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Abstract. Many compiler techniques require analysis of array
subscripts to determine whether a transformation is legal. Traditional
methods require the array subscript expressions to be expressed as closed-
form expressions of loop indices. Most methods further require the sub-
script expressions to be linear. However, in sparse/ irregular programs,
closed-form expressions of array subscripts are not available. More pow-
erful methods to analyze array subscripts are needed. Array accesses with
no closed-form expressions available are called irregular array accesses. In
real programs, many irregular array accesses are single-indexed. In this
paper, we present techniques to analyze irregular single-indexed array
accesses. We show that single-indexed array accesses often have prop-
erties that are useful in compiler analysis. We discuss how to use these
properties to enhance compiler optimizations. We also demonstrate the
application of these techniques in three real-life programs to exploit more
implicit parallelism.

1 Introduction

Many compiler techniques, such as loop parallelization and optimizations, need
analysis of array subscripts to determine whether a transformation is legal.
Traditional methods require the array subscript expressions to be expressed
as closed-form expressions of loop indices. Furthermore, most methods require
the subscript expression to be linear. However, in many programs, especially
sparse/irregular programs, closed-form expressions of array subscripts are not
available, and many codes are left unoptimized. Clearly, more powerful methods
to analyze array subscripts are needed.

For example, array privatization [9,13,17,19] is an important technique in
loop parallelization. An array can be privatized if any array element that is
read in one iteration of a loop is always first defined in the same iteration. For
example, in the outermost do k loop in Fig.1, array x() is first defined in the
repeat-until loop, and then is read in the do j loop. Any element of z() read
in statement (2) is first defined in statement (1) in the same iteration of the do
k loop. Therefore, array x() can be privatized for the do k loop, and the do k
loop can be parallelized. Current techniques can determine that section [1 : p)
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i=1
do k=1, n
p=20
i = link(i,k)
repeat
p=p+1
x(p) = y(@{d) (1)

i = 1link(i,k)
until (i ==10)

do j=1, p
z(k,j) = x(3) (2)
end do
end do

Fig. 1. An example of a loop with an irregular single-indexed array

of array () is read in the do j loop, but they cannot determine that the same
section also is written in the repeat-until loop because no closed-form expression
for index variable p can be derived. Therefore, they fail to privatize z().

In this paper, we introduce the notion of irreqular single-indexed array access.
An array access is irregular in a loop if no closed-form expression for the subscript
of the array access in terms of loop indices is available. An array access is single-
indexed in a loop if the array is always subscripted by the same index variable in
the loop. An array access is irreqular single-indezed in a loop if the array access
is both irregular and single-indexed in the loop . For example, the access of array
z() in the repeat-until loop in Fig.1 is an irregular single-indexed access.

We chose to investigate irregular single-indexed array accesses for several
reasons. First, in the programs we have studied, the single-indexed array ac-
cesses often follow a few patterns. These array accesses exhibit properties that
are useful in compiler optimizations. Second, many irregular array accesses are
single-indexed. Developing analysis methods for irregular single-indexed array
accesses is a practical approach toward the analysis of general irregular array
accesses, which is believed to be difficult. Third, it is easy to check whether an
array access is single-indexed. Efficient algorithms can be developed to “filter”
single-indexed array accesses out of general irregular array accesses.

In this paper, we present two important patterns of irregular single-indexed
array accesses: consecutively-written and stack-access. We present the techniques
to detect these two patterns and show how to use the properties that irregular
single-indexed array accesses have to enhance compiler optimizations.

Throughout the rest of this paper, we will use “single-indexed array access”
and “irregular single-indexed array access” interchangeably.
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2 Consecutively Written Arrays

An array is consecutively written in a loop if, during the execution of the loop, all
the elements in a contiguous section of the array are written in a non-increasing
or a non-decreasing order. For example, in the repeat-until loop in Fig.1, array
element x(2) is not written until a(1) is written, z(3) is not written until x(2)
is written, and so on. Array x() is written consecutively in the 1,2,3, ... order
in the loop.

To be concise, in this paper, we consider only arrays that are consecutively
written in the non-decreasing order. It is trivial to extend the techniques to
handle the non-increasing cases as well.

2.1 Algorithm for Detecting Consecutively Written Arrays

In this section, we present an algorithm that tests whether a single-indexed array
is consecutively written in a loop.

Since we are dealing with irregular array accesses, we must consider not only
do loops, but also other kinds of loops, such as while loops and repeat until
loops. In general, we consider natural loops [1]. A natural loop has a single entry
node, called the header. The header dominates all nodes in the loop. A natural
loop can have multiple exits, which are the nodes that lead the control flow to
nodes not belonging to the loop.

Before we present the algorithm, we first describe a bounded depth-first search
(bDFS) method, which is used several times in this paper.

The bDFS is shown in Fig.2. A bDFS does a depth-first search on a graph
(V,E), where V is the set of vertices and F is the set of edges in the graph.
bDFS uses three auxiliary functions (fyound(); fraited(), and fproc()) to change
its behavior during the search. The auxiliary functions are defined before the
search starts. fuound() maps V to (true, false). Suppose the current node is ny,
if fround(no) is true, then bDFS does not search the nodes adjacent to ng. The
nodes whose fyouna() values are true are the boundaries of the search. frgitea()
also maps V to (true, false). If, for the current node no, fraieda(no) is true,
then the whole bDFS terminates with a return value of failed. The nodes
whose fraqited() values are true cause an early termination of the bDFS. fyroc()
does not have a return value; it does predefined computations for the current
node.

Now we can show the algorithm that detects consecutively written arrays.

— Input: a loop L with header h and a set of exit nodes (t1, 2, ..., t, ), a single-
indexed array z() in the loop, and the index variable p of x().
— Output: answer to the question whether z() is consecutively written in L.
— Steps:
1. Find all the definition statements of p in the loop. If any of them are not
of the form “p = p+ 17, then return NO. Otherwise, put the definition
statements in a list [st.
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bDFS(u)
visited[u] := true ;
frroc(u) ;
if ('I’LOt fbound(u)) {
for each adjacent node v of u {
if (ffaitea(v))
return failed ;
if ((not visited[v]) and (bDFS(v) == failed))
return failed ;

}

— = © 00 O Ut i~ Wi+

0 }
1 return succeeded ;
Before the search starts, visited|] is set to false for all nodes.

Fig. 2. Bounded depth-first search

2. For each statement n in [st, do a bDFS on the control flow graph from n
using the following auxiliary functions:

fround (n) = {

true, if nis “z() = .. Frasea(n) = true, if nis “p=p+17
false, otherwise »J failedW) =9 £a1se, otherwise

Joroe(n) = NULL

If any of the bDFSs returns failed, then return NO. Otherwise, return
YES.

The algorithm starts by checking whether the index variable is ever defined
in any way other than being increased by 1. If it is, we assume the array is
not consecutively written. Step 2 checks whether in the control flow graph there
exists a path from one “p = p+ 17 statement to another “p = p+ 1”7 statement'
and the array () is not written on the path. If such a path exists, then there
may be “holes” in the section where the array is defined and, therefore, the
array is not consecutively written in the section. For example, the array z()
is consecutively written in Fig. 3.(a), but is not in Fig. 3.(b). The algorithm
allows an array element to be written multiple times before the index variable
is increased by 1.

2.2 Applications

Dependence Test and Parallelization Suppose a single-indexed write-only
array x() with index variable p is consecutively written in a loop, where the
assignments of p are of the form “p = p 4+ 1”. If there does not exist a path
from one “x() = ..” assignment to another “z() = ..” assignment such that the
loop header is on the path, but there is no “p = p + 1”7 statement on the path,

! These two statements can be the same statement, in which case the path is a circle.
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p=1
do i=1, n
if (..) then
x(p) = ..
if (..) then
x(p) =

end if

p = p+l

end if

end do

(a) YES

do i=1, n
p = p+l
if (..) then
x(p) = ..
end if

end do

(b) NO

Fig. 3. Consecutively written or not?

do i=1, n
x(p) = ..
p=p+t1

end do

do j=1, n

x(p) = .. (1)
p=p+1
x(p) = .. (2)

end do

Fig. 4. Data dependence for consecutively written arrays

then z() does not cause any loop-carried dependence in the loop. For example,
although array x() is consecutively written in both loops in Fig. 4, there is no
dependence between different instances of the access of z() in the loop do i, but
there is a loop-carried output dependence between statement (1) and (2) in loop

do j.

This kind of dependence can be detected by using the following method. Here,
we assume z() is write-only and found consecutively written with the method

described in the previous section.

1. Using the following auxiliary functions, do a bDFS on the control flow graph
from the loop header, where the value of tagl is initially set to null,

true, if nis “z()=..

fbound(n) = or “p =p + 17 7ffa7lled(n) -
false, otherwise

true, if tagl is asgn
false, otherwise

”

set tagl to incr, if nis “p = p+ 17 and tagl is null

set tagl to asgn, if nis “z() = ..
fproc(n) -

do nothing, otherwise

If tagl is incr after the bDFS, then there is no dependence; otherwise, goto

step 2.

2. Using the same auxiliary functions as in the previous step, do a bDFS on the
reversed control flow graph from the loop header, with tagl being replaced
with tag2. If, after the bDFS, both tagl and tag2 are asgn, then there is loop-
carried output dependence for z(); otherwise, there is no such dependence.



Analysis of Irregular Single-Indexed Array Accesses 207

Sequential version: Parallel version:
k = kO pk(1) =1
doi=1,n pk(2) =1
while (..) do parallel do i = 1, n
ak) = .. // pid is the processor id
k = k+1 while (..) do
end while pa(pk(pid), pid) = ..
end do pk(pid) = pk(pid) + 1
end while
(a) end do

parallel section
do i =1, pk(1)-1
Private Copy for Processor 1 - pal()
[l sfean] % a(k0+i-1) = pa(i,1)
////// K///// end do

[31]45[62] 78] L Ji2]a3]saaa 23] $so[23]1g] //

Original Array a()/y / doi=1, pk(2) -1

[safaa 28] . & Coo[2a] 1] a(kO+pk(1)+i-2) = pa(i,2)
Private Copy for Processor 2 - pa2()
end do
®) end parallel section

k = kO+pk(1)+pk(2)-2

()
Fig. 5. An example of array splitting and merging

In order to parallelize the loop with single-indexed and consecutively writ-
ten arrays, we also need to eliminate the flow dependence caused by the index
variable. If the index variable is not used anywhere other than in the array sub-
script and the increment-by-1 statements, then the array splitting-and-merging
method [14] can be used to parallelize the enclosing loop.

Array splitting and merging consists of three phases. First, a private copy
of the consecutively written array is allocated on each processor. Then, all the
processors work on their private copies from position 1 in parallel. After the
computation, each processor knows the number of array elements of its private
copy that are written in the loop; hence, the starting position in the original array
for each processor can be calculated by using the parallel prefix method. Finally,
the private copies are copied back (merged) to the original array. Figure 5 shows
an example when two processors are used.

Privatization Test As we have illustrated at the beginning of this paper, with
consecutively written array analysis, we can extend the privatization test to
process irregular single-indexed arrays and more general loops.

Suppose a single-indexed array x() with index variable p is found consecu-
tively written in a loop by using the method described in the previous section,
we can use the following two steps to calculate the section of z() written in the
loop.
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1. Using the following auxiliary functions, do a bDFS on the control flow graph
from the loop header h, where the value of tagl is initially set to null:

true, if nis “p=p+ 1”7 and tagl is incr

true, if nis “z() =..” and tagl is asgn
fbound(n) -
false, otherwise

true, if nis “z() =..” and tagl is incr
fraitea(n) = < true, ifnis “p=p+ 17 and tagl is asgn
false, otherwise
set tagl to asgn, if n is “z() = ..” and tagl is null
Soroc(n) = < set tagl to incr, if nis “p = p+ 1”7 and tagl is null
do nothing, otherwise
If the bDF'S returns a failed, then set tagl to null.
2. Using the same auxiliary functions as in the previous step, do a bDFS on the

reversed control flow graph from each of the exit nodes (including the loop

header), with tagl being replaced with tag2. If any of the bDFSs returns a
failed, then set tag2 to null.

3. The section where () is written in the loop is [lower, upper], where

Do, if tagl is asn D, if tag2 is asn
lower = ¢ po + 1, if tagl is incr ,upper =< p—1, if tag?2 is incr
unknown, otherwise, unknown, otherwise.

and pg is the value of p before entering the loop.

For example, the section of z() written in the loop in Fig. 3.(a) is [1,p — 1].
The section of z() written in the loop in Fig. 6.(a) is [unknown, p], and that of
y() in Fig. reffig:section.(b) is [1, unknown)].

Index Array Property Analysis The indirectly accessed array is another kind
of irregular array. An array is indirectly accessed if its subscript is another array,

such as z() in statement “z(ind(i)) = ..”. () is called the host array, and ind() is
p=1
p=1 do i=1, n
do i=1, n
y (p) = ..
if (..) then vie
P = p+l p = p+l
z(p) = .. if (..) then
else goto 10
z(p) = .. .
end if end if
end do y(p) = ..
y(p) = ..
end do
TR
(a) [unknown, p] (b) [1, unknown]

Fig. 6. The section of consecutively written array
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dok=1, n doi=1, n
q=20 p=1
doi=1,7p t(p) = ...
if ( x(i) > 0 ) then loop
q=9q+1 p=p+1
ind(q) = i t(p) = ...
end if if (...) then
end do loop
do j=1, q if (p>=1) then
jj = ind(j) A 16:))
z(k,3j) = x(3j) * y(iI p=p-1
end do end if
end do end loop
end if
end loop
end do

Fig. 7. An example of a loop with an Fig.8. An example of an array stack
inner index gathering loop

called the index array. Traditional techniques cannot handle indirectly accessed
arrays. However, recent studies [5,14] have shown that index arrays often have
simple properties, which can be used to produce more accurate analysis of host
arrays. An array property analysis method has been developed to check whether
an index array has any of these key properties [15].

Consecutively written array analysis can be used to find the properties an
index array has in the array property analysis. For example, two of the key
properties are injectivity and closed-form bounds. An array section is injective
if any two different array elements in the section do not have the same value.
An array section has closed-form bounds if the lower bound and upper bound
of the values of array elements in the section can be expressed by closed-form
expressions. Detecting whether an array section has any of the two properties
is difficult, in general. However, in many cases, we only need to check whether
the array section is defined in an index gathering loop, such as the do i loop in
Fig.7.

In Fig.7, the indices of the positive elements of array x() are gathered in
array ind(). After the gathering loop is executed, all the array elements in section
ind[l : g] are defined, the values of the array elements in array section ind[l : g|
are injective, the lower bound of the values of the array elements in section
ind[1 : ¢] is 1, and the upper bound is q.

With this information available at compile-time, the compiler is now able to
determine that there is no data dependence in the do j loop, and array ind()
can be privatized in the do k loop. Thus, the compiler can choose either to
parallelize the do k loop only, parallelize the do j loop only, parallelize both,
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or parallelize the do k loop and vectorize the do j loop, depending upon the
architecture for which the code is generated.
An index gathering loop for an index array has the following characteristics:

. the loop is a do loop,

. the index array is single-indexed in the loop,

. the index array is consecutively written in the loop,

. the right-hand side of any assignment to the index array is the loop index

. one assignment to the index array cannot reach another assignment to the
index array without first reaching the do loop header.

Tk W N -

The fifth condition above ensures that the same loop index value is not assigned
twice to the elements of the index array. This condition can be verified using a
bDFS. After an index gathering loop, the values assigned to the index array in
the loop are injective, and the range of the values assigned is bounded by the
range of the do loop bound.

3 Array Stack

The stack is a very basic data structure. Many programs implement stacks using
arrays because it is both simple and efficient. We call stacks implemented in
arrays array stacks. Figure 8 illustrates an array stack. In the body of the do
i loop, array t() is used as a stack, and variable p is used as the stack pointer
which always points to the top of the stack.

3.1 Algorithm for Detecting Array Stacks

In this section, we present an algorithm that checks whether a single-indexed
array is used as a stack in a program region. A region [l is a subset of the
control flow graph that includes a header, which dominates all the other nodes
in the region.

To be concise, we consider program regions in which the single index vari-
able p is defined only in one of the following three ways:

1. p:=p+1,
2. p:=p—1,or
3. p:= Cpottom, where Chortom is an invariant in the program region.

We check whether a single-indexed array is used as a stack in a region by
checking whether the statements involved in the array operations appear in some
particular orders. These orders are shown in Table 3.1.

The left column and the top row in Table 3.1 give the statements to be
checked. If there is a path in the control flow graph from a statement of the form
shown in the left column of the table to a statement of the form shown in the
top row, then the statement in the corresponding central entry of the table must
be on the path. For example, if there is a path from a statement “x(p) = ..”
to another statement “z(p) = ..”, then before the control flow researches the
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Table 1. Order for access of array stacks

| [P=p+1p=p—1]z(p) = ..|.. = () [P = Crorrom)
p=p+1fz(p)=..|.. = z(p) - z(p) = .. -
p=p—1 - ~=z(p)|p=ptl| G -
z(p) = .. - |-=z@|p=p+1] - -
=z lp=p—-1 - Jp=p+lp=p+1 -
second “z(p) = ..” statement, it must first reach a “p = p + 1”7 statement. A ‘-’

in a table entry means there is no restriction on what kind of statement must be
on the path. The ‘G’ represents an i f statement that is “if (p > Chottom) then”.

Intuitively, we want to ensure that for an array stack x() with index p, (1) p
is first set to Chottom before it is modified or used in the subscript of z(), (2) the
value of p never goes below Chorrom, and (3) the access of elements of () follows
the “last-written-first-read” pattern.

Table 3.1 can be simplified to Table 3.1. Any path originating from a node n
of the forms in the left column of Table 3.1 must first reach any node of the
forms in Spound(n) before it reaches any node of the forms in Stqized(n).

Next, we present the algorithm to detect array stacks.

— Input: a program region R with header h, a single-indexed array x() in the
region, and the index variable p of x().

— Output: answer to the question whether z() is used as a stack in R. And,
if the answer is Y ES, the minimum value Cyottom the index variable p can
have in the region.

— Steps:

1. Find all the definition statements of p in R. If any are not of a form in the
set {p =pt+l,p=p-1l,p= Cbottom} (1f there are mlﬂmple “p = Chottom”
statements, the Cpotrom must be the same), where Chorron, is invariant
in R, then return NO. Otherwise, put the definition statements in a list
Ist. If there are no statements of the form “p = Cyorrom”, then find all
if statements of the form “if (p > C;y) then”. If all Cj;’s are the same,
set Chottom to Ciy; otherwise, return NO. If no such ¢f statement is
found, set Chottom to unknown.

Table 2. Simplified order for array stacks

I Sbound(n) | Staitea(n) |
p=p+1 {z(p) = .., p = Chottom} {p=p+1L,p=p—1. =z}
p=p-—1 {p=p+1, G p=Crtton} |[{p=p—1,2(p)=.,.. =z}
z(p)=..|{p=p+1, .. =2(p), p= Crottom} fp=p—-120p) =}

.. = z(p) {p=p—1, p= Crottom} {p=p+1,2(p)=.,. =z}
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2. Find all the “z(p) =..” and “.. = x2(p)” statements in R, and add them
to Ist.

3. For each statement m in [st, do a bDFS on the control flow graph from
this statement using the following auxiliary functions:

| true n € Shouna(m) | true n € Sraitea(m)
Joouna(n) = { false otherwise s fraitea(n) = false otherwise

Jproe(n) = NULL

If any of the bDFSs returns a failed, then return NO. Otherwise, return
YES and Cbottom-

3.2 Applications

Run-Time Array Bound Checking Elimination Run-time array bound
checking is used to detect array bound violations. The compiler inserts bound
checking codes for array references. At run-time, an error is reported if an array
subscript expression equals a value that is not within the declared bounds of
the array. Some languages, such as Pascal, Ada and Java, mandate array bound
checking. Array bound checking also is useful in testing and debugging programs
written in other languages. Since most references in computationally intense
loops are to arrays, these checks cause a significant amount of overhead.

When an array is used as a stack in a program region, the amount of array
bound checking for the stack array can be reduced by 50%. Only the upper
bound checkings are preserved. The lower bound checking is performed only
once before the header of the program region. Elimination of unnecessary array
bound checking also has been studied by Markstein et al [16], Gupta [11], and
Kolte and Wolfe [12]. Gupta and Spezialetti [18] proposed a method to find
monotonically increasing/decreasing index variables, which also can be used to
eliminate the checking by half. But, their method cannot handle array stacks,
which are more irregular.

Privatization Test Array stack analysis also can improve the precision of array
privatization tests. Here, we consider the loop body as a program region. When
an array is used as a stack in the body of a loop, the array elements are always
defined (“pushed”) before being used (“popped”) in the region. If Cporrom is a
loop invariant, then different iterations of the loop will reuse the same array
elements, and the value of the array elements never flow from one iteration to
the other. Therefore, array stacks in a loop body can be privatized. For example,
the array stack ¢() in Fig.8 can be privatized in the outermost the do i loop.

Loop Interchanging Loop interchanging [2,20] is the single most important
loop restructuring transformation. It has been used to find vectorizable loops,
to change the granularity of parallelism, and to improve memory locality. Loop
interchanging changes the order of nested loops. It is not always legal to perform
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loop interchanging since data dependence cannot be violated. Data dependence
tests must be performed before loop interchanging.

Traditionally, loop interchanging is not possible when array stacks are present
because current data dependence tests cannot handle irregular arrays. However,
as in the privatization test, array stacks cause no loop carried dependences. If
the index variables of array stacks are not used in any statements other than
stack access statements, then the data dependence test can safely assume no
dependence between the stack access statements. The loop interchanging test
then can ignore the presence of array stacks and use traditional methods to test
other arrays. By using array stack analysis, we have extended the application
domain of loop interchanging.

4 Related Work

There are two closely related studies done by two groups of researchers.
M. Wolfe [21] and M. Gerlek, E. Stoltz, and M. Wolfe [10] presented an al-
gorithm to recognize and classify sequence variables in a loop. Different kinds
of sequence variables are linear induction variables, periodic, polynomial, geo-
metric, monotonic, and wrap-around variables. Their algorithm is based on a
demand-driven representation of the Static Single Assignment form [7,6]. The
sequence variables can be detected and classified in a unified way by finding
strongly connected components of the associated SSA graph.

R. Gupta and M. Spezialetti [18] have extended the traditional data-flow
approach to detect “monotonic” statements. A statement is monotonic in a loop
if, during the execution of the loop, the statement assigns a monotonically in-
creasing or decreasing sequence of values to a variable. They also show the appli-
cation of their analysis in run-time array bound checking, dependence analysis,
and run-time detection of access anomalies.

The major difference between both these studies and ours is that we focus
on arrays while they focus on index variables. While both of their methods can
recognize the index variable for a consecutively written array as a monotonic
variable, if the array is defined in more than one statement, then none of them
can detect whether the array itself is consecutively written. For example, Ger-
lek, Stoltz and Wolfe’s method can find that the two instances of variable k
in statements (1) and (2) in Fig.9 have a strictly increasing sequence of values.
Gupta and Spezialetti’s method can classify statements (1) and (2) as monotonic.
However, neither can determine whether the access pattern of the array z() is
consecutively written. As for array stack analysis, as the index variable does
not have a distinguishable sequence of values, both Gerlek, Stoltz and Wolfe’s
method and Gupta and Spezialetti’s method treat the index variable as a gen-
erally irregular variable. Without taking the arrays into the account in their
analysis, they can do little in detecting array stacks.

The authors believe it is often important to consider both index variables
and arrays. While both of the two other methods can recognize a wide class
of scalar variables beyond the variable used as the subscript of single-indexed



214 Yuan Lin and David Padua

doi=1,n
if ( .. ) then

x(k) = ..
k=k+1 (¢D)
else if ( .. ) then
x(k) = ..
k=k+1 (2)
end if
end do

Fig.9. Both array z() and index k should be analyzed to know that z() is
consecutively written.

arrays in our method, they are not necessarily more powerful in analyzing the
access pattern of the arrays.

5 Case Studies

In this section, we show how consecutively written array analysis and array
stack analysis can be used to enhance the automatic parallelism detection in
three real-world programs.

These three programs are summarized in Table 5. Column 3 in Table 5 shows
the loops that can be parallelized only after the techniques presented in this pa-
per have been used to analyze the arrays shown in Column 4. Figure 10 shows
the difference in speedups when these loops are parallelized. We compare the
speedups of the programs generated by our Polaris parallelizing compiler, with
and without single-indexed array analysis, and the programs compiled using
the automatic parallelizer provided by SGI. The experiments were performed
on an SGI Origin2000 machine with 56 195MHz R10000 processors (32KB in-
struction case, 32KB data cache, 4MB secondary unified level cache) and 14GB
memory running IRIX64 6.5. One to thirty-two processors are used for BDNA
and TREE. One to eight processors are used for P3M. “APO” means using
the “-apo” option when compiling the programs. This option invokes the SGI
automatic parallelizer. “Polaris without STA” means using the Polaris compiler
without the single-indexed array analysis. “Polaris with SIA” means using the
Polaris compiler with the single-indexed array analysis. As we have not yet im-
plemented array stack analysis in our Polaris compiler, for TREE we show the
result of manual parallelization. For all three codes, the speedups of the versions
in which the single-index array analysis had been used are much better than
those of the other versions.

5.1 BDNA

BDNA is a molecular dynamics simulation code from the PERFECT bench-
mark suite [3].
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Table 3. Three real-life programs

|Program Name|Lines of Codes| Major Loops |Single-indexed Arrays|% of Exe. Time|

BDNA 4000 act for_do_240 xdt() 31%
P3M 2500 pp-do-100 ind0(), jpr() 74%

subpp_do_100 ind0(), jpr() 14%
TREE 1600 accel _do10 stack() 70%

The do 240 loop in subroutine ACTFOR is a loop that computes the in-
teraction of biomolecules in water. It occupies about 31% of total computation
time. The main structure of this loop is outlined in Fig.11

Consecutively written array analysis is used in the do j2 loop to find that
elements in [1, k] of ind() are written in this loop. Furthermore, this loop is
recognized as an index gathering loop; thus, the values of the elements in ind[1, k]
defined in this loop are bounded by [1,¢—1]. This information is used to privatize
array ind() and zdt() in the do i loop, which is then determined to be parallel.

5.2 P3M

P3M is an N-body code that uses the particle-mesh method. This code is from
NCSA.

Most of the computation time (about 88% after using vendor provided FFT
library) is spent in subroutine pp and subpp, whose structures are very similar.
The core is a three-perfect-loop nest, which can be parallelized. Before par-
allelization, several single-indexed arrays in the loop must be privatized. The
outline of the core loops is shown in Fig. 12. The simplified loop pattern is simi-
lar to that in Fig. 11. The difference is that both x() and ind() are consecutively
written arrays here.

5.3 Barnes & Hut TREE Code

The TREE code [4] is a program that implements the hierarchical N-body
method for simulating the evolution of collisionless systems [3].

BDNA TREE

bS

Speedups

Speedups
Speedups

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

T
Number of Processors

Fig. 10. Comparison of Speedups
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do il =1, n
do i2 =1, n
do i3 =1, n
doi=2,n p= sptr = 1
do j1 =1, i-1 repeat stack(sptr) = root
xdt(j1) = .. p = p+l while (sptr .gt. 0) do
end do x(p) = .. q = stack(sptr)
k=0 until (..) sptr = sptr - 1
do j2 =1, i-1 k=0 if (q is a body) then
if (..) then do j2 =1, p process body-body interaction
k = k+1 if (..) then elseif (q is far enough from p) then
ind(k) = j2 k = k+1 process body-cell interaction
end if ind(k) = j2 else
end do end if do k = 1, nsubc
do j3 =1, k end do if (subp(q,k) .ne. null) then
. = xdt(ind(j3)) do j3 =1, k sptr = sptr + 1
end do . = x(ind(j3)) stack(sptr) = subp(q,k)
end do end do end if
end do end do
end do end if
end do end while

Fig.11. BDNA Fig. 12. P3M Fig. 13. TREE

The core of the program is a time-centered leap-frog loop, which is inherently
sequential. At each time step, it computes the force on each body and updates
the velocities and positions. About 70% of the program execution time is spent in
the force calculation loop. Each iteration of the force calculation loop computes
the gravitational force on a single body p using a tree walk method that is
illustrated in Fig.13.

In the tree walk code, single-indexed array stack is used as a stack to store
tree nodes yet to be visited. Variable sptr is used as the stack pointer. As dis-
cussed in Sect.3.2, array stack can be privatized for the force calculation loop.
As there is no other data dependence in the loop, the loop can be parallelized
(i.e., the force calculation of the n bodies can be performed in parallel).

6 Conclusion

In this paper, we introduced the notion of irregular single-indexed array access.
We described two common patterns of irregular single-indexed array accesses
(i.e., consecutively written and stack access) and presented simple and intu-
itive algorithms to detect these two patterns. More importantly, we showed that
array accesses following these two patterns exhibit very important properties.
We demonstrated how to use these properties to enhance a variety of compiler
analysis and optimization techniques, such as the dependence test, privatization
test, array property analysis, loop interchanging, and array bound checking. In
the case study, we showed that, for three real-life programs, the speedups of the
parallelized versions generated by the Polaris compiler with single-index array
access analysis are much better than those of other versions.
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