Technical documentation is available from the authors.



80 Louise A. Dennis et al.

they HOL libraries or external plugins). It also contains a number of sophisti-
cated automatic proof procedures. HOL’s command language is ML [19] (a strict
functional programming language) extended with HOL’s own theorem proving
functions which extend ML to include the language of higher order logic [6]. This
allows a developer to have a full programming language available in which to de-
velop custom verification procedures. Proof procedures programmed in the proof
engine are offered to client applications in an API. This API can be accessed as
a verification library in another programming language.

The toolkit provides several plugin components based on external tools which
offer APIs to a proof engine. It also provides support to enable developers of other
verification tools to offer them as Prosper plugins.

The application, proof engine and plugins act as separate components in the
final system (Figure 1). In the first prototype they are also separate processes.

Plugin
eg. SMV

Plugin
eg. ACL2

SMV Plugin
API

ACL2 Plugin
API

Proof Engine
API

Proof EngineDesign Tool
or other Application

Fig. 1. A system built with the Prosper toolkit

Communication between them is treated in a uniform manner specified by the
Prosper Integration Interface.

Work is currently underway to use this technology to add verification capa-
bilities to IFAD’s VDM-SL Toolbox [8]. The project is also building a Hardware
Verification Workbench. This will allow specifications in Verilog and VHDL to
be checked by a proof engine that incorporates a model checker.

Example 1. The IFAD VDM-SL Toolbox is a software design tool supporting
the specification language, VDM-SL.

The proposed extensions to the Toolbox centre around the discharge of proof
obligations generated by type invariants. Invariants are undecidable, so the auto-
matic type checking functionality of IFAD’s toolbox does not check their truth.

Many invariants can be discharged by first order logic decision procedures.
To utilise these, the invariant condition needs to be translated from VDM-SL
into first order logic. In particular, any user-defined functions must be simplified
away. More complex simplification and theorem proving techniques can be used
when the conditions fall outside the domain of first order logic. If an automatic
proof attempt fails then a user must be able to intervene and guide a proof by
hand.



The PROSPER Toolkit 81

This analysis suggests that the VDM-SL Toolbox requires a first order logic
plugin; a proof engine with an embedding of the semantics of VDM-SL in higher
order logic, specialised procedures for simplifying and translating VDM-SL ex-
pressions into first order logic (a subset of higher order logic) and some more
complex proof techniques; procedures for the automatic generation of invariant
proof obligations in the Toolbox itself, and a Toolbox specific interface to the
proof guidance facilities provided by HOL. These elements can all be constructed
together into the IFAD Toolbox using the Prosper toolkit.

3 The Prosper Integration Interface

A major part of our methodology is the Prosper Integration Interface (PII), a
language-independent specification of communication for verification. This spec-
ification is currently implemented in several languages (C, ML, Java and Python)
allowing components written in these languages to be used together.

The PII consists of several parts. The first is a datatype, called interface data,
for all data transferred between an application and a proof engine and between
a proof engine and its plugins. A major part of the datatype is the language of
higher order logic used by HOL and so any formula expressible in higher order
logic can be passed between components. Many plugins operate with logical data
that is either already a subset of higher order logic (e.g. predicate calculus and
propositional logic) or embeddable in it (e.g. CTL). The second part consists
of a datatype for the results of remote function calls and support for installing
and calling procedures in an API. There are also parts for managing low level
communication, which are largely invisible to an application developer.

The PII distinguishes between clients and servers. An application is a client of
a proof engine which is a client of any plugins it may have. Any server built using
the toolkit offers an API to clients. This API describes its functionality in terms
of interface data and a result type (which signals whether a function succeeded
or failed and returns interface data). As far as an application or verification tool
developer is concerned, all components talk the language of these datatypes; The
details of translating calls made between components into and out of the raw
communication format are entirely invisible.

The PII can be viewed as consisting of the layers in Figure 2. The lower layers
deal with communication (handling interrupts and so on). The translation layer
takes the raw data passed along the communication channel and translates it
into the language’s implementation of interface data. The application support
layer supplies functions for working with interface data, starting and managing
communication between components, and support for working with the API. On
top of this sits the target application, proof engine or plugin. The application
support layer is the highest specified by the PII.

3.1 Interface Data

Interface data is the high level language passed between components of the
system. It can be used to represent a large number of types and expressions.



82 Louise A. Dennis et al.

The 
Prosper
Integration
Interface

Physical Transport Mechanism

Transport Layer

Communication Handling Layer

Translation Layer

Application Support Layer

Component

Fig. 2. The layers of the PII

The PII gives an abstract specification for interface data, but the exact form of
the operations and their usage depends on the implementation language.

Each element of interface data has three operations, a constructor, a destruc-
tor, and a query (is a) function which can be used to establish how an expression
has been constructed.

Interface data consists of elements based on several standard types (booleans,
integers, strings, etc.) and lists (allowing tree structures). It also contains special
elements for handling proof concepts (logical terms, the types of logical terms
and theorems).

Logical Terms and Types. Logical terms are central to the Prosper toolkit
and are not a standard feature of any programming language. Logical terms
are based on the syntax of classical higher order logic [6] and are the basic
expressions for communicating logical information (e.g. conjectures that need
proving). As usual with Church-style formulation, there are four basic elements
for variables, constants, function applications and lambda abstractions (with
associated constructor, destructor and query operations). Higher order logic is
typed so it is also possible to query a term for its logical type.

These four elements are too low level for everyday use. This is reflected
in HOL which supplies derived syntax to provide a usable set of constructors
for common term structures. This approach is also adopted by the interface
data specification. The interface data derived syntax consists of the usual logical
connectives and quantifiers plus a few other common constructs.

3.2 API Support

The PII application support layer provides functions to allow client and
server components to handle remote procedure calls. It uses a datatype,
interface data result, with constructors mk succeeded:interface data ->
interface data result and mk failed:interface data -> interface
data result to report back the results of calls.



The PROSPER Toolkit 83

A client can use the operation, call server, which calls a function in another
component’s API, referenced by a string, and supplies it with interface data as
arguments. It returns an interface data result.

A server has some database manipulation functions for using an API database
containing functions of type interface data -> interface data result ref-
erenced by strings. These are used to process calls from a client.

3.3 Connection Support and Lower Layers

The PII application support layer includes client side functions for connecting
to and disconnecting from servers. At present a server has to be started and
stopped manually, externally to the client. In future we intend to allow servers
to be started and stopped by the client.

The low level details of communication handling are only relevant to those
wishing to implement the PII in various languages. The underlying communica-
tion is currently based on Internet sockets.

4 Using the Toolkit

The basic Prosper toolkit consists of relatively little: a small subset of HOL,
called the Core Proof Engine. This consists of a theorem type, inference rules
for higher order logic and an ML implementation of the PII. The Core Proof
Engine forms the core of all proof engines built using the Prosper Toolkit. A
developer can write extensions to the Core Proof Engine and place them in an
API to form a custom API.

Many applications will require a version of the PII in an implementation lan-
guage other than ML. The toolkit currently includes PII implementations in sev-
eral languages and a couple of pre-made plugins (the SMV model checker [17] and
Prover Technology’s proof tool [23,22]) which can be added into proof engines.
Third party plugins are already also available for ACL2 [4]3 and Gandalf [25,14].

Developing an application using the toolkit is, potentially, a large task involv-
ing several languages and programs. We have identified three aspects of working
with the toolkit which separate out the tasks involved. These partition the ef-
fort into the areas most likely to be undertaken by distinct groups of people.
The three aspects also help identify which parts of a final system should be
responsible for which tasks.

4.1 The Theorem Prover Aspect

The theorem prover aspect (Figure 3) mainly involves ML programming. This
programming effort focuses on developing custom procedures and placing them
in an API which extends the Core Proof Engine. A developer will have access to
the entire command language of the theorem prover and a set of entrypoints into
3 Currently unpublished, but available at http://www.cl.cam.ac.uk/users/ms204/



84 Louise A. Dennis et al.

as many plugins and theories as they might wish and are available. They will
be able to develop custom verification procedures and theories within a strongly
typed, LCF-style, environment. The outcome will be a custom proof engine with
an API that can be passed on to the developer of an application as a verification
library.

Custom Proof Engine

Core Proof Engine

ML

HOL

Libraries

Plugins

Fig. 3. The Theorem Prover Aspect

On the logical side, a custom proof engine will probably include an embedding
of the formalism used by the application into higher order logic. It will also in-
clude automated proof procedures tailored for the application. These procedures
may well use plugin decision procedures (e.g. for predicate or propositional logic)
or even include, as plugins, verification tools previously developed as support for
the application. Construction of such procedures may be a simple process of link-
ing together highly-developed proof libraries and/or plugins or it may require
more complex development.

Although implementations of the PII provide basic functions for calling proof
engine APIs from clients, any serious application will want to wrap up the API
with language-specific bindings (e.g. In an object oriented language it would
be natural to present functions in a proof engine’s API as methods in some
verification class, thus hiding all instances of call server from the application
aspect developer). This can only be done if the implementation language of the
target application is known.

Example 2. In hardware verification there exist many decision procedures for
verifying designs. Prosper sees its main application here as verification tasks
that can be handled automatically through combinations of plugin decision pro-
cedures and theorem proving (see §6). These combined procedures will be devel-
oped in the theorem prover aspect and presented as the API to a custom proof
engine.



The PROSPER Toolkit 85

4.2 The Application Aspect

The application aspect (Figure 4) focuses on the incorporation of a custom
proof engine into an application so that it appears as a natural extension of
the application’s functionality. A developer will have access to an API offered
by a proof engine already customised to their tool.

Custom
Proof Engine

Programming

Language

Application
Application

API

API wrapper

Fig. 4. The Application Aspect

The aim of Prosper is that verification should fit as seamlessly as possible
into the design flow. We envisage that most of the programming at this stage
will focus on this task.

Example 3. The project is investigating the use of a natural language
interface [13] to the Hardware Verification Workbench that will translate state-
ments about circuits, in the normal technical language of engineers, into CTL
propositions that a proof engine can verify. This will allow engineers to be largely
unaware of the mathematical verification that is taking place.

4.3 The Plugin Aspect

The Prosper toolkit supports a third aspect (Figure 5). The developer of a
verification tool can adapt it so that it can be used as a Prosper plugin. A
plugin developer programs both in ML and in the plugin’s own implementation
language. The developer will place chosen entrypoints to the plugin into an API
database. In the plugin’s implementation language they will translate any ar-
guments needed by these functions into interface data. In the theorem prover’s
command language they will need to unpackage these entrypoints again so they
present themselves as language-specific bindings in that language (ML). In par-
ticular any additional theories required (i.e. an embedding of the logic used by
the plugin into higher order logic) should be provided by the plugin developer.
The plugin aspect is analogous to the theorem prover aspect except that it is
assumed that the underlying functionality for the API is already implemented
and provision of language-specific bindings is strongly recommended since the
target language is known.



86 Louise A. Dennis et al.

Prospective

Proof Engine
Verification
Tool

Tool
Language

Programming

ML

API Bindings

(ML)

PII Implementation

(Tool language)
PII Implementation

Fig. 5. The Plugin Aspect

It is also possible to run a verification tool in a ‘harness’ provided by the
Prosper toolkit. This talks to a tool’s command line. This allows almost any
tool to be used as a plugin, although the tool must be treated as a black box.

4.4 A Complete System

An application developer’s view of a complete system should be something like
Figure 6. Components are accessible to each other via their APIs. Communi-
cation is made possible by low-level functionality irrelevant to the developer.
Components can be subdivided into those parts that provide important func-
tionality, databases of functions in the component’s API, and modules expressing
the functionality of some other component’s API.

API
Data
Base

API
Data
Base

API
Bindings

PlugIn API
ML
Bindings

Low Level
Details

Plugin
Proof
Engine

Low Level
Details

Application

Interface data Interface data

Fig. 6. A complete system



The PROSPER Toolkit 87

Someone working with such a system can issue an instruction which invokes
verification. Such an instruction may arise automatically in response to certain
actions they take in the process of design. This instruction states some conjecture
which is translated into interface data and passed to a function in the API of the
proof engine. This function may, by way of example, break the conjecture down
into a number of sub-problems some of which are dealt with by procedures in the
proof engine and some of which are passed on as interface data to a function in
the API of a plugin. The plugin function executes and returns a result. The proof
engine takes the result and may do some more processing on it before passing
back its own result to the application. If this is successful and the verification
arose automatically the user may not even be aware that anything has taken
place. If it is unsuccessful then the user might receive a warning message about
the actions they have just performed.

5 Case Study

We present a case study of the use of the Prosper toolkit to embed some simple
verification into a well known, existing application.

Excel is a spreadsheet package marketed by Microsoft [18]. Its basic con-
stituents are rows and columns of cells into which either values or formulae may
be entered. Formulae refer to other cells, which may contain either values or
further formulae. Users of Excel are likely to have no interest in using or guiding
mathematical proof, but they do want to know that they have entered formulae
correctly. They therefore have an interest in ‘sanity checking functions’ that they
can use to reassure themselves of correctness.

As a simple case study, the Prosper toolkit developers undertook to incor-
porate a sanity checking function into Excel. We chose to implement an equality
checking function which would take two cells containing formulae and attempt
to determine whether these formulae were equal for all possible values of the
cells to which they refer.

Simplifying assumptions were made for the case study. The most important
were that cell values were only natural numbers or booleans and that only a
small subset of the functions available in Excel (some simple arithmetical and
logical functions) appeared in formulae. Given these assumptions, less than 150
lines of code were needed to produce a prototype. This prototype handled only
a small range of formulae, but it demonstrated the basic functionality.

While the resulting program is clearly not marketable (requiring two ma-
chines using two different operating systems) it was pleasing to find it so easy
to embed some verification into an existing program.

5.1 Architecture

The main difficulty in the case study was that Excel is Windows based, whereas
the prototype toolkit had been developed for UNIX machines.4 A subsidiary
4 We intend to port a future version to Windows.



88 Louise A. Dennis et al.

difficulty was that the PII was not implemented in Visual Basic, the macro
language of Excel.

These problems were solved by using a Python implementation of the PII.
Python has library support for COM (a middleware component standard which
is also supported by Visual Basic and is a common way to add functionality
to Excel). Python also has a freely available socket library, allowing a Python
program on Windows to communicate via sockets with a proof engine on UNIX.
The decision was taken not to implement the PII in Visual Basic but to call a
Python COM server to handle the tasks in the application aspect and commu-
nicate both as a client to the proof engine running under Linux and as a server
to an Excel COM client running under Windows. The easiest way to access Ex-
cel’s formulae is as strings. It would have been necessary, whatever the approach
taken, to parse these into interface data logical terms and it was unimportant
whether this effort was made in Visual Basic or in Python. We hope that a
Python based COM component implementing the PII will be of more general
interest and use than a Visual Basic implementation of the PII would have been.
A view of the architecture is shown in Figure 7.

Interface Data
Strings

Excel

Windows

Proof Engine
PII Client

COM
Server/ Prover Plugin

UNIX

Fig. 7. The architecture of Excel with embedded verification

5.2 The Theorem Prover Aspect

The initial custom procedure is very simple-minded. It uses an arithmetic de-
cision procedure provided by HOL98 and a propositional logic plugin decision
procedure (based on Prover Technology’s proof tool [23,22]) to decide the truth
of formulae. While the approach is not especially robust, it is strong enough to
handle many simple formulae.

This proved to be a very small piece of code (approx. 45 lines of ML were
needed to write the function and place it in the API database). A more developed
version of such a proof engine would require longer, more specialised code.

5.3 The Application Aspect

A function, ISEQUAL, was written using Excel’s macro editor. Once written, it
automatically appears in Excel’s function list as a User Defined Function and



The PROSPER Toolkit 89

can be used in a spreadsheet like any other function. ISEQUAL takes two cell
references as arguments. It recursively extracts the formulae contained in the
cells as strings (support for this already exists in Excel) and passes them on to
the Python object.

The Python component parses the strings to interface data logical terms,
which it passes on to the decision procedures in the proof engine. It returns the
result of the proof attempt as true, false, or ‘unable to decide’, which is displayed
in the cell containing the ISEQUAL formula.

The application aspect consisted of roughly 30 lines of Visual Basic code and
30 of Python code. We feel that the case study illustrated the relative speed
and simplicity with which a prototype of embedded verification can be produced
using the Prosper toolkit.

6 Related Work

Combined Tools. There are many decision procedures available as verification
tools, especially for use with hardware verification. They all have practical limits
on the size of design with which they can cope. There has also been a great deal
of recent work in combining decision procedures (in particular model checkers)
with automated theorem proving to increase the size of design that can be dealt
with [1,15,20,21]. The Hardware Verification Workbench, that the Prosper
project plans to produce, will hopefully make use of much of the knowledge
and techniques developed for integrating model checkers and theorem proving.

In a slightly different vein the HOL/CLAM project [3] linked HOL to
CLAM [5], a proof planning system which specialises in automating inductive
proof. The HOL/CLAM project is, in some ways, a predecessor to Prosper and
much has been learned from it.

All this work has focused on producing one customised solution whereas
Prosper hopes to provide a framework in which many such interactions can be
investigated.

Integration Architectures. There are several projects that provide a generic
framework for the integration of tools.

Ωmega [2] is a system developed to act as a mathematical assistant. Like
Prosper, Ωmega makes use of other reasoning systems (e.g. resolution theo-
rem provers and computer algebra systems). These are all incorporated into a
distributed MathWeb [9] and there is work in progress to produce a standard
interface for integrating components.

ETI [24], the Electronic Tool Integration platform, is an ambitious project
aimed at allowing both the easy and rapid comparison of tools purporting to do
similar jobs, and also the rapid prototyping of combinations of such tools (any
software tool, not just verification tools). ETI has its own language, HLL, which
acts much like Prosper’s combination of ML and interface data to provide
a scripting language for tool integration. It is also possible to automatically
generate glue code from easily written specifications. The ETI’s implementation



90 Louise A. Dennis et al.

is based on C++, which allows all tools written in C++ to be treated in a glass
box fashion, just as Prosper allows all tools written in the languages which
implement the PII to be treated as glass boxes.

The OMRS project aims to develop an open architecture for reasoning sys-
tems to be integrated together relatively easily. This architecture consists of three
components: the logic of the system [12], the control strategies used by the sys-
tem [7], and the interaction mechanisms supported by the system. Its framework
forces systems to identify clearly what are the sequents, inference rules, control
information, etc. and so makes them more open and extensible. The intention is
that future reasoning systems will be developed using the OMRS architecture.
At the same time work is underway to re-engineer popular existing tools, most
notably ACL2 [4], so that they conform to the OMRS specifications.

These systems all allow the integration and combination of verification com-
ponents ranging from an entirely black box treatment to an entirely glass box
treatment in the case of OMRS. We prefer an easier and more flexible approach
than OMRS allowing off-the-shelf integration rather than re-engineering. This
means it is easier to build an unsound tool with our toolkit. We are not ignoring
the logical issues but intend to solve them on an ad hoc basis. ETI is wider
in scope but less specific than Prosper. It is forced to treat some components
as black boxes, which is inappropriate for many of the interactions Prosper
wishes to study. On the other hand, in many cases it is simple to experiment
with coordination of several tools using ETI because of its automatic synthesis
features.

Design Tools with Embedded Verification. The UniForM project aims to en-
courage the development of reliable software for industrially relevant tasks by
enabling suitable tool-supported combinations of formal methods. The UniForM
Workbench [16] is intended to be a generic framework, instantiated with specific
tools. The project has produced a workbench for software design that gives access
to the Isabelle theorem prover plus other verification tools through their com-
mand lines. The various components are held together by Concurrent Haskell,
which is used as a sophisticated encapsulation and glue language.

The UniForM project is similar to Prosper, with its focus on the integration
of component based verification into design tools, its use of a functional language
to manage the various components, and the provision of a theorem prover to
perform logical tasks. But, the Workbench is a design tool in its own right rather
than a toolkit for embedding verification into a design tool. The Workbench also
treats plugin decision procedures as black boxes.

We are not aware of any project, other than Prosper, which easily allows the
integration of existing components with the view to producing an embeddable
customised proof engine.

7 Conclusions

For embedded (possibly invisible) verification engines to gain widespread ac-
ceptance and use, verification tools must be customisable and combinable. We



The PROSPER Toolkit 91

believe the way forward draws on many of the standard aspects of component
technology but also requires dedicated support for building custom proof engines,
such as language-independent datatypes for communicating logical concepts.

We hope that the work on Prosper has been a significant step forward in
establishing the nature of the support needed to encourage embedded verifica-
tion. The focus of future work centres around three areas: basic improvements
of the underlying implementation; case studies of the effectiveness of the toolkit
(we are interested not only in the ease with which theorem proving can be em-
bedded in an application but also in the benefits gained from the combination
of theorem proving and decision procedures) and the development of generic
proof support for integrated verification (procedures for handling certain classes
of plugin effectively, methodologies for ensuring soundness, etc.).

Most importantly, we believe the way to encourage the incorporation of for-
mal verification within design flows is not through the provision of some large
tool that can perform a wide range of verification tasks but through the provision
of a toolkit that allows the development of specialised proof engines.

References

1. M. D. Aagaard, R. B. Jones, and C.-J. H. Seger, Lifted-FL: A Pragmatic Implemen-
tation of Combined Model Checking and Theorem Proving. Y. Bertot, G. Dowek,
A. Hirshowitz, C. Paulin and L. Théry (eds), Theorem Proving in Higher Order
Logics, Lecture Notes in Computer Science 1690, Springer-Verlag, pp. 323–340,
1999. 89

2. C. Benzmüller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Kerber,
M. Kohlhase, A. Meirer, E. Melis, W. Schaarschmidt, J. Siekmann, and V. Sorge,
Ωmega, Towards a mathematical assistant. 14th Conference on Automated De-
duction, W. McCune (ed), Lecture Notes in Artificial Intelligence 1249, Springer-
Verlag, pp. 252–255, 1997. 89

3. R. Boulton, K. Slind, A. Bundy, and M. Gordon, An interface between CLAM and
HOL. J. Grundy and M. Newey (eds), Proceedings of the 11th International Con-
ference on Theorem Proving in Higher Order Logics, Lecture Notes in Computer
Science 1479, Springer-Verlag, pp. 87–104, 1998. 89

4. B. Brock, M. Kaufmann, and J Moore, ACL2 Theorems about Commercial Mi-
croprocessors. M. Srivas and A. Camilleri (eds), Proceedings of Formal Methods in
Computer-Aided Design (FMCAD’96), Springer-Verlag, pp. 275–293, 1996. 83, 90

5. A. Bundy, F. van Harmelen, C. Horn, and A. Smaill, The Oyster-Clam system.
10th International Conference on Automated Deduction, M. E. Stickel (ed), Lecture
Notes in Artificial Intelligence 449, Springer-Verlag, pp. 647–648, 1990. 89

6. A. Church, A Formulation of the Simple Theory of Types. The Journal of Symbolic
Logic, vol. 5, pp. 56–68, 1940. 80, 82

7. A. Coglio, The Control Component of OMRS: NQTHM as a Case Study. Extended
abstract in Proceedings of the First Workshop on Abstraction, Analogy and Metar-
easoning, IRST, Trento, Italy, pp. 65–71, 1996. 90

8. J. Fitzgerald and P. G. Larsen, Modelling Systems: Practical Tools and Techniques
in Software Development, Cambridge University Press, 1998. 80

9. A. Franke, S. M. Hess, C. G. Jung, M. Kohlhase, and V. Sorge, Agent-Oriented
Integration of Distributed Mathematical Services. Journal of Universal Computer
Science, 5(3), pp. 156–187, 1999. 89



92 Louise A. Dennis et al.

10. J. A. Goguen and Luqi, Formal methods and social context in software de-
velopment. Proceedings TAPSOFT’95, Lecture Notes in Computer Science 915.
Springer-Verlag, pp. 62–81, 1995. 78

11. M. J. C. Gordon and T. F. Melham (eds), Introduction to HOL: A theorem proving
environment for higher order logic, Cambridge University Press, 1993. 79

12. F. Giunchiglia, P. Pecchiari, and C. Talcott, Reasoning Theories: Towards an Archi-
tecture for Open Mechanized Reasoning Systems. F. Baader and K. U. Schulz (eds),
Frontiers of Combining Systems—First International Workshop (FroCoS’96),
Kluwer’s Applied Logic Series (APLS), pp. 157–174, 1996. 90

13. A. Holt and E. Klein, A semantically-derived subset of English for hardware ver-
ification. 37th Annual Meeting of the Association for Computational Linguistics:
Proceedings of the Conference, Association for Computational Linguistics, pp. 451–
456, 1999. 85

14. J. Hurd, Integrating Gandalf and HOL. Y. Bertot, G. Dowek, A. Hirshowitz,
C. Paulin and L. Théry (eds). Theorem Proving in Higher Order Logics, Lecture
Notes in Computer Science 1690, Springer-Verlag, pp. 311–321, 1999. 83

15. J. Joyce and C.-J. Seger, Linking BDD based symbolic evaluation to interactive
theorem proving. ACM/IEEE Design Automation Conference, June 1993. 89

16. B. Kreig-Brükner, J. Peleska, E.-R. Olderog, and A. Baer, The UniForM Work-
Bench, a Universal Development Environment for Formal Methods. J. M. Wing,
J. Woodcock and J. Davies (eds), FM’99—Formal Methods, vol. 2, Lecture Notes
in Computer Science 1709, pp. 1186–1205, 1999. 90

17. K. L. McMillan, Symbolic Model Checking, Kluwer Academic Publishers. 1993. 83
18. Microsoft Corporation, Microsoft Excel, http://www.microsoft.com/excel. 87
19. R. Milner, M. Tofte, R. Harper and D. MacQueen, The Definition of Standard ML

(Revised), MIT Press, 1997. 80
20. J. O’Leary, X. Zhao, R. Gerth, and C.-J. H. Seger, Formally verifying IEEE com-

pliance of floating-point hardware. Intel Technology Journal, First Quarter, 1999.
Online at http://developer.intel.com/technology/itj/. 89

21. S. Rajan, N. Shankar, and M. Srivas, An integration of model checking and auto-
mated proof checking. International Conference on Computer-Aided Verification,
Lecture Notes in Computer Science 939, Springer-Verlag, pp. 84–97, 1995. 89

22. M. Sheeran and G. St̊almarck, A tutorial on St̊almarck’s proof procedure for
propositional logic. The Second International Conference on Formal Methods in
Computer-Aided Design, Lecture Notes in Computer Science 1522, Springer-Verlag,
pp. 82–99, 1998. 83, 88

23. G. St̊almarck and M. Säflund, Modelling and Verifying Systems and Software in
Propositional Logic. Proceedings of SAFECOMP ’90, Pergamon Press, pp. 31–36,
1990. 83, 88

24. B. Steffen, T. Margaria, and V. Braun, The Electronic Tool Integration Plat-
form: concepts and design. International Journal on Software Tools for Technology
Transfer, 1(1 + 2), pp. 9–30, 1997. 89

25. T. Tammet, A resolution theorem prover for intuitionistic logic. 13th International
Conference on Automated Deduction, Lecture Notes in Computer Science 1104,
Springer-Verlag, pp. 2–16, 1996. 83


	Introduction
	Design Tools with Custom Proof Engines
	The Prosper Integration Interface
	Interface Data
	API Support
	Connection Support and Lower Layers

	Using the Toolkit
	The Theorem Prover Aspect
	The Application Aspect
	The Plugin Aspect
	A Complete System

	Case Study
	Architecture
	The Theorem Prover Aspect
	The Application Aspect

	Related Work
	Conclusions
	References

