CASL: From Semantics to Tools

Till Mossakowski

Department of Computer Science and Bremen Institute for Safe Systems,
Universitat Bremen, P.O. Box 330440, D-28334 Bremen
till@informatik.uni-bremen.de

Abstract. CASL, the common algebraic specification language, has
been developed as a language that subsumes many previous algebraic
specification frameworks and also provides tool interoperability. CASL
is a complex language with a complete formal semantics. It is therefore
a challenge to build good tools for CASL. In this work, we present and
discuss the Bremen HOL-CASL system, which provides parsing, static
checking, conversion to IWTEX and theorem proving for CASL specifi-
cations. To make tool construction manageable, we have followed some
guidelines: re-use of existing tools, interoperability of tools developed at
different sites, and construction of generic tools that can be used for sev-
eral languages. We describe the structure of and the experiences with
our tool and discuss how the guidelines work in practice.

1 Introduction

During the past decades a large number of algebraic specification languages
have been developed. Unfortunately, these languages are based on a diversity
of basic algebraic specification concepts. The presence of so many similar spec-
ification languages with no common framework had hindered the dissemination
and application of research results in algebraic specification. In particular, it
had made it difficult to produce educational material, to re-use tools and to get
algebraic methods adopted in industry. Therefore, in 1995, an initiative, CoFI!,
to design a Common Framework for Algebraic Specification and Development
was started [18]. The goal of CoFT is to get a common agreement in the alge-
braic specification community about basic concepts, and to provide a family of
specification languages at different levels, a development methodology and tool
support. The family of specification languages comprises of a central, common
language, called CASL?, various restrictions of CASL, and various extensions of
CASL (e.g. with facilities for particular programming paradigms).

The definition of CASL and some of its sublanguages has been finished [3].
Moreover, a complete formal semantics of CASL [9] has been developed in par-
allel with design of the language and indeed, the development of the semantics
has given important feedback to the language design.

1 CoFI is pronounced like ‘coffee’.
2 CASL is an acronym for CoFI Algebraic (or Axiomatic) Specification Language and
is pronounced like ‘castle’.
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Now that design and semantics of CASL have been finished, it is essential
to have a good tool support. Tools will be essential for the goal of CoFI to get
CASL accepted in academic communities (in the short run), and, in the long run,
in industry. This holds even stronger since CASL is a language with a formal
semantics: many people believe that such a language cannot or will not be used
in practice: “The best semantics will not win.” [13]

Since CASL was designed with the goal to subsume many previous frame-
works, it has become a powerful and quite complex language. This complexity
makes it harder to build tools covering the whole language.

In this work, we will show that it is possible to build tools for a complex
language with strong semantics in a reasonable time. In order to achieve this,
we have followed several guidelines:

— As much as possible, re-use existing tools, instead of building new ones.

— Build tools in such a way that tools developed at different sites can be
integrated; thus, not every site has to develop all the tools.

— Make tools as generic as possible. After all, CASL only is the central lan-
guage in a whole family of languages, and it would be tedious to have to
re-implement the same things for each language separately.

All these guidelines are even more important in a non-commercial environment
as the CoFT initiative is, where only very limited (wo)man-power is available,
and therefore collaborative effort is essential. Moreover, an explicit goal within
the design of CASL was to provide a common language in order to achieve a
better interoperability of (already existing) tools.

We will discuss these guidelines, reporting how well they work in practice
and which difficulties arise with them.

The paper is organized as follows:

Section 2 gives a brief overview over CASL and its semantics. Section 3 ex-
plains the general architecture of the Bremen HOL-CASL tool. In section 4,
tool interoperability using a common interchange format is discussed. Section 5
describes the problems with parsing CASL’s mixfix syntax. Section 6 recalls
the encoding of CASL in higher-order logic from [17], while section 7 reports
our practical experiences when using this encoding to create an interface from
CASL to Isabelle/HOL. In section 8, some difficulties of encoding CASL struc-
tured specifications into Isabelle are discussed. Section 9 describes several user
interfaces for HOL-CASL. Finally, section 10 contains the discussion how the
guidelines work in practice, and directions for future work.

This work is based on [17], but considerably extends the work begun there.

2 CASL

CASL is a specification language that can be used for formal development and
verification of software. It covers both the level of requirement specifications,
which are close to informal requirements, and of design specifications, which are
close to implemented programs. CASL provides constructs for writing
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basic specifications (declarations, definitions, axioms),

— structured specifications (which are built from smaller specifications in a
modular way),

— architectural specifications (prescribing the architecture of an implementa-
tion), and

— specification libraries, distributed over the Internet.

Basic CASL specifications consist of declarations and axioms representing
theories of a first-order logic in which predicates, total as well as partial functions,
and subsorts are allowed. Predicate and function symbols may be overloaded [4].
Datatype declarations allow to shortly describe the usual datatypes occurring in
programming languages.

Structured specifications allow to rename or hide parts of specifications,
unite, extend and name specifications. Moreover, generic specifications and views
allow to abstract from particular parts of a specification, which makes the spec-
ification reusable in different context.

Architectural specifications allow to talk about implementation units and
their composition to an implementation of a larger specification (or, vice versa,
the decomposition of an implementation task into smaller sub-tasks).

Structured and architectural specifications together with libraries will be also
referred to as CASL-in-the-large, while basic specifications will be referred to as
CASL-in-the-small.

The semantics of CASL follows a natural semantics style and has both rules
for static semantics (which are implemented by a static semantic checker) and
model semantics (which are implemented by theorem-proving tools).

spec LIST [sort Elem;] =

free type List[Elem] = nil | _:: __(head :? Elem;tail :? List[Elem]);
Plist [, nal, __:: __

op _++__ : List[Elem] x List[Elem] — List[Elem];

%prec __:__ < __++__

vars e . Elem;

K,L : List[Elem]
o %lconcat_nil] nil ++L = L
o %[concat_cons] (e:: K)++L = e:: K ++L
end

Fig. 1. Specification of lists over an arbitrary element sort in CASL

Consider the specification of lists over an arbitrary element sort in Fig. 1.
The free type construct is a concise way to describe inductive datatypes. The
semantic effect is the introduction of the corresponding constructor (here nil
and __:: __) and (partial) selector (here head and tail) functions, and of a num-
ber of axioms: a so-called sort generation constraint stating that the datatypes
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are inductively generated by the constructors and possibly by parameter sorts
(here: the sort Elem), and first-order axioms expressing that the constructors are
injective and have disjoint images and that the partial selectors are one-sided
inverses of the corresponding constructors.

The annotation %list [-_],nil,__ :: __ allows to write lists in the form
[t1,...,ts]. This notation is not restricted to lists: with %list, one also can
introduce abbreviating notations for sets, bags, etc.

3 Tool Architecture

Formatted CASL Text CASL Text —‘

LaTEX System Parser other parser
TEX|Code Ate+rms < |
LaTEX Formatter Static (llhecker
| Atcjrms

Encoding into FOL/HOL other rewriting engine

+ /V other theorem prover
/ Aterms

Transformation System Isabelle/HOL Prover

Fig. 2. Architecture of the HOL-CASL system

The Bremen HOL-CASL system consists of several parts, which are shown in
Fig. 2. The parser checks the syntactic correctness of a specification (CASL Text)
according to the CASL grammar and produces an abstract syntax tree (coded as
ATerms). The static checker checks the static semantic correctness (according to
the static semantics) and produces a global environment (also coded as ATerms)
that associates specification names with specification-specific information such
as the signature. The BTEX formatter allows to pretty print CASL specifications
(which are input in ASCII format), using the CASL ITEX package from Peter
Mosses [19]. For example, the specification in Fig. 1 has been generated from
the ASCII input shown in Fig. 4.

Finally, the encoding is a bridge from CASL to first- or higher-order logic
(FOL/HOL). It throws out subsorting and partiality by encoding it [17], and
thus allows to re-use existing theorem proving tools and term rewriting engines
for CASL. Typical applications of a theorem prover in the context of CASL are
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— checking the model-semantic correctness of a specification (according to the
model semantics) by discharging the proof obligations that have been gen-
erated during static semantic analysis,

— validate intended consequences, which can be added to a specification using
an annotation. This allows a check for consistency with informal require-
ments,

— prove correctness of a development step (in a refinement).

4 Tool Interoperability

The are quite a number of existing specifications languages and tools for them.
CASL was designed with the goal of providing a common language for better
tool interoperability. This is reflected by having a common interchange format
for CASL tools, the ATerm format [3]. ATerms are an easy-to-handle format with
libraries in several languages (C, Java) available. The main reason for chosing
ATerms was that the untyped term structures are very flexible, and their easy
syntax makes it very easy to write parsers and printers for them (we needed to
implement these in our implementation language, ML, which has been done very
quickly).

Thus, ATerms are used as (untyped) low level tool format for data exchange
between CASL tools. Based on this format, several (strongly typed) formats have
been designed: the CasFix format [26] for abstract syntax trees, and a format
for the global environment, containing the static semantic information.

A problem with ATerms is that the textual representation gets very large
(the ATerm representation of the global environment for the CASL basic data
types is about 10 MB). [3] have solved this problem by providing a compact
binary format with full sharing of subterms. This format can deal efficiently even
with Gigabyte-sized structures. However, parsers and printers for this format are
more complex. Thus, we are using converters between the textual and the binary
ATerm format written in C as a workaround, until an ML-based ATerm library
dealing also with the binary format becomes available.

By providing conversions from and to ATerms at all intermediate points in
the tool architecture, the Bremen HOL-CASL system can be used as a front-end
or back-end in combination with other tools. Actually, it has been combined as a
back-end with the Amsterdam CASL parser [27], and as a front-end with several
theorem proving tools: ELAN [21], PVS [2] and Isabelle (see section 7). See also
the CoFI Tools Group home page [10].

5 Parsing and Static Semantic Analysis

Apart from having a relatively complex grammar, CASL has several features
that cause some difficulties for parsing and static analysis:
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1. CASL’s syntax allows user-defined mixfix syntax,

2. CASL allows mutually recursive subsort definitions, causing loops within a
naive subsorting analysis, and

3. CASL allows overloading, and formulas which have a unique overload reso-
lution up to semantical equivalence.

Concerning mixfix syntax, we separate parsing into two steps: The first pass
of parsing produces an abstract syntax tree where formulas and terms (i.e. those
parts of the specifications that may contain mixfix symbols) remain in their
unparsed textual form.

Mixfix grouping analysis can be done only after a first phase of static seman-
tic analysis has collected the operation and predicate symbols (among them the
mixfix symbols). The CASL grammar is then extended dynamically according
to the mixfix declarations, and formulas and terms are parsed with the generic
Isabelle parser, which uses the well-known Cocke-Younger-Kasami algorithm for
context-free recognition [11]. This grammar-parameterised algorithm has a com-
plexity of O(n?), which is quite acceptable, since formulas and terms in CASL
specifications are not that long. However, it turned out to be too slow to do the
first pass of parsing with this approach. Therefore, we moved to ML-yacc for the
first pass.

After having done the parsing of terms and formulas, those resulting parse
trees are selected that are precedence correct with respect to the user-specified
precedence relations. If more than one parse tree remains, the corresponding
term or formula is ambiguous, and the possible disambiguations are output to
the user. To obtain a concise output, not all pretty-printed forms of the parse
trees are shown, but only the local places at which they actually differ.

The definition of precedence correctness follows the one of [1], generalized to
CASL’s pre-order based precedences ([1] uses number based precedences).

Concerning static semantic analysis, the treatment of subsorts and overload
resolution needs a careful algorithmic design in order not to run into an expo-
nential time trap. The details of this have already been worked out in [17].

6 Encoding CASL into HOL

In this section, we briefly recall the encoding from CASL into HOL from [17]:
At the level of CASL basic specifications, the encoding into higher-order logic
proceeds in three steps:

1. The CASL logic, subsorted partial first-order logic with sort generation con-
straints (SubPCFOL), is translated to subsorted first-order logic with sort
generation constraints (SubCFOL) by encoding partiality via error elements
living in a supersort.

2. Subsorted first-order logic with sort generation constraints (SubCFOL) is
translated to first-order logic with sort generation constraints (CFOL) by
encoding subsorting via injections (actually, this is built-in into the CASL
semantics [4]).
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3. First-order logic with sort generation constraints (CFOL) is translated to
higher-order logic (HOL) by expressing sort generation constraints via in-
duction axioms.

These encodings are not only translations of syntax, but also have a model-
theoretic counterpart®, which provides an implicit soundness and completeness
proof for the re-use of HOL-theorem provers for theorem proving in the CASL
logic SubPCFOL. This is also known as the “borrowing” technique of Cerioli and
Meseguer [5], which allows to borrow theorem provers across different logics.

7 The Interface to Isabelle/HOL

Using the encoding described in the previous section, we have built an interface
from CASL to Isabelle/HOL. We have chosen Isabelle [20] because it has a
very small core guaranteeing correctness. Furthermore, there is over ten years of
experience with it (several mathematical textbooks have partially been verified
with Isabelle). Last but not least, Isabelle is generic, i.e. it supports quite a
number of logics, and it is possible to define your own logic within Isabelle.
Despite the genericity of Isabelle, we have refrained from building the CASL logic
directly into Isabelle — this would violate our guideline to re-use existing tools as
much as possible: we would have to set up new proof rules, and instantiate the
Isabelle simplifier (a rewriting engine) and tableau prover from scratch. Instead,
we re-use the Isabelle logic HOL, for which already sophisticated support is
available, with the help of the encoding described in section 6.

This encoding has a clear semantical basis due to the borrowing (most other
encodings into Isabelle/HOL do not have an explicit model-theoretic counter-
part). However, a good semantic basis does not imply that there are no practical
problems:

First, the encoding of CASL in Isabelle/HOL as described in [17] produces
too complex output. We had to fine-tune the output by suppressing superfluous
parts (for example, trivial subsort injections), while retaining its mathematical
correctness.

Another problem with borrowing is that the HOL-CASL user really works
with the encoding of a CASL specification, and not with the CASL specification
itself. In particular, goals and subgoals are displayed as HOL formulas, and the
proof rules are of course the Isabelle/HOL proof rules. However, a typical user
of the tool will probably be more familiar with CASL than with Isabelle/HOL.
Therefore, we have decided to display goals and subgoals in a CASL-like syntax
as much as possible. For example, an injection of a term ¢ from a subsort sl
to a supersort s2 is displayed as t : s2, as in CASL, and not as injs s2(t), as
the encoding would yield. In this way, we get a CASL-like display syntax of
Isabelle/HOL. Let us call this display syntax “CASLish Isabelle/HOL”.

However, note that the CASLish Isabelle/HOL omits some information, e.g.
the information that an injection injs1 s2(t) starts from s1. In some practical ex-
ample proofs, this turned out to be rather confusing (while in others, the longer

3 Formally, they are institution representations in the sense of [16,24]
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form ings1 s2(t) is just tedious), and one would like to go back to the “pure Is-
abelle/HOL” view of the subgoals instead of using the “CASLish Isabelle/HOL”.
Therefore, we plan to let the user choose among several pretty printing “views”
on his or her encoded CASL specification.

Another example for the mixture of CASL and Isabelle/HOL are Isabelle’s
two different kinds of free variables, which may occur in CASL formulas during
a proof. Isabelle one one hand has object variables, which cannot be instantiated
during a proof. They are used for proofs of universally quantified sentences. The
other kind of variables are meta variables, which can be instantiated during a
proof. They are used for proofs of existentially quantified sentences (cf. Prolog,
narrowing). For example, when trying to prove

Jax:Nat ¢ x+9=12
by elimination of the existential quantifier, one gets
x+9=12

and then 7z is instantiated with 3 during the proof (while the goal z + 9 = 12
would not be provable, since V x : Nat e x4+ 9 = 12 is false).

Level O
(K ++ L) ++ M) = (K ++ (L ++ M))
1. (K ++ L) ++ M) = (K ++ (L ++ M))

Level 1
(K ++ L) ++ 1) = (K ++ (L ++ 1)
1. '1xl x2.

((x2 ++ L) ++ M)
(x2 ++ (L ++ M) =>(((x1 :: x2) ++ L) ++ M) =
((x1 :: x2) ++ (L ++ M)
2. ((nil ++ L) ++ M) = (nil ++ (L ++ M)

Level 2
((K ++ L) ++ M) = (K ++ (L ++ M)
No subgoals!

Fig. 3. Proof of forall K,L,M:List[Elem] . (K++L)++M=K++(L++M)

Fig. 3 shows a proof of the associativity of the concatenation of lists, using
the specification from Fig. 1. Level 0 shows the original goal. In the first proof
step (level 1), the goal was resolved with the sort generation constraint for lists.
The two subgoals are the inductive arguments for __:: __ and nil, respectively.
In the second step, both subgoals can be proved feeding the axioms concat nil
and concat_cons into Isabelle’s simplifier (a rewriting engine).
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Another problem is that of input of goals. Goals are of course input in
the CASL syntax (only during a proof, they get redisplayed in CASLish Is-
abelle/HOL syntax). One would like also to be able to input goals in
Isabelle/HOL, for example when one needs to prove a lemma that is formu-
lated in Isabelle/HOL. We solve this by providing Isabelle/HOL as a theory
within our interface, and we parse goals that are input for this theory always
with the Isabelle/HOL parser, and not with the CASL parser.

8 Encoding of CASL Structured Specifications

The encoding of structured specifications is almost orthogonal to that of basic
specifications and therefore can be done in a generic, logic-independent way.

When encoding CASL structured specification into Isabelle, the problem
arises that the structuring mechanism of CASL and Isabelle are rather different.
In particular, Isabelle’s mechanisms are considerably weaker: Extensions and
unions of specifications are available in Isabelle (though the union is defined
is a slightly different way), while for CASL’s renamings, hidings, and generic
specifications, nothing similar is available in Isabelle.

Currently, we solve this problem by just flattening structured specifications
to basic specifications, that is, we literally carry out all the renamings, unions
etc. Hidings can be treated by renaming the symbol which shall be hidden with
a unique name that cannot be input by the user.

However, this is not very satisfactory, since flattening destroys the structural
information of a specification and thus makes theorem proving in the specifica-
tion harder. In some cases, the loss of structural information makes it practically
infeasible to do proofs which are doable when the structuring is kept. Therefore,
we have asked the Isabelle implementors to improve Isabelle’s structuring mech-
anisms, and they have promised to do something in this direction.

In principle, an alternative way would be to use a deep encoding of CASL,
which means to directly describe the semantics of CASL within higher-order
logic. However, this would not be very nice, since theorem proving in a deep
encoding is relatively far away from proving in the encoded logic. In contrast,
we use a shallow encoding, where proving in the encoding comes close to proving
in the encoded logic. The advantage of a deep encoding would be that one can
prove meta-properties about the semantics of CASL, but in our view, this does
not outweigh the disadvantages.

An exceptional case are CASL’s free specifications. One can hardly expect to
implement them in a logic-independent way, since they depend on an involved
construction in the model categories of the logic. All that one can expect here
is to simulate the semantics of free specifications in a particular logic within
higher-order logic, along the lines of [23].

Encoding of architectural specifications is beyond the scope of this paper —
it will be dealt with elsewhere.

As described in the previous section, libraries are an orthogonal matter. How-
ever, there is one important incompatibility between CASL and Isabelle at this
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Fig. 4. The web interface of the HOL-CASL system

point: CASL text files may contain libraries consisting of several specifications,
while Isabelle text files always consist of exactly one Isabelle theory. We solve
this problem by just splitting a CASL library into small files containing one
specification each, and feeding these files into Isabelle. Or course, we also have
to maintain the information associating a CASL library with the split files.

9 User Interface

We provide several user interfaces to the Bremen HOL-CASL system. Actually,
it has turned out that for the first contact with our tool, the most important
user interface is the web-based interface*, where the user can just type in a spec-
ification, and parse it, perform the static analysis and/or conversion to BWTEX.
Most users want to try out this easy-to-use interface before taking the effort to
download the stand-alone version (even if the latter effort is very small). The
web-interface has even been used as a front-end in a prototype translation to
PVS [2] (although it is much more convenient to use the stand-alone version in
this case).

1 You can play around with it: http://www.informatik.uni-bremen.de/cgi-bin/
casl2.cgi.
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The small stand-alone version of our tool® provides the full functionality
shown in Fig. 2, except the Isabelle theorem proving environment. It has been
quite crucial to exclude Isabelle here, since Isabelle is quite large, and users who
want to use the tool as a front-end or back-end do not want to download the
whole Isabelle system. The stand-alone tool can be called as a Unix command,
and the different entry points and phases of analysis and encodings of the tool
(cf. Fig. 2) can be selected with optional flags. In particular, it is also possible to
select the encoding into FOL/HOL without having to use Isabelle (this is useful
when combining our tool with theorem provers for first- or higher-order logic).
We also plan to make the different steps of the encoding (see section 6) separately
available, so that one can choose to “encode out” just partiality and keep the
subsorting (this will be useful, for example, in connection with Maude [6] which
supports subsorting). The Unix interface works quite well when using the tool
in combination with other tools, although we plan to provide a fully-fledged
applications programmer interface (API) in the future.

The full stand-alone version of the tool® also provides the Isabelle theorem
prover, and the generic graphical user interface IsaWin [15,14], which has been
built on top of Isabelle. We have instantiated IsaWin with our HOL-CASL en-
coding of CASL into Isabelle/HOL. In Fig. 5, you can see a typical IsaWin
window. The icons labelled with (X, F') are CASL specifications (more precisely,
their encodings in HOL). Note that the theory HOL itself also is available at this
level. The icon labelled with a tree is an open proof goal. By double-clicking on
it, you can perform proof steps with this goal. This is done by dragging either
already proven theorems (those icons marked with - A) or simplifier sets (icons
marked with {I — r}) onto the goal. The effect is the resolution of the goal
with the theorem thrown onto it, or the rewriting of the goal with the chosen
simplifier set. After the proof of a goal is finished, it turns into a theorem. You
can then use it in the proof of other theorems, or, if it has the form of a rewrite
rule, add it to a simplifier set.

Actually, some users explicitly told us that they feared to have to install
Isabelle to run our tool. However, even the full version including Isabelle and
IsaWin is completely stand-alone (apart from the need to install Tcl/Tk, which
has already been installed on many sites).

10 Conclusion and Future Work

We have shown that it is possible to write tools for a complex language with
strong semantical bias (though it turns out to be a complex task). We could
reduce the amount of work by re-using existing tools as much as possible. More-
over, by using a common tool interchange format, we have created a tool which
can be used in connection with other tools as a front end or back end. Cur-

5 Available at http://www.informatik.uni-bremen.de/~cofi/CASL/parser/
parser.html.
6 Available at http://www.informatik.uni-bremen.de/~cofi/CASL/.
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Fig. 5. The HOL-CASL instantiation of the IsaWin system

rently, our tool has been used in connection with two theorem provers (PVS and
Isabelle) and one rewriting engine (ELAN).

We have followed three guidelines when implementing the HOL-CASL sys-
tem. The first guideline was to re-use existing tools, rather than create a new
tools. In practice, this has turned out to be very hard: Building an interface from
CASL to an existing tool is quite a complex task, which not only deals with an
input-output-transformation, but also has to take the interactive behaviour and
the display of intermediate results into account.

Nevertheless, we think that it is worth the effort to re-use existing tools,
since these tools have evolved and improved over time, and in a sense we borrow
this maturity from other tools, which otherwise would only have been achieved
through a long process of testing, use and maintenance. Of course, our bridges
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to other tools also have to become mature, but since the target of the bridging
tools are already mature, the whole effort can start from a higher level.

Currently, we have re-used Isabelle/HOL for having a quick prototype of
theorem proving environment for CASL, at the price to get a very HOLish CASL.
In future work, we will develop derived rules and tactics for CASL (especially
for the computation of normal forms w.r.t. the overloading axioms that state
coincidence of overloaded functions on sub- and supersorts). With this, we will
try to make the encoding to look more CASL-like by eliminating the need to work
with HOL rules and instead provide a complete set of rules for CASL. Perhaps
in a further step, we will even encode CASL directly in the generic Isabelle
meta logic. Anyway, this step would probably have been too complicated in the
first place, and working with Isabelle/HOL has the advantage of faster having a
prototype.

Concerning the guideline of genericity, we have made the experience that the
use of generic tools at some points can lead to inefficiencies: we had to replace the
generic Isabelle parser by ML-yacc to obtain an efficient parsing. Yet, we have to
use the generic parser for parsing user-defined mixfix syntax. Another experience
was with the IsaWin system: it has been designed as a generic window-based
interface to Isabelle, but when instantiating it to HOL-CASL, several changes
to IsaWin were needed to make it actually useful. Nevertheless, the genericity
was a great help in comparison to implementation from scratch.

Regarding genericity of our own tool, we have made the encoding of struc-
tured specifications independent of the underlying logic. One important future
point will be to make also the static analysis of CASL structured and archi-
tectural specifications truly generic, i.e. also parameterized over a logic (this is
possible because the semantics is already parameterized over a logic). This would
allow to re-use the tool also for other logics than the logic underlying CASL (for
example, higher-order CASL, reactive CASL, temporal logic, or just your own
favourite logic).

Concerning interoperability, the use of ATerms helped a lot to interconnect
our parser and static analysis with several theorem proving and rewriting tools
at different other sites. Here, it was essential to use the very easy-to-handle
textual ATerm representation to get quick prototypes of such interconnections,
although for larger applications, the more complex binary format is needed.

Another use of the ATerm format will be the comparison of outputs of dif-
ferent tools for the same purposes that have been developed at different sites.

We hope that also tools developed by others will be integrated to work with
our tools in the future. Currently, we have ATerm-based formats for parse trees
and global static environments. For the integration of different theorem proving
and rewriting tools, on would also need ATerm-based formats for proofs, proof
states and possibly also transformations.

An even better integration can be achieved with the UniForM workbench [12],
which also provides library management and access to a generic transformation
application system [15,14] that will be instantiated to CASL.
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Future work will turn our tool into a theorem proving environment that can
be used for practical problems. On the way to this goal, we have to implement
proof management, dealing with proof obligations, intended consequences and
refinement. Moreover, special simplifiers and proof tactics for CASL will have to
be developed an tested. A first case study will be the verification of proof obliga-
tions and intended consequences for the libraries of CASL basic datatypes [22].

Another direction of research will further exploit the possibility of the generic
analysis of CASL-in-the-large. It is possible to extend CASL to a heterogeneous
specification language, where one can combine specifications written in several
different logics, see [25] for some first ideas. Tool support for such a language
would extend the generic analysis of CASL-in-the-large with an analysis of struc-
turing mechanisms for moving specifications between different logics.
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