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Abstract. Software pipelining loops containing multiple paths is a very
difficult problem. Loop shifting offers the possibility of a close to optimal
schedule with acceptable code growth. Deciding how often to shift each
operation is difficult, and existing heuristics are rather ad hoc. We sepa-
rate loop shifting from scheduling, and present new, non-greedy heuris-
tics. Experimental results show that our approach yields better perfor-
mance and less code growth.

1 Introduction

Instruction Level Parallelism (ILP) offers the hope of greatly faster computers
by automatically overlapping the execution of many machine-level instructions
to complete tasks more quickly. An important class of ILP machine is the Very
Long Instruction Word computer. These simple machines provide large numbers
of execution resources, but require a sophisticated compiler to schedule the in-
structions. A particularly important scheduling technique is software pipelining,
which can produce very compact schedules for loops.

This paper focuses on global software pipelining, that is pipelining loops
containing branches. Our approach is based on shifting operations across the
loop entry. This technique is used in several important software pipelining algo-
rithms [ME97,NN97,Jai91,DH99]. Most loop shifting algorithms use an iterative
approach to software pipelining. These algorithms interleave acyclic scheduling
of the loop body, and shifting operations from one iteration to another. Acyclic
scheduling has been studied in great detail and a number of good algorithms
exist. Loop shifting has been less studied, and most algorithms shift operations,
one iteration at a time, and on quite an ad hoc basis.

The fundamental problem of loop shifting is how to know which operations
should be moved across the loop back edge, and how many times. Algorithms
which move operations one iteration at a time are similar to early attempts
at global acyclic scheduling which percolated operations from on basic block
to the next without any final intended destination. Moving an operation one
iteration at a time may create a temporarily worse schedule, that can later be
transformed into a better one [Rau94]. The problem is to distinguish between
such good moves, and shifts that genuinely make the schedule worse.
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Despite the problems of loop shifting, it has one very important advantage – it
extends naturally to software pipelining loops containing branches. Loop shifting
algorithms can pipeline such loops using existing acyclic scheduling techniques.
Most importantly, the initiation interval (II) of the resulting pipeline is not
fixed; it can vary depending on the control flow path. Other algorithms can
achieve a variable II, but only at the cost of large scale code duplication or
scheduling restrictions which may increase the average II. Furthermore, loop
shifting naturally allows operations to be scheduled ahead of branches upon
which they are control dependent. Many other approaches limit ILP by treating
control dependences as data dependences.

This paper deals with software pipelining of integer code using loop shifting.
Such code often contains loops with branches and low trip counts. With such
loops it is important to both minimize the average II of the pipeline, and to
control code growth and other resource usage. With low trip count loops the
cost of loop start-up, such as cache misses from an over-large loop prolog, may
be just as important as the average II for the loop. Therefore, we concentrate
on shifting the loop only enough to make the minimum II attainable. Only after
shifting is complete do we apply acyclic scheduling.

The paper is organised as follows. First we describe existing loop shifting
techniques. Section 3 describes our novel approach to software pipelining loops
containing branches. In section 4 we present experimental results from imple-
menting the algorithm in an ILP compiler. In section 5 we look at other work
in this area. And finally we outline some conclusions and open questions for our
future research.

2 Shift and Schedule Algorithms

We will first describe shifting algorithms in more detail. These algorithms move
operations from inside the loop across the loop back-edge and into the region
of code before the start of the loop. This produces a compensation code copy
of the moved operation at the end of the loop. Thus operations move from one
iteration to another inside the loop. This process is often know as shifting the
operation.

The most prominent loop shifting algorithms interleave acyclic scheduling
and shifting [ME97,NN97,Jai91]. A problem with these algorithms is their rules
for choosing which operations to shift. The candidates for shifting are those
operations which the acyclic scheduling step has placed toward the start of the
acyclic schedule. At each acyclic scheduling stage, operations are scheduled as
early as possible. This strategy can work well for operations that are members
of the longest dependence chains in the loop, since dependences prevent them
being scheduled too early. Other operations may be scheduled far earlier than
necessary.

There are a number of problems with shifting operations more often than
necessary. First, functional units may be used for speculatively executing opera-
tions which could be scheduled less speculatively without delaying the schedule.
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This is especially true for loops containing unpredictable branches. Secondly, the
length of the register lifetimes will increase, thus increasing register pressure, and
register spills. Values that are live across loop iterations may need renaming to
maintain the correctness of the code. Renaming requires copy operations and/or
loop unrolling, neither of which is desirable. Shifting operations increases code
growth in the prolog and loop body, increasing cache misses. Finally, shifting
operations can, under some circumstances, increase the length of the new loop
body rather than decreasing it.

In order to avoid these problems, existing algorithms try to limit their greed-
iness in a number of ways. Enhanced Pipeline Scheduling (EPS) uses a limited
size scheduling window. At each cycle during scheduling, only the first K (usu-
ally K = 16) operations operations on each path are eligible to be scheduled.
This limits greediness somewhat, but operations within the window can still be
scheduled too early, and operations outside the window may be shifted too little.
EPS also tries to schedule the loop acyclically as much as possible. Once all the
operations on a given path have been scheduled once, no further shifting of the
loop is allowed on that path. When all control flow paths have reached this state,
scheduling is complete. Furthermore, priority is given to operations which are
shifted a smaller number of times.

Resource Directed Loop Pipelining (RDLP) has weaker controls. It calculates
the minimum II (MII) for each control flow path through the loop. It then
alternates between acyclic scheduling and shifting all operations in the first cycle
of the schedule. This process continues until the MII is reached on all path, or
some limit on the number of shifts has been reached. Specifying a lower limit
makes the algorithm less greedy, but reduces the opportunities for pipelining.

Both EPS and RDLP use a greedy strategy, but with some rather ad hoc
heuristics to try to limit the greediness. The result is that many operations will
be shifted too much and an occasional one shifted too little. What is really
needed is a strategy that shifts operations just enough. In the next section, we
present our approach to doing exactly this.

3 Iteration Preselection

Iteration Preselection is a new type of Decomposed Software Pipelining (DESP)
algorithm [WE93]. Rather than trying to shift and schedule together, we break
pipelining into two stages. First, we calculate the number of times each operation
should be shifted using only an approximation of the resource constraints. We
then shift each operation the appropriate number of times. In the second stage,
we schedule the resulting loop body using an existing acyclic scheduling algo-
rithm. It is only in this stage that we take full account of the resource constraints
on the loop.

All DESP algorithms try to simplify software pipelining by breaking it into
the two simpler problems of choosing to how many times to shift each operation
in the loop body, and acyclic scheduling. Although the computational complexity
of these two subproblems is not smaller than that of the software pipelining
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problem, good heuristics can be found for both subproblems. It can be more
difficult to find such good heuristics which solve both subproblems together.

Existing DESP algorithms concentrate on loops containing a single basic
block. In our opinion, however, the true strength of the DESP idea lies in global
software pipelining. Global software pipelining with a variable II and reasonable
code growth is an enormously difficult problem. Good heuristics can be found for
the two subproblems, however. Acyclic global scheduling has been well studied
and good heuristic algorithms such as Selective Scheduling [ME97] and DAG-
GER [CYS98] produce excellent results. The remaining problem is heuristics for
shifting operations.

3.1 Single Path Loops

Our approach to shifting single path loops involves three steps. First, we calculate
the MII for the loop. Secondly, we calculate the smallest number of times that
each operation needs to be shifted for this II to be reached, assuming infinite
resources. Finally, we shift the operations.

We calculate the MII using Lam’s [Lam88] approach to calculating the initial
MII for modulo scheduling1. This calculation finds the precise MII based on
dependences, but uses only an approximation for the effects of resources. Thus,
our algorithm takes some account of resources at this step, but the detailed
resource allocation is not done until acyclic scheduling.

The goal of second step is to reduce the length of the longest acyclic de-
pendence chain in the loop to the length of the MII. Such a loop can certainly
be acyclically scheduled in MII cycles on a machine with infinite resources. The
height of an operation measures the length of the longest acyclic dependence
chain from that operation to the end of the loop. To reduce the acyclic depen-
dence length, it is necessary to shift operations whose height is greater than the
II. We call the number of times that an operation op must be shifted the Times
to Shift or TTS(op). In the absence of cyclic dependences, we can calculate the
TTS with the following formula.

TTS(op) = (height(op) – 1) / MII

In the presence of cyclic dependences, the situation is more complicated.
Cyclic dependences may cause the height of an operation to increase when other
ops are shifted. We introduce the notion of circular height (CH ) to solve this
problem. Intutively, Circular Height is a measure of the height of an operation,
plus the amount that the operation’s height will increase when dependent op-
erations are shifted to below it. More formally, we calculate CH on the data
dependence graph of the loop. The data dependence graph contains vertices
representing operations, and directed edges for dependences. Each edge has a
weight representing dependence distance. Edges with a zero weight are acyclic
1 Our original formulation looked only at the dependence MII. The idea of using the
resource MII as-well comes from the EPS++ algorithm.
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dependences. Let succ(op) denote the set of vertices v such that there exists
an edge (op, v). We initialise the CH of each operation op to latency(op). We
calculate the final CH values using the following algorithm.

repeat
change = FALSE
for each v ε succ(op)

ht = latency(op) + height(v) - weight(op, v) * MII
if ( ht > CH (op) )

CH (op) = ht
change = TRUE

endif
endfor

until change == FALSE

These circular heights can be used as the height in the TTS formula above
to calculate the number of times to shift each operation. The final stage of loop
shifting is to actually shift the operations, using existing operation movement
techniques.

3.2 Multiple Paths

Calculating the number of times to shift each operation is considerably more
complicated in the presence of multiple paths. First, the II for each path may be
different. Secondly, several control flow paths may contain the same instruction.
This single instruction may have different heights depending on which path one
considers. A further complication is with cross paths. A cross path is the section
of code dealing with control flow from one path to another. The idea of II is
very difficult to apply to cross paths, since they involve moving from one path
to another, perhaps every iteration.

To attempt to satisfy these conflicting requirements, we use a heuristic based
on the single path case. We treat each path separately. For each path through the
loop, we calculate the TTS for each operation. Branches are assigned a CH equal
to the greater of their latency, or the CH of the operation op that computes the
branch condition, minus the latency of op.

Based on these calculations we shift operations. If an operation falls on more
than one path, we choose the maximum TTS from all the different paths. If an
operation is duplicated while moving, due to the normal effects of compensation
code in global scheduling, the two copies may be shifted independently.

3.3 An Example

Figure 1 shows the control flow graph for a simple loop containing two control
flow paths. The MII for Path1 is one, and is two for path2. The figure also shows
the circular height and TTS of each operation. All operations have a latency of
one.
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Fig. 1. Example loop with variable II

First, we ensure that all loop back edges come from unconditional gotos
rather than conditional branches. Where necessary, we add additional dummy
basic blocks which branch back to the loop entry. This allows operations to
move across the loop entry without necessarily becoming speculative. Part (a)
of figure 2 shows the transformed CFG. Note that in our notation, a control flow
edge that continues in a straight line represents the fall through path, while a
curved control flow edge represents the taken path of a conditional branch.

Figure 1 shows that the operation x = f(x) should be shifted. The loop entry
is a join point in the CFG, with two incoming edges. Moving the op above this
join will leave it just before the loop entry, and create a compensation copy just
before the goto at the end of the loop, as in part (b). The operation cc = test1(x)
is moved in the same way going from part(b) to part (c). Moving from (c) to
(d), the operation x = g(x, y) moves speculatively above if cc1 and out of the
loop. The register x is live at this point, however, so the target register of the
operation is renamed to x’. A copy operation is added at the original point in
the CFG to copy x’ to x, should that path be followed.

Part (e) considers the operation cc2 = test2(x). This operation is on both
paths but should only be shifted once on path1. On path2, it can stay in the
current iteration. Moving the operation along path1, it first crosses the join
point. This creates a compensation copy on path2, just above the join. A further
compensation copy is created at the end of the loop, when the operation moves
across the loop entry.

Finally, part (f) shows how the operation x = f(x) is shifted a second time
on path1. This creates a compensation copy for both joins that the operation
moves across. A renaming copy operation is also needed. This operation is not
shifted again on path2, since our original calculations (see figure 1) showed that
it should be shifted only once on that path.
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goto
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Fig. 2. Loop shifting steps
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3.4 Acyclic Scheduling

Once shifting is complete, the resulting loop body is scheduled. We use a con-
ventional DAG scheduling algorithm based on Selective Scheduling [ME97]. Any
global scheduling algorithm such as trace scheduling can be used, but a gen-
eral DAG approach allows operations from all paths to be scheduled together,
making it more likely that the MII will be reached on all paths.

x = x’
cc2 = test2(x)
x’’ = f(x)
goto VLIW2

if cc1

x = x’’
cc1 = test1(x)
x’ = g(x, y)
cc2 = test2(x)
x’’ = f(x)
goto VLIW1

x = x’’
cc1 = test1(x)
x’ = g(x, y)
cc2 = test2(x)
x’’ = f(x)
goto VLIW1

if ^cc2

VLIW1 VLIW2

exit

if ^cc2

t f

t f

exit

t f

Fig. 3. Final Kernel Schedule

The final schedule for the example loop kernel appears in figure 3. The loop
has been compacted into two VLIWs. The machine model is IBM’s Tree VLIW,
where a VLIW consists of a tree shaped control flow graph of operations. Only
those operations on the path through the tree that is followed at run time are
allowed to write their results back to the register file. No data dependences are
allowed between operations in the same VLIW2. When path1 is followed, the
machine repeatedly executes VLIW1, and achieves an II of one. When control
moves to path2, the machine alternates between executing VLIW1 and VLIW2,
yielding an II of two.

Our approach is not limited to the Tree VLIW architecture, however. The
two main features of the Tree VLIW are multi-way branching and conditional
write-back. Architectures which allow only two way branching can be modeled by
allowing only a single branch per VLIW. Conditional write-back can be modeled
with predication, or by simply moving the operations in the VLIW above all
branches in the VLIW.

2 An exception to this general rule is with copy operations. An operation may read a
register that is written by a copy operation in the same VLIW. These dependences
on copy operations can easily be removed in a final pass over the VLIWs [ME97]
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4 Experimental Results

We implemented Iteration Preselection in the Chameleon Compiler and ILP
test-bed. Chameleon provides a highly optimizing ILP compiler for IBM’s Tree
VLIW architecture. The compiler performs many sophisticated traditional and
ILP increasing optimizations. For comparison, we also implemented a version
of Enhanced Pipeline Scheduling3 with window size 16. Both algorithms used
the same acyclic scheduling scheme. We compiled and scheduled benchmark
programs whose inner loops contain branches and ran them on Chameleon’s
VLIW machine simulator.

The Chameleon compiler uses an existing C compiler (in our case gcc) as
a front end to generate the original sequential machine code. The baseline for
our speedup calculation is the number of cycles it takes to run this code on a
simulated one ALU VLIW machine. This sequential code is then optimised to
increase ILP, rescheduled by our software pipelining phase, and registers are re-
allocated. We run this scheduled code on a machine simulator with the correct
number of ALUs to calculate the number of cycles taken. The speedup is the
baseline cycles, divided by the number needed for the relevant VLIW.

Benchmark Description

wc Unix word count utility
eight Solve eight queens problem
bubble Bubble sort array of random integers
bsearch Binary search sorted array
eqn Inner loop of eqntott

The purpose of the EPS limited scheduling window is not always understood.
It exists to reduce the greediness of EPS scheduling and so increase the speedup
while reducing code growth, register pressure and compilation time. The pa-
per [NE93] examines the effect of varying the window size, and established 16 as
a good size for balancing greediness against scheduling freedom. Our own exper-
iments confirm this finding. In no case does increasing the window size to 32 give
any but the most minor increase in speedup. Decreasing the window size below
16 usually reduces the speedup except in the case of bubble, where it sometimes
produces faster code.

The speedup results for Iteration Preslection are very encouraging. Clearly,
our non-greedy heuristics are shifting operations sufficiently, but no more. Our
algorithm does better by preserving VLIW slots for operations which need to
execute early. The only exceptions 8-ALU bubble and eqn, where our algorithm
performs a lot of shifting to make a very low II achievable. The acyclic scheduler
fails to pack the instructions into a schedule that length. It appears that in
3 Our version does not use the original EPS register allocation scheme. Our scheduling
window is also implemented slightly differently
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these cases the resource MII that we compute is too optimistic in the presence
of multiple paths. In general, however, iteration preselection performs better
than EPS.

Iteration Preslection also controls code growth well. Again, our non-greedy
strategy reduces both the size of the loop prolog and code growth from moving
operations through the loop while shifting. The difference is most notable on
the larger machines, where EPS’s greedy scheduling combined with abundant
resources place little limit on the code growth4. Where Iteration Preselection
produces more code growth, it is normally the result of producing a pipeline with
lower average II, and significant speedup. Smaller code size should also lead to
faster execution time on machines with caches. We intend to demonstrate this
with a cache simulator in future work.

5 Related Work

A large number of algorithms exist for global software pipelining with multiple
IIs. Unrolling kernel recognition algorithms [AN90] are theoretically very power-
ful. In practice, however, they cause enormous code growth and their controlling
heuristics restrict their power [NN97]. Several algorithms use code duplication
to separate all paths in the loop and pipeline each separately. Again, the code
growth from code duplication and cross paths can be huge [SM98]. A number of
other strategies exist which trade code growth for restrictions on the attainable
II [WPP95,SL96].

A number of DESP [WE93] algorithms exist. These algorithms use a simi-
lar strategy as ours for TTS numbers for the strongly connected components in
the dependence graph. But they differ substantially in the placement of other
operations. In addition to minimising the dependence length of the loop body,
they also seek to remove restrictions on the acyclic scheduler. These DESP algo-
rithms to shift operations very many times to try to convert acyclic dependences
to loop carried ones. A global version of the original DESP algorithm has been
proposed, but it assumes a fixed II when calculating the number of times to
shift an operation, and treats control dependences as data dependences. The
most recent work on GDESP separates all paths before pipelining.

EPS++ is an unpublished algorithm developed by IBM’s VLIW group. This
algorithm uses a non-greedy, as late as possible, acyclic scheduling algorithm for
EPS. In a single path loop, this will place the operation in the same iteration as
our approach. A modulo schedule is computed for the most commonly followed
path, and the heights of operations are adjusted to ensure that the scheduling
algorithm will place those operations in the cycle designated by the modulo

4 The program eight is a particularly bad pathological case for EPS, combining a loop
with a large initial acyclic height and a number of branches which can be scheduled
almost arbitrarily early.
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schedule. Software pipelining of other paths is only allowed in so far as it does
not interfere with the most common path5.

Recent work [DH99] on loop shifting by circuit re-timing has yielded fasci-
nating theoretical results for single path loops. We do not believe this research
is applicable to our work, however, since it seeks to shift operations much more
than necessary. We also remain convinced that loop shifting is not the best
strategy for local software pipelining. Unless a loop contains branches, modulo
scheduling is likely to produce better results.

6 Conclusions and Future Work

We have presented a new decomposed algorithm for global software pipelining
general purpose integer code. Our algorithm allows a variable II and speculative
scheduling, while controlling code growth. We have demonstrated that the DESP
framework is very suited to global software pipelining. In fact, the true potential
of DESP seems to be in pipelining loops containing branches, rather than local
software pipelining which already has many good solutions. The implementation
of our algorithm shows that when compared with EPS it generally achieves better
speedups or less code growth or both.

An open problem remains with operations which fall on several paths. Con-
flicting TTS numbers for different paths may cause poor scheduling decisions.
Our future work will look at other strategies for choosing the TTS in this situa-
tion. We believe, however, that our experimental results show that the existing
strategy is very successful for the programs tested.
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NE93. Toshio Nakatani and Kemal Ebcioğlu. Making compaction-based paralleliza-
tion affordable. IEEE Transactions on Parallel and Distributed Systems,
4(9):1014–1029, September 1993. 197

NN97. Steve Novack and Alexandru Nicolau. Resource directed loop pipelining:
Exposing just enough parallelism. The Computer Journal, 10(6), 1997. 189,
190, 199

Rau94. B. Ramakrishna Rau. Iterative modulo scheduling: An algorithm for software
pipelining loops. In 27th Annual International Conference on Microarchitec-
ture. ACM, December 1994. 189

SL96. M. Stoodley and C. Lee. Software pipelining of loops with conditional
branches. In 29th International Symposium on Microarchitecture (MICRO-
29), pages 262–273. IEEE/ACM, December 1996. 199

SM98. SangMin Shim and Soo-Mook Moon. Split-path enhanced pipeline schedul-
ing for loops with control flows. In Micro 31, pages 290–302. ACM/IEEE,
November 1998. 199

WE93. Jian Wang and Christine Eisenbeis. Decomposed software pipelinig. Rap-
ports de Recherche 1838, INRIA Rocquencourt, F - 79153 Le Chesnay Cedex,
January 1993. 191, 199

WPP95. Nancy J. Warter-Perez and Noubar Partamnian. Modulo scheduling with
multiple initiation intervals. In 28th Annual International Conference on
Microarchitecture, pages 111–118. ACM, December 1995. 199


	Introduction
	Shift and Schedule Algorithms
	Iteration Preselection
	Single Path Loops
	Multiple Paths
	An Example
	Acyclic Scheduling

	Experimental Results
	Related Work
	Conclusions and Future Work
	Acknowledgments
	References

