A Framework for Loop Distribution on Limited
On-Chip Memory Processors*

Lei Wang, Waibhav Tembe, and Santosh Pande**

Compiler Research Laboratory, Department of ECECS, ML 0030,
University of Cincinnati, PO Box 210030, Cincinnati, OH 45221-0030
leiwang,wtembe,santosh@ececs.uc.edu

Abstract. This work proposes a framework for analyzing the flow of
values and their re-use in loop nests to minimize data traffic under the
constraints of limited on-chip memory capacity and dependences. Our
analysis first undertakes fusion of possible loop nests intra-procedurally
and then performs loop distribution. The analysis discovers the closeness
factor of two statements which is a quantitative measure of data traffic
saved per unit memory occupied if the statements were under the same
loop nest over the case where they are under different loop nests. We
then develop a greedy algorithm which traverses the program dependence
graph (PDG) to group statements together under the same loop nest
legally. The main idea of this greedy algorithm is to transitively generate
a group of statements that can legally execute under a given loop nest
that can lead to a minimum data traffic. We implemented our framework
in Petit [2], a tool for dependence analysis and loop transformations. We
show that the benefit due to our approach results in eliminating as much
as 30 % traffic in some cases improving overall completion time by a
23.33 % for processors such as TT's TMS320C5x.

1 Introduction

1.1 On-Chip Memory and Data Traffic

Due to significant advances in VLSI technology, ‘mega-processors’ made with
a large number of transistors has become a reality. These processors typically
provide multiple functional units which allow exploitation of parallelism. In or-
der to cater to the data demands associated with parallelism, the processors
provide a limited amount of on-chip memory. The amount of memory provided
is quite limited due to higher area and power requirements associated with it.
Even though limited, such on-chip memory is a very valuable resource in mem-
ory hierarchy. Due to tight integration and careful layouts, the latency delays
amongst the on-chip resources are significantly smaller; thus, on-chip memory
can serve as an ultra-fast cache as shown by Panda, Nicolau and Dutt [15]. One
of the significant uses of on-chip memory is to store spill values as shown by

* Supported in part by NSF through grant no. #EIA 9871345

** Contact author for future communications about this paper

A. Watt (Ed.): CC/ETAPS 2000, LNCS 1781, pp. 141-156, 2000.
© Springer-Verlag Berlin Heidelberg 2000

142 Lei Wang et al.

Cooper et. al. [17]. Another important use of on-chip memory is to hold the
instructions from short loops along with the associated data for very fast com-
putation. Such schemes are very attractive on embedded processors where, due
to the presence of dedicated hard-ware on-chip (such as very fast multipliers-
shifters etc.) and extremely fast accesses to on-chip data, the computation time
of such loops is extremely small meeting almost all real-time demands. Biggest
bottleneck to performance in these cases are off-chip accesses and thus, compilers
must carefully analyze references to identify good candidates for promotion to
on-chip memory. In our earlier work [6,5], we formulated this problem in terms
of 0/1 knapsack and proposed a heuristic solution that gives us good promotion
candidates. Our analysis was limited to single loop nest. When we attempted
extending this framework to multiple loop nests (intra-procedurally), we real-
ized that not only it is important to identify good candidates for promotion but
a careful restructuring of loops must be undertaken before performing promo-
tion since data traffic of loading and storing values to on-chip memory poses a
significant bottleneck.

Reorganization of loop nests is quite useful for signal processing applications
which typically consist of a sequence of loop nests that tend to operate on the
same data elements performing operations such as DCT transform, averaging,
convolution, edge detection etc. in succession. Valuable data traffic can be saved
in such cases by compiler analysis of flow of values to maximize re-use. This is
the focus of this work.

2 Motivating Example: On-Chip Memory and Parallelism

Consider the following loop nests to be executed on a processor that can support
300 parallel adders. Assume that the processor has on-chip memory which can
hold 300 data elements (this is a typical size for most on-chip memories which
ranges from 128 words to about 512 words).

Example:

For i=1 to 100 //L1
m[i] = ali] + e[il; //s51
n[il = bl[i] + c[il; //82

For i=1 to 100 //L2
plil = £[i] + d[i]; //83
qli] = e[i-1] + m[i] + a[i+1];//S4

Consider executing the above loop nests (without any restructuring), on this
processor. The first loop nest L1 needs 200 parallel adders and the second one
L2 also needs 200 parallel adders. Since the processor can support 300 parallel
adders, both of these needs are satisfied as far as the parallelism is concerned.
However, due to limited on-chip memory, both loops must be blocked. The loop
L1 is blocked with size 50 since each iteration demands storage for 6 data ele-
ments. The loop L2 is blocked with size 42 since each iteration demands storage
for 7 elements. Thus, one can see that although the processor can support 300

A Framework for Loop Distribution on Limited On-Chip Memory Processors 143

adders, loop L1 can utilize only 100 parallel adders and loop L2 can utilize only
84 parallel adders due to the limitations on data storage. The total data traffic
for the above blocked loop nests is 1300 (900 input values loaded to on-chip
memory and 400 output values stored from on-chip memory into main cache).
This traffic is essentially sequential and poses the largest overhead on loop exe-
cution. We now show that if we restructure the loops we can significantly reduce
the costly traffic and also utilize parallelism more effectively. We see that arrays
af] and e[| are used in both S1 and S4, and m[i] (output of S1) is used in S4.
Thus, statements S1 and S4 exhibit a higher degree of ‘closeness’ to each other
since their execution under one loop nest can significantly increase data re-use
and reduce effective traffic. We can thus group them together. Statements S2
and S3 however share no such data re-use and thus, we can put them under
separate loop nests. Using the memory capacity constraint, the blocked loops
are as follows:

Output Loop:

For i = 1 to 100 by 75 //L1
For j = i to min(i+74, 100)
m(jl = aljl + e[jl; //81
qljl = el[j-1]1 + m[j]l + alj+1];//84
For i=1 to 100 //L2
nl[i] = bl[i] + c[il; //82
For i=1 to 100 //L3
plil = £[i] + 4lil; //83

The block size for the first loop is found 75 since each iteration of the inner loop
needs storage for 4 elements per iteration and since we have a memory capacity
of 300 elements, we can ‘block’ 75 iterations together. Thus, during the execution
we get fetch the entire data needed for complete execution of the blocked loop,
so that no intermediate traffic is needed. Once the loop is executed, we output
all the necessary data elements generated/modified in the program. No blocking
is needed for other two loop nests. In the above restructured loops, the first loop
nest utilizes a parallelism of 150 parallel adders whereas the second and third
loop nests utilize parallelism of 100 parallel adders. One can see that these loop
nests not only exhibit better parallelism but also have much lower data traffic
needs. The first loop nest has total traffic of 400 (200 loads and 200 stores).
The other two loop nests have traffic of 300 each (200 loads and 100 stores).
Thus the total data traffic for the restructured loop nests is 1000. The total data
traffic is thus reduced from 1300 to 1000 or a saving of about 23% is achieved.
As mentioned earlier, the data traffic is sequential and has a higher latency
and thus forms a dominant part of overall loop completion time. The reduction
in data traffic has a more significant effect on reduction of overall completion
time of the loop. This motivates our approach of restructuring the loop nests
for minimizing data traffic. Our approach is based on determining a group of
statements that should execute under a given loop nest to minimize data traffic.
In the next section, we present an outline of our approach introducing terms and
definitions.

144 Lei Wang et al.

3 Terms and Definitions

3.1 Outline of Our Approach

Our analysis begins by undertaking loop fusion assuming unlimited memory. We
first calculate the amount of data re-use between the statements after carrying
out loop fusion. We then calculate the closeness factor of every pair of state-
ments. Closeness factor between two statements quantifies the amount of data
reuse per unit memory required. We decorate the program dependence graph
(PDG) with this information by inserting undirected edges between the nodes of
the PDG that represent statements. The undirected edges have a weight equal
to the closeness factor of the two statements. We then group the statements
greedily under a given loop nest i.e. statements which have higher closeness fac-
tor are grouped together over those which have lesser. At every step, when we
group statements, we examine if we must include some other statement(s) so
as to preserve the dependences. (this step is explained in the next subsection).
Sometimes we may not be able to include statements due to dependence and
memory capacity constraints. In such cases, we adjust the dependence groups to
eliminate useless re-use edges. Finally, we iterate to expand the group of state-
ments and when we exceed the capacity of the on-chip memory we halt. We carry
out the above steps of grouping and adjusting the dependence groups until there
are no more re-use edges. We finally block the groups so as to fit the available
memory size.

In our approach, we analyze following three types of data reuse: flow de-
pendence reuse, input dependence reuse, and iteration reuse. We calculate the
total amount of data re-use between two statements based on the total re-use
associated with each of the references within those statements adding them up.
Closeness Factor (CF) of two statements is defined as the ratio of the total re-use
present between these statements and the total number of data elements that oc-
cupy the memory to facilitate the re-use. Thus, the CF is a measure of how good
is the re-use relative to a unit of memory occupied by references corresponding
to the two statements. We say that two statements are closest to each other if
they have the highest closeness factor. Thus, we rank the statements in the or-
der of closeness factor. Our approach is to legally group statements in the order
of CF under the constraints of available memory size and dependencies. The
motivation behind grouping two ‘closest’ statements together under the same
loop nest is that largest amount of data traffic is eliminated by doing so. This is
due to the fact that by grouping statements, we have utilized maximum possible
reuse per unit memory. We propose a greedy strategy to accomplish this goal.
When we start grouping the statements together, certain re-use edges from the
decorated PDG become useless. In other words, it becomes impossible to group
statements together under one loop nest due to the groups already formed and
due to dependence constraints. The next section explains the details along with
an algorithm.

A Framework for Loop Distribution on Limited On-Chip Memory Processors 145

4 PDG Analysis

4.1 Legality of Grouping

Our framework starts grouping statements together greedily. When we find out a
statement S is the closest statement to a group A, we want to check the following
to make sure we can group S and A together: (1) We first want to check if we
can group S and A legally according to PDG (2) whether there is sufficient
memory available (3) when the above two situations are satisfied, if grouping
one more statement will really increase CF. In this section, we discuss (1), the
most important condition. There are some interesting issues faced in determining
legality. In Figure 1, we have found a statement group Gi having three statements
S2, S3 and S6 in it. We assume that at this point, no more statement can be
grouped with Gi because of on-chip memory capacity. Amongst the remaining
statements S1, S4, S5 and S7, statements S5 and S7 are the closest statements
and we group them into Group A. At this stage, we find out that S4 is the next
closest statement to A, but we can not group it with A. The reason is S4 must
execute before Gi which must execute before A and thus, S4 can not be a part
of A.

Closest Sto A —= @
Ch

Fig. 1. Legality of grouping S4 with A

<—— Completed Group Gi

Close Group A

4.2 PDG Adjustment

After we find out that the grouping is legal, we need to adjust PDG for further
PDG analysis use. In general, after we group S with X, one of the following
scenarios may arise:

Case 1 If S and X are each other’s direct and only successor/predecessor after
they are grouped, S and X’s other direct successors will be direct successors of
this group; and their other direct predecessors will be direct predecessors of the
group. In figure 2, after S2 and S3 are grouped, S1 is their predecessor and S5,
S6 are their successors.

146 Lei Wang et al.

()
/TN /
®| ® 2 @é
&@/ /@
l /
() ©)

Before PDG Adjustment After PDG Adjustement

Fig. 2. Direct Predecessor/Successor Relationship

Case 2 If S and X belong to the same dependency group and they are not
each other’s successor and predecessor, but they have same (direct/indirect) and
only successor(s)/predecessor(s), the two statements will be grouped together
and their direct successors and predecessors will be the direct successors and
predecessors of the group. In figure 3, after S3 and S4 are grouped together, S1
and S2 are their predecessors and S5, S6 are their successors.

O
/1N

— |

/ 1/

@e?%x ;
@

Before PDG Adjustment

&ﬁ
- @O~ —®
= \@/

After PDG Adjustment

Fig. 3. Common Successor/Predecessor Relationship

Case 3 In some cases we cannot directly include a statement in a group without
including some other statements. If two closest statements are in the same group
and are each other’s non-direct successor and predecessor (suppose S is X’s
predecessor). In this case, we have to resort to the following:

1. Find out all the statements between them in the PDG, that is, find out
all of intermediate statements between S and X. We call this set as the
intermediate statement set of S and X : ISGroup(S,X).

2. Count total data storage requirements of statements S, X and ISGroup(S,X),
and compare it with available memory. If it can fit, group S, X and IS-
Group(S,X). If the capacity is not big enough, S and X can not be grouped

A Framework for Loop Distribution on Limited On-Chip Memory Processors 147

together and the re-use edge must be discarded. From figure 4, one can see
that if capacity is big enough, statements S1, S2, S3, S4 and S6 will be
grouped into group G. Otherwise, input dependence reuse between S1 and
S6 will be removed and no group is formed.

After PDG Adjustement with enough Capacity After PDG Adj. without enough Capacity

Fig. 4. Indirect Predecessor/Successor Relationship

In the above three cases, the two closest statements are in the same depen-
dency group.

Case 4 If two closest statements belong to different dependency groups, there
is no clear execution order for the two statements, that is, the two statements
can be executed in any order. In figure 5, S1 must be executed before S3 and S6;
however, S5 can be executed in any order with respect to S1, S3 or S6. However,
when S3 and S2 are grouped together under one loop nest, it automatically fixes
the order of execution of S5 with respect to S1 and can’t be potentially combined
with it.It can still be combined with any one of S4, S6 or S8 though. Thus, as
long as the two statements S and X or one statement and a group belong to
different dependency groups, they can be group together. The two dependency
groups should be combined into one, predecessors and successors of S and/or
X will be the predecessors and successors of the group. We have devised an

148 Lei Wang et al.

ONCRant
Sy 4
5

di a2 d1

@

—
@/
®

©O—&)
O—®=

Before PDG Adjustement After PDG Adjustement

Fig.5. S and X are in different Dependence Groups

algorithm based on these ideas to check possible groupings of the statements
and the CF of the group is an indicator of the profitability. It is shown below.

Input : PDG for the given loop

Output: Rearranged statements.

1.For every pair of ungrouped statements

calculate the closeness factor(CF).

2.while(some ungrouped statements can be grouped)

2.A.select the pair of ungrouped statements with
highest CF

2.B.Check the possibility of grouping based on
available memory size

2.C.if grouping possible
2.C.a. Form the new group
2.C.b. Adjust the parents and children of

all statements in the new group
2.C.c. Find all possible ungrouped statememts
that share data with this group and
if such statement found
merge that statements into the group
(if memory size allows)
goto 2.C.b
else goto 2.A
else
set the CF of this pair to zero.
goto 2.

5 Complexity

The algorithm attempts to first form a group using two statements. It then
examines statements which can be included in this group to facilitate more data
re-use based upon a re-use edge. This step could potentially involve examining

A Framework for Loop Distribution on Limited On-Chip Memory Processors 149

O(]V]) nodes where [V] is the number of nodes in the graph. In worst case the
number of re-use edges present in the graph could be |V2|. Thus, the overall
complexity of the algorithm in worst case can be O(|V?|).

6 Results

Table 1. Benchmark I Data Traffic Comparison. Ideal Traffic is 280,006

OnChip |Original Traffic|Our Traffic|Traffic Improved
MemSize

24 440,000 380,000 15.79%
36 410,000 341,500 16.71%
48 400,000 362,667 9.33%
60 397,142 332,500 16.28%
74 388,300 318,182 18.06%
112 388,000 304,706 21.47%
140 385,128 291,235 24.38%
172 384,953 286,482 25.19%
224 382,477 281,134 26.49%

Typically in DSP applications, a sequence of steps (such as convolution,
filtering, edge detection etc.) operate successively on data. The procedure calls
corresponding to these steps take place one after another. We first turned on
inlining and formed a sequence of intra procedural loop nests using the DSP
kernels. We then performed fusion and performed our analysis. Please refer to
Appendix A for the codes of the benchmarks (the codes shown in each benchmark
are sequences of loop kernels inlined intra procedurally). We used TMS320C5x
for analysis. The framework has been implemented in Petit [2], a tool for data
dependency analysis developed by University of Maryland. Petit provides a good
support for finding the dependence distances as well as types of dependences
between them.

6.1 Benchmark I

Table 1 shows the comparison of original traffic and traffic after applying our
work when on chip memory size varies. The ideal (minimum possible) data traffic
for the above example is about 280,006.

6.2 Benchmark II

Table 2 shows the comparison of original traffic and traffic after applying our
work when on chip memory size varies for Benchmark II. It also shows the im-
provement. We assume the loop size N = 10000. The ideal amount of data traffic
for Benchmark II is 320,005. The ideal amount of data traffic for Benchmark ITI

150 Lei Wang et al.

Table 2. Benchmark II data traffic comparison.

On-Chip |Original|Our Traffic
MemSize|Traffic |Traffic |Improved
24 380,625 |371,647|2.36%
36 363,750 |352,466|3.10%
48 355,312 |343,677|3.27%
60 350,250 |338,634|3.32%
74 346,530 |335,031|3.32%
112 340,945 |329,664|3.31%
140 338,709 |327,728|3.24%
172 337,105 |326,273|3.21%
224 335,435 |324,775|3.18%
268 334,614 |323,986|3.17%

is 430,004. Table 3 shows the comparison when on chip memory size varies on
Benchmark III. It also shows the improvement. Benchmark III is composed of

Table 3. Benchmark IIT data traffic comparison. Ideal Traffic was 430,004.

On-Chip |Original Traffic|Our Traffic|Traffic Improved
MemSize

24 690,971 620,000 10.27%
36 597,756 572,857 4.16%
48 544,000 533,414 1.94%
60 498,987 478,888 4.03%
74 464,256 461,111 0.68%
112 455,735 450,000 1.26%
140 452,419 445,730 1.48%
172 450,073 442,363 1.711%
224 447,661 439.379 1.85%

two large groups of statements and its own data reuse is very strong. That can
explain why our improvement on data traffic is around 1-2 percent most of the
time. Thus, the additional gain in re-use due to our work is small.

The code for Benchmark V as shows a loop used frequently in DSP ap-
plications. The first one is a matrix multiplication code. The second one is a
convolution. The results have been summarized in Table 4.

7 Related Work

We now contrast our work with existing work related to solving data locality
and data re-use problems on memory hierarchy. Two important directions of
work are: Tiling or iteration space blocking [12] and data-centric approaches

A Framework for Loop Distribution on Limited On-Chip Memory Processors

151

Table 4. Traffic comparison for benchmark IV, V and VI

Code Original Traffic|Optimized Traffic|Saved Traffic|% Traffic Reduction
Benchmark IV|30000 21000 9000 30

Benchmark V [18*10° 11.25%10° 6.75%10° 37.5

Benchmark VI|27692 22532 5160 18.63

such as data shackling [14]. In tiling or data blocking (which is a control centric
transformation), a loop nest is tiled to maximize temporal locality [13,7,8,10].
Previous research on optimizing compilers [18] [19] [11] has proposed algorithms
to detect and perform loop interchange to increase temporal locality. In data
centric transformations, all the iterations that touch a data shackle are executed
together giving better control to the compiler to directly focus on data than
resorting to side effect of control centric transformation [14].

Our work differs from these in that we focus on data traffic as against issues of
locality. This is important since in our problem, we are faced with a small amount
of memory that results in excessive load/stores of short arrays between on-chip
and off-chip memories. Thus, in order to minimize data traffic, we must not only
concentrate on re-use of fetched values (as is typically the goal in the most mem-
ory hierarchy oriented optimizations described above) but also carefully analyze
the flow and use of generated values and transitive closure of their uses and val-
ues which they generate in turn. This is because on-chip memory can be viewed
somewhat intermediate between caches and register files. It is much smaller than
traditional caches leading to the above differences. However, it is larger than reg-
ister files. This also leads to different issues than traditional load/stores. In fact
the on-chip memory is large enough to act as an ideal temporary store for in-
termediate array subsections with short live ranges. To maximally utilize the
property of this temporary store, we must analyze the tradeoffs between values
that get re-used across iterations (iteration re-use) input values that get re-used
across two statements (due to input dependencies) and most importantly values
that are produced and consumed (due to flow dependencies) in short span of
iterations under the constraint of limited memory capacity and legality. Gupta
et. al. [23] [22] have addressed the problem of register allocation for subscripted
array variables by analyzing their liveness based on the number of iterations that
elapse between definition and use. They propose a register allocation algorithm
based on this liveness information. Our work addresses orthogonal problem to
theirs - in our approach we are interested in determining the best grouping of
statements inside a loop nest such that best re-use per memory occupied results
to minimize. Our work also differs from McKinley and Kennedy [20] and Gao
and Sarkar [21] in that we define a new measure of data traffic based on closeness
factor than simply attempting to maximize data re-use as in their loop fusion
framework. It can be shown that simply attempting to maximize data re-use can
incur higher data traffic than found by using closeness factor.

152 Lei Wang et al.
8 Conclusion

We have proposed a framework on how to get a better performance by analyzing
the flow of values and their re-use to effectively reduce data traffic for limited on-
chip memory processors. A new concept of Closeness Factor has been developed
which is the measure of data reuse between statements per unit memory re-
quirement. The loop restructuring algorithm proposed by us helps to effectively
utilize the on-chip memory while preserving the data dependences between the
statements in the loop. Good performance enhancements for DSP codes are ob-
tained using our framework. These loop restructuring transformations should be
very useful for limited on-chip memory processors.

References

1. J. Eyre and J.Bier,”DSP Processors Hit the Mainstream”, ‘COMPUTER’,
31(8):51-59, August 1998.

2. Petit, Uniform Library, Omega Library, Omega Calculater.
‘http://www.cs.umd.edu/projects/omega/index.html’ 141, 149

3. Texas Instruments. ‘TMS 320C5x User’s Guide.

4. Embedded Java.
http://java.sun.com/products/embeddedjava/.

5. A. Sundaram and S. Pande, “Compiler Optimizations for Real Time Execution of
Loops on Limited Memory Embedded Systems”, Proceedings of IEEE International
Real Time Systems Symposium, Madrid, Spain, pp.154-164. 142

6. A. Sundaram and S. Pande, “An Efficient Data Partitioning Method for Lim-
ited Memory Embedded Systems”, 1998 ACM SIGPLAN Workshop on Languages,
Compilers and Tools for Embedded Systems (in conjunction with PLDI ’98), Mon-
treal, Canada, Springer—Verlag, pp. 205-218. 142

7. F.Irigoin and R.Triolet, ”Supernode Partitioning”. in 15th Symposium on Princi-
ples of Programming Languages (POPL XV), pages 319-329, 1988. 151

8. J.Ramanujam and P.Sadayappan, “Tiling Multidimensional Iteration Spaces for
Multicomputers.” Journal of Parallel and Distributed Computing, 16:108-120,
1992. 151

9. U. Banerjee, “Loop transformations for restructuring compilers”, Boston: Kluwer
Academic, 1994.

10. W. Li, “Compiling for NUMA parallel machines”, Ph.D. Thesis, Cornell University,
Ithaca, NY, 1993.

11. M. Wolfe, High Performance Compilers for Parallel Computing, Addison Wesley,
1996. 151

12. M. Wolfe, “Iteration space tiling for memory hierarchies” in Third SIAM Confer-
ence on Parallel Processing for Scientific Computing, December 1987. 150

13. R. Schreiber and J. Dongarra, “Automatic Blocking of Nested Loops”. Technical
report, RIACS, NASA Ames Research Center, and Oak Ridge National Laboratory,
May 1990. 151

14. 1. Kodukula, N. Ahmed and K. Pingali, “Data Centric Multi-level Blocking” in
ACM Programming Language Design and Implementation 1997 (PLDI ’97), pp.
346-357. 151

A Framework for Loop Distribution on Limited On-Chip Memory Processors 153

15.

16.

17.

18.

19.

20.

21.

22.

23.

P. Panda, A. Nicolau and N. Dutt, “Memory Organization for Improved Data
Cache Performance in Embedded Processors”, Proceedings of 1996 International
Symposium on System Synthesis. 141

N. Mitchell, K. Hogstedt, L. Carter and J. Ferrante, “Quantifying the Multi-level
Nature of Tiling Interactions”, International Journal of Parallel Programming, Vol
26, No 6, 1998, pp. 641-670. 151

K. Cooper and T. Harvey, “Compiler Controlled Memory”, Proceedings of the 8th
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Oct. 3-7, 1998, San Jose, CA. 142

K. McKinley, S. Carr, and C.-W.Tseng, Improving data locality with loop trans-
formation. ACM Transactions on Programming Languages and Systems (PLDI)
18(4):424-453, July 1996. 151

M. Wolf and M. Lam, “A data locality optimizing algorithm”, in proceedings of
ACM Special Interest Group on Programming Languages (SIGPLAN) 91 Conf.
Programming Language Design and Implementation(PLDI’91), pp. 30-44, Toronto,
Canada, June 1991. 151

K. Kennedy and K. McKinley, “Maximizing Loop Parallelism and Improving Data
Locality via Loop Fusion and Distribution” in Languages and Compilers for Par-
allel Computing (LCPC) 1993. 151

G. Gao, R. Olsen, V. Sarkar and R. Thekkath “Collective Loop Fusion for Array
Contraction” in Languages and Compilers for Parallel Computing (LCPC) 1992.
151

E. Dusterwald, R. Gupta and M.Soffa, “A Practical Data-flow Framework for Array
Reference Analysis and its Application in Optimization” in ACM Programming
Language Design and Implementation (PLDI) 1993 pp. 68-77. 151

R.Gupta and R. Bodik, “Array Data-Flow Analysis for Load-Store Optimizations
in Superscalar Architectures,” in Fighth Annual Workshop on Languages and Com-
pilers for Parallel Computing (LCPC) 1995. Also published in International Jour-
nal of Parallel Computing, Vol. 24, No. 6, pages 481-512,1996. 151

154 Lei Wang et al.

9 Appendix

Benchmark I

for(i=0; i<N; i++)
tmpPtr[i] = (ailil * bl[il);

for(i=0
cli]

for(i=0;

r[i]
gli]
b[i]
plil

for(i=0
k[i]
h[i]
f[i]

for(i=0
sum[i

for(i=0

’

’

]

)

i<N; i++)

((sum[i] * a1[il) >> 15) + Dbl[il;

i<N; i++)

rd[i];

gdl[il;

bd[i];

(rlil&mask[i])+((glil&mask[i])>>5)
+ ((b[i] & mask[il) >> 10);

i<N; i++)

clil;

b[i] + (k[i] * m[i]);

bl[i] * k[i] + m[i];

i<N; i++)

= ali] + alil;

i<N; i++)

tmpPtr2[i] = tmpPtr[i];
for(i=0; i<N; i++)

R1[i]
G1[i]

tmpPtr[i] * tmpPtr2[il;
tmpPtr[i] * tmpPtr[i];

for(i=0; i<N; i++)

suml[i]
sum2[i]
sum3[i]
sumé4 [i]

mask[4+i-1]-a[4+i-1];
mask [4+i-2]-a[4+1-2];
mask [4+i-3]-a[4+1-3];
mask [4+i-4]-a[4+i-4];

oPtr[4+i] = suml[i];

sumb[i]

= oPtr([4+i];

Benchmark IT

for (i =

bli]
fli]
ali]
gli]
for(i=0
cli]
s[i]
m[i]

0; i < n; i++)
ialil;

bli] * k([i];

fli] * k[i]l + bl[il;
alil;

i < nj; i++)

wl2xj];

w[2*xj+1];

ial[i] + n2[i];

rtemp[i] = x[i] - y[2xi+1];
x1[i] = x[i] + y[2*i+2];
itemp = m[i] - 2x*m[i];

A Framework for Loop Distribution on Limited On-Chip Memory Processors 155

x2[i] = x1[i] + 2*m[i];
x3[1] = cl[il*rtemp[i] - s[il*itemp[i];
x4[i] = cl[il*itemp[i] + s[il*rtemp[i];
for (i=0; i < n; i++) {
sumO[i] = x[i+0]*p[i] + x2[i+1]*p[i]
+ x3[1+2]*p[i];
sum1[i] = x[i]*p[i] + x2[i+2]*p[i]
+ x3[i+3]*p[i];

distO[i] = sumO[i] - point[i];
dist1[i] = suml1[i] - point[i];
dist3[i] = fabsf[il;
dist4[i] = fabsf[il;

retval[i] = (int)&z[i+3];
Benchmark 111

for(j=0; j<n2; j++)
ia2[j] = ia1l[j] + ia1ljl;
ia3[j] = ia1l[j] + ia2[jl;
coll[j]l = wlj*2];
si1[j] = wlj*2+1];
co2[j] = wlj*2];
si2[j] = wlj*2+1];
co3[j] = wlj*2];
si3[j] = wlj*2+1];

for(j=0; j<n2; j++)

i2[j]1 = i1[j1 + n2[j];

i3[j]1 = i2[j] + n2[j];

r1[j] = x[j*2] + x[j*2];

r3[j] = x[j*2] - x[j*2];

s1[j] = x[j*2+1] + x[j*2+1+2];
s3[j] = x[j*2+1] - x[j*2+1+2];
r2[j] = x[j*2] + x[j*2+3];
r4[j]l = x[j*2] - x[j*2+3];
s2[j] = x[j*2+1] + x[j*2+1+4];
s4[3] = x[j*2+1] - x[j*2+1+4];
x[j*2] = r1[j] + r2[jl;

r12[j] = r1[j]l - r2[jl;

r11[j] = r3[j]1 - s4[jl;

r13[j]1 = r3[j] + s4[jl;

z[j*2+1] = s1[j] + s2[j];
s12[j] = s1[j] - s2[j1;

s11[j] = s3[j] + ra[jl;
s13[j] = s3[j] - r4ljl;
x1[j] = col[j1*r3[j] + si1[j1=*s3[j];
x2[j]1 = co1[j1#*s3[j] - si1[j1*r3[jl;

x3[j] co2[j1*r2[j] + si2[jI*s2[j];

156 Lei Wang et al.

x4[j] = co2[jl*s2[j] - si2[jI*r2[j];

x5[j] = co3[jI*r1[j] + si3[jl*s1[j];
x6[j] = co3[jI*s1[j] - si3[jl*r1[j];
i1[j] = i0[j]1 + n2[j];

Benchmark IV

for (i = 0; i < N; i++)
m[i] = sd[i] + sd[i + 1];
m5[i] = sd[i] - sd[i + 1];
m11[i] = -sd[i] + sd[i + 1];
m14[i] = -sd[i] - sd[i + 1];
for (i=0; i < N; i++)
new_s = m[i] + m11[i];
0ld[i] = m5[i] + m14[i];
for (i=0; i<N; i++)
al[i] = old[i] + new_s[i];
bli] = - mi[i] * 2
term[i] = a[i] + sd[i];
trans[i] = b[i] + mil[il;
mj[i] = trans[i];

Benchmark V

Cl[1,J] ;.C[I,J] + A[I,KI=*BI[K,J] // S1
doI =1..0N

doK=1..N
D[K,J] = D[I,J]*C[I,K] - B[X,J] // 82

Benchmark VI

for i=1 to N

cl[il=alil-b[i]; //81

rlil=d[i-9]1/el[i]; //82

k[i]l=ali+1]*b[i-1]1+p[i]l-q[i]; //83
for i=1 to N

nlil=d[il*c[i]l+e[il; //s4

fli]l=o[il+d[i]/e[i]; //85

glil=r[i]l/m[i+1]; //56

hlil=n[il*m[i+1]+e[5+i]-c[i+10]; //87

	Introduction
	On-Chip Memory and Data Traffic

	Motivating Example: On-Chip Memory and Parallelism
	Terms and Definitions
	Outline of Our Approach

	PDG Analysis
	Legality of Grouping
	PDG Adjustment

	Complexity
	Results

	Benchmark I
	Benchmark II

	Related Work
	Conclusion
	References
	Appendix

