
Simple Generation of Static

Single-Assignment Form

John Aycock and Nigel Horspool

Department of Computer Science,
University of Victoria,

Victoria, B. C., Canada V8W 3P6
{aycock,nigelh}@csc.uvic.ca

Abstract. The static single-assignment (SSA) form of a program pro-
vides data flow information in a form which makes some compiler opti-
mizations easy to perform. In this paper we present a new, simple method
for converting to SSA form, which produces correct solutions for nonre-
ducible control-flow graphs, and produces minimal solutions for reducible
ones. Our timing results show that, despite its simplicity, our algorithm
is competitive with more established techniques.

1 Introduction

The static single-assignment (SSA) form is a program representation in which
variables are split into “instances.” Every new assignment to a variable — or
more generally, every new definition of a variable — results in a new instance.
The variable instances are numbered so that each use of a variable may be easily
linked back to a single definition point.

Figure 1 gives a example of SSA form for some straight-line code. As its
name suggests, SSA only reflects static properties; in the example, V1’s value is
a dynamic property, but the static property that all instances labelled V1 refer
to the same value will still hold.

read V

V ← V + 1

⇒ read V1

V2 ← V1 + 1

Fig. 1. SSA form of some straight-line code.

A problem arises at join points, where two or more control-flow paths merge.
Multiple definitions of a variable may reach the join point; this would result in a
violation of the single-assignment property. The problem is illustrated in Fig. 2a;
what definition should the final instance of V be associated with?

To work around this problem, imaginary assignments are introduced at join
points from trivial φ-functions. A φ-function has one argument for each incoming

A. Watt (Ed.): CC/ETAPS 2000, LNCS 1781, pp. 110–125, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



Simple Generation of Static Single-Assignment Form 111

read V1

V2 ← V1+1
V3 ← 123

print V?

V0 ← ⊥

read V1

V2 ← V1+1
V3 ← 123

V4 ← φ(V2,V3)

print V4

(a) (b)

Fig. 2. Why φ?

control-flow path; the kth argument to a φ-function is the incoming value along
the kth path.

Figure 2b shows the inserted φ-function. An initial assignment to V has been
added so that instances of V always have a corresponding definition.

φ-functions are always inserted at the beginning of a basic block, and are
considered to be executed simultaneously before execution of any other code in
the block. A program must be converted out of SSA form before it is executed
on a real machine.

Why use SSA form? Proponents of SSA have cited many advantages:

1. Every use of a variable is dominated by a definition of that variable [2,4].
Some optimization algorithms may be made more efficient by taking advan-
tage of this property [4,21].

2. SSA chains are simpler to store and update than use-def chains [10].
3. Use-def chains may cause some optimizations to be missed that would be

caught with a SSA-based algorithm [27].
4. Distinct uses of a variable in the source program — reusing a loop variable

for another purpose, for example — become distinct variables in SSA form.
This may allow more optimizations to be performed [3].

2 Converting to SSA Form

SSA form, and the conversion to SSA form, is closely coupled to dominance. If
a definition of a variable V dominates a use of V , then that use may be linked
back to a single definition. At join points, several definitions of V may reach a



112 John Aycock and Nigel Horspool

use of V , and so a φ-function is needed. Where φ-functions are needed, then, is
where a definition stops dominating: this is the dominance frontier.

This is the basis of the algorithm by Cytron et al. [10], which is by far the most
often-cited method for converting into SSA form. The idea is to precompute the
dominance frontiers, then use that information to place a minimal number of φ-
functions. The φ-functions are themselves definitions with a dominance frontier,
so the process must be repeated — φ-functions must be placed in all basic blocks
in the iterated dominance frontier.

The argument has been made that only the minimal number of φ-functions re-
quired should be inserted; otherwise, some optimizations could be missed [10,27].
While other forms of “minimal” SSA exist, such as those those taking liveness
of variables into account, we do not consider them here.

3 Converting to SSA Form, Revisited

Appel [3] gives a gentle introduction to SSA form. He begins by suggesting a
wasteful but obviously correct method for converting to SSA:

‘A really crude approach is to split every variable at every basic-
block boundary, and put φ-functions for every variable in every block.’
[3, page 17]

He then recounts the dominance frontier algorithm of Cytron et al. [10] which
inserts a minimal number of φ-functions. Appel’s presentation raises the ques-
tion: could a minimal number of φ-functions be discovered by starting with the
“really crude approach” and iteratively deleting extraneous φ-functions?

3.1 Our Algorithm

Our algorithm finds a set of φ-functions for a given variable in a reducible control-
flow graph. Intuitively, a reducible control-flow graph is one which does not
have multiple entries into a loop. This is an important class of control-flow
graphs because many modern languages, such as Oberon and Java, only admit
reducible control-flow graphs; there is also empirical evidence suggesting that
people tend to write programs with reducible control-flow graphs even if they
can do otherwise [17].

We assume that there are no unreachable nodes in the control-flow graph,
although the algorithm will still derive a correct solution in this case.

Our algorithm proceeds in two phases:

RC phase. Apply Appel’s “really crude” approach as quoted above.
Minimization phase. Delete φ-functions of the form

Vi ← φ(Vi, Vi, . . . , Vi)

and delete φ-functions of the form

Vi ← φ(Vx1 , Vx2 , . . . , Vxk
), where x1, . . . , xk ∈ {i, j}



Simple Generation of Static Single-Assignment Form 113

replacing all other occurrences of Vi with Vj . Repeat this until no further
minimizations are possible.

Once the above phases have determined the set of φ-functions to insert, then
another pass over the control-flow graph renames instances of variables to their
SSA forms. This is not unique to our algorithm, and will not be mentioned
further.

An example is shown in Figs. 3–6. The original program is listed in Fig. 3a; the
result after the RC phase is Fig. 3b. Figures 4 and 5 show the sets of φ-functions
converging for i and j, respectively, and Fig. 6 gives the final result. Normally,
the program variables would not be renamed until after the minimization phase,
but they have been renamed earlier for illustrative purposes.

i ← 123

j ← i * j

repeat

write j

if (j > 5) then

i ← i + 1

else

break

end

until (i > 234)

i0 ← ⊥
j0 ← ⊥
i1 ← 123

j1 ← i1 * j0

repeat

i2 ← φ(i1, i6)

j2 ← φ(j1, j5)

write j2

if (j2 > 5) then

i3 ← φ(i2)

j3 ← φ(j2)

i4 ← i3 + 1

else

i5 ← φ(i2)

j4 ← φ(j2)

break

end

i6 ← φ(i4)

j5 ← φ(j3)

until (i6 > 234)

i7 ← φ(i6, i5)

j6 ← φ(j5, j4)

(a) (b)

Fig. 3. Before and after the RC phase.

3.2 Correctness

In this section we prove the correctness of the algorithm. By “correct,” we mean
that our algorithm always produces a set of φ-insertions that is a (possibly
improper) superset of the minimal solution. Note that nothing in this proof



114 John Aycock and Nigel Horspool

i2 ← φ(i1, i6)
i3 ← φ(i2)
i5 ← φ(i2)
i6 ← φ(i4)
i7 ← φ(i6, i5)

=⇒
[

i3 ≡ i2
i5 ≡ i2
i6 ≡ i4

] i2 ← φ(i1, i4)
i7 ← φ(i4, i2)

Fig. 4. Minimization phase convergence for i.

j2 ← φ(j1, j5)
j3 ← φ(j2)
j4 ← φ(j2)
j5 ← φ(j3)
j6 ← φ(j5, j4)

=⇒



j3 ≡ j2
j4 ≡ j2

j5 ≡ j4 ≡ j2
j6 ≡ j2


 j2 ← φ(j1, j2)

=⇒[
j2 ≡ j1

] (none)

Fig. 5. Minimization phase convergence for j.

i0 ← ⊥
j0 ← ⊥
i1 ← 123

j1 ← i1 * j0

repeat

i2 ← φ(i1, i4)

write j1

if (j1 > 5) then

i4 ← i2 + 1

else

break

end

until (i4 > 234)

i7 ← φ(i4, i2)

Fig. 6. After the minimization phase (and renaming).



Simple Generation of Static Single-Assignment Form 115

requires the control-flow graph to be reducible, so our algorithm produces a
correct, but not necessarily minimal, solution for nonreducible graphs as well.

Lemma 1. The RC phase produces a correct solution.

Proof. Since the RC phase places φ-functions in all basic blocks, the minimal
placement of φ-functions must be contained within the initial placement upon
completion of the RC phase. ��
Lemma 2. The minimization phase produces a correct solution.

Proof. There are two transformations performed in this phase:

1. Deleting Vi ← φ(Vi, Vi, . . . , Vi). This can be safely deleted because it cor-
responds to the assignment Vi ← Vi on all predecessor edges,1 which has
no effect on the program state. A minimal solution could not contain this
because it is clearly superfluous.

2. Deleting Vi ← φ(Vx1 , Vx2 , . . . , Vxk
), x1, . . . , xk ∈ {i, j}, and replacing all

other occurrences of Vi with Vj . The φ-function assignment corresponds to
the set of assignments {Vi ← Vi, Vi ← Vj}. As before, Vi ← Vi has no effect
and can be ignored. In the case of Vi ← Vj , it means that Vi must have the
value Vj at all points in the program due to the single-assignment property.
It is therefore safe to replace all Vi with Vj . Since Vi’s only rôle is as an
alternate name for Vj , it could not be part of a minimal solution.

��
Theorem 1. Our algorithm produces a correct solution.

Proof. By Lemmas 1 and 2, our algorithm cannot remove needed φ-functions,
and must arrive at a (possibly improper) superset of the minimal solution. ��

3.3 Proof of Minimality

In this section we prove that, for reducible control-flow graphs, our algorithm
produces a minimal placement of φ-functions.

This proof draws from T1-T2 reduction of control-flow graphs [14]. To briefly
summarize T1-T2 reduction, transformation T1 is removal of a self-edge; transfor-
mation T2 allows a node n1 to eliminate a node n2 if n1 is the unique predecessor
of n2, and n2 is not the initial node.

We construct the instance relationship graph, or IR-graph, as a directed
graph derived from the control-flow graph that shows the relationships between
instances of a variable in SSA form.2 Every variable gives rise to a different IR-
graph. Each instance Vi of a variable becomes a node in the IR-graph; for each
1 These are placed on edges for the purposes of this proof, to avoid the critical edge
problem cited by [6,20].

2 The IR-graph is only used for the purposes of this proof; it is not used by our
algorithm.



116 John Aycock and Nigel Horspool

φ-function Vi ← φ(Vx1 , Vx2 , . . . , Vxk
), we add k edges to the IR-graph:

Vx1 → Vi

Vx2 → Vi

...
Vxk
→ Vi

Not all instances are defined in terms of φ-functions. We call definitions that
do not correspond to left-hand sides of φ-function assignments “real definitions.”
An instance Vi which corresponds to a real definition requires some special at-
tention:

Case 1. Vi is not live3 across a basic block boundary. This case corresponds to a
temporary instance of V created and killed within a single basic block B. Vi will
not appear in any φ-function. (The final definition of V in B will be cited by
φ-functions in B’s successor blocks.) Vi will appear as a disconnected node in the
IR-graph and may be deleted; it is not taken into account by our algorithm since
it doesn’t appear in any φ-function. Vi is irrelevant to a φ-placement algorithm
based on dominance frontiers too, because the definition giving rise to Vi in B
only dominates a set of successor instructions in B, so B doesn’t appear in any
dominance frontier as a result of the definition.

Case 2. Vi is live across a basic block boundary. Vi must then appear as an
argument to at least one φ-function. In the IR-graph, the Vi node will appear
to be a “root” of the graph, since it will have an in-degree of zero. Let R be the
set of roots of the IR-graph. So that we may take advantage of graph reduction
techniques, we always augment the IR-graph with a “supersource” node VS [13],
which becomes the root of the IR-graph, and has an edge from it to every element
of R. The supersource will be shown later to be inert with respect to the proof.

Case 3. Vi’s definition reaches the exit point of the control-flow graph, but does
not cross any basic block boundaries. As in Case 1, Vi will not appear in any
φ-function, will appear as a disconnected node in the IR-graph, and may be
deleted.

After the RC phase, when all basic blocks contain a φ-function, the IR-graph’s
structure will ape the structure of the control-flow graph. For example, Fig. 7a
shows the control-flow graph for the code in Fig. 3a; the corresponding IR-graph
for i is given in Fig. 7b.

In the IR-graph, the nature of the minimization phase is now apparent:

1. Deleting Vi ← φ(Vi, Vi, . . . , Vi) is equivalent to applying T1 to the IR-graph.
2. Deleting Vi ← φ(Vx1 , Vx2 , . . . , Vxk

), x1, . . . , xk ∈ {i, j}, and replacing all
other occurrences of Vi with Vj is equivalent to applying T2 (possibly in
combination with T1) to the IR-graph.

3 We consider liveness to include uses of Vi as arguments to φ-functions.



Simple Generation of Static Single-Assignment Form 117

i0

i1

i2

i3

i4

i5

i6

i7

VS

(a) (b)

Fig. 7. Control-flow and IR graphs.

Fig. 8. The (*)-graph.



118 John Aycock and Nigel Horspool

The structure of the IR-graph is important too:

Lemma 3. The IR-graph is nonreducible only if the control-flow graph is nonre-
ducible.

Proof. Assume that the control-flow graph is reducible and the IR-graph is
nonreducible. Then the IR-graph must contain the (*)-graph [14], which is illus-
trated in Fig. 8. Each edge in the IR-graph arises in one of two ways:

1. The edge results from paths in the control-flow graph. If every edge in the
(*)-graph came from the control-flow graph, then the control-flow graph was
itself nonreducible [14], yielding a contradiction.

2. The edge is added from the supersource VS . VS has no in-edges, so if any
edge from VS were to form part of the (*)-graph, it would have to connect
to a Vi node which is part of a cycle in the graph. However, by definition of
the IR-graph construction, the Vi nodes that VS would connect to have no
other in-edges, thus they cannot be part of a cycle.

��
Since we are only considering reducible control-flow graphs, the IR-graph

cannot initially contain the (*)-graph by Lemma 3. Furthermore, the (*)-graph
cannot be introduced through T1-T2 reduction [14]. This means that the IR-
graph must be reducible by T1-T2 transformations into the single node VS .

T1 and T2 comprise a finite Church-Rosser transformation [14]. This means
that if T1 and T2 are applied to a graph until no more transformations are
possible, then a unique graph will result [1] — in this case, the single node VS .
Furthermore, this unique result does not depend on the order in which T1 and T2

are applied [13].
Given this freedom, we choose an ordering of T1-T2 reductions which corre-

sponds to the manner in which our algorithm operates. A parse of a reducible
flow graph is an ordered sequence of reductions together with the nodes to which
the reductions are applied [13,14]. We select a full parse of the IR-graph which
may be partitioned in two:

1. The first part performs as many T1 and T2 reductions as possible without
eliminating any root nodes in R.

2. The final part applies T1 and T2 transforms to the remainder of the IR-graph,
reducing it into the single node VS . Π(R) refers to the set of nodes yet to
be reduced in the latter partition; by definition, R ⊆ Π(R). VS /∈ Π(R)
because VS can never be eliminated.

Lemma 4. The minimization phase computes Π(R)−R.

Proof. The transformations performed in the minimization phase can only re-
move Vi instances resulting from φ-functions; they cannot remove Vi instances
corresponding to real definitions. This is the same as applying T2 to the IR-
graph, subject to the proviso that no elements of R be deleted. Because the
minimization phase repeats until no further transformations are possible, it is
computing Π(R)−R. ��



Simple Generation of Static Single-Assignment Form 119

Lemma 5. Π(R)−R is the iterated dominance frontier of R, DF+(R).

Proof. The RC phase inserts a φ-function per basic block, so every Vi resulting
from a φ-function has a one-to-one correspondence to a node in the control-flow
graph. By definition, Π(R) − R cannot contain any Vi from real definitions, so
we may discuss the IR-graph nodes in Π(R) − R and the control-flow graph
nodes in DF+(R) interchangeably.

Π(R) − R ⊆ DF+(R). A reducible flow graph can be thought of as being
decomposed by “regions.” [26] A region is a subflowgraph, and the header node
of a region dominates all nodes in the region save itself [14]. When the regions
which have the elements of R as their headers are eliminated via T1 and T2, then
what remains is the set of nodes which are not strictly dominated by elements
of R. In other words, we are left with the dominance frontier of R, DF (R).

The nodes in DF (R) will themselves be headers of regions which have been
reduced via T1 and T2. Inductively repeating this process, we get the iterated
dominance frontier of R.

DF+(R) ⊆ Π(R) − R. Suppose that there were a basic block B ∈ DF+(R)
such that its corresponding IR-graph node VB /∈ Π(R)−R. This means that VB

must have already been eliminated by T1 and T2 earlier in the reduction parse.
For this to happen, VB must have been strictly dominated by some node in the
IR-graph. It could not then be in DF+(R), a contradiction. ��
Theorem 2. Our algorithm computes the minimal φ-function placement for re-
ducible control-flow graphs.

Proof. By Lemmas 4 and 5, our algorithm computes the iterated dominance
frontier of R, where R is the set of real definitions of V . This iterated dominance
frontier has been shown to be the minimal φ-function placement [10]. ��

3.4 Improvements to the Basic Algorithm

Our algorithm can be improved upon; three improvements are immediately ap-
parent:

Improvement 1. One-pass RC phase.

When inserting φ-functions during the RC phase, the instances of a variable
coming from predecessor blocks must be known; complete processing of a block
requires that all of its predecessor blocks be processed first. Even the best case —
a depth-first ordering of the blocks — may require backpatching of information
along back edges.

A slight change in numbering fixes this. If the instance of a variable V coming
out of a block Bi is always Vi, then a block may be completely processed simply
by knowing the block numbers of its predecessors — information likely to be
available anyway. This means that the RC phase can run linearly regardless of
how the blocks are ordered.

Improvement 2. Mapping table.



120 John Aycock and Nigel Horspool

A näıve implementation of the minimization phase, which literally renamed
all instances of Vi to Vj when deleting a φ-function, would clearly be wasteful.
Instead, a mapping table can be used, which would map Vi to Vj ; all references
to variable instances in φ-functions would be filtered through this table.

This technique is well-known, under several different names: the equivalence
problem [12,18], set merging [15], disjoint set union [25].

Improvement 3. Basic blocks with single predecessors.

Some φ-functions will always be deleted immediately. If a block has only a
single predecessor, then it can’t be a join point, so a φ-function need not be
placed there during the RC phase.

At first sight, this improvement is incompatible with Improvement 1, which
assumes φ-functions in every block. When combined with Improvement 2, how-
ever, this difficulty can be overcome. Upon finding a block with a single prede-
cessor, the mapping table can simply be primed accordingly, instead of creating
the φ-function.

4 Timing Results

We implemented our algorithm with the above improvements as a drop-in re-
placement for the Cytron et al. algorithm [10] used in the Gardens Point Modula-
2 compiler. Timings were conducted on a 200 MHz Pentium with 64 M of RAM
and a clock granularity of 10 ms, running Debian GNU/Linux version 2.1. To
minimize transient timing errors, we ran each test five times; the times reported
are the arithmetic mean of those five runs.

Figure 9 shows the time both algorithms take on a sample of thirty source
files, comprising approximately 26,000 lines of code. (This code is the Modula-2
compiler’s front end.) For all but a few of the files, our algorithm is competitive,
sometimes faster than Cytron’s.

What is often overlooked is the fact that SSA-generation algorithms do not
operate in a vacuum. It is revealing to look at our algorithm in context. Fig-
ure 10 shows that, compared to the entire compilation, our algorithm takes an
insignificant amount of time — this “total time” does not even include the time
taken by the compiler’s front end! Given that SSA generation time is not even a
remotely dominant factor in compilation time, a simple algorithm such as ours
may reasonably be used.

5 Related Work

In this section we survey other methods for converting to SSA form. These meth-
ods have been categorized based on the largest class of control-flow graph (CFG)
they operate on: reducible or nonreducible.



Simple Generation of Static Single-Assignment Form 121

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Cytron

Minimization

Time (ms)

Fig. 9. Timing results.

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Total Time

Minimization

Time (ms)

Fig. 10. Results in context.



122 John Aycock and Nigel Horspool

5.1 Reducible CFGs

Brandis and Mössenböck [5] generate SSA form in one pass for structured control-
flow graphs, a subset of reducible control-flow graphs, by delicate placement of
φ-functions. They describe how to extend their method to reducible control-flow
graphs, but require the dominator tree to do so.

Cytron, Lowry, and Zadeck [11] predate the use of φ-functions, and employ
a heuristic placement policy based on the interval structure of the control-flow
graph, similar to that of Rosen, Wegman, and Zadeck [22]. The latter work is
interesting because they look for the same patterns as our algorithm does during
our minimization phase. However, they do so after generating SSA form, and
then only to correct ‘second order effects’ created during redundancy elimination.

5.2 Nonreducible CFGs

The work of Cytron et al. [10] is the method for generating SSA form we de-
scribed in Sect. 2. Cytron and Ferrante [9] later refined their method so that it
runs in almost-linear time.

Johnson, Pearson, and Pingali [16] demonstrate conversion to SSA form as
an application of their “program structure tree,” a decomposition of the control-
flow graph into single-entry, single-exit regions. They claim that using this graph
representation allows them to avoid areas in the control-flow graph that do not
contribute to a solution.

The genesis of SSA form was in the 1960s with the work of Shapiro and
Saint [23,19]. Their conversion algorithm was based upon finding equivalence
classes of variables by walking the control-flow graph.

Finally, Sreedhar and Gao [24] devised a linear-time algorithm for φ-function
placement using DJ-graphs, a data structure which combines the dominator tree
with information about where data flow in the program merges.

All of the algorithms for nonreducible control-flow graphs described in this
subsection have been proven to yield a minimal placement of φ-functions.

6 Future Work

There are a number of avenues for further work. First, we would like to determine
the time complexity of our algorithm, although this is unlikely to matter in
practice — there is evidence suggesting that some of these algorithms only rarely
achieve worst-case performance [9,10].

Second, our algorithm may be extendible to other forms of minimal SSA,
such as “pruned” SSA form, which only places a φ-function if the variable is live
at that point [7].

Third, we are currently throwing away useful information. The algorithm of
Cytron et al. that we compare our algorithm to in Sect. 4 only determines where
φ-functions should be placed. Our algorithm determines this too, of course, but
also knows upon completion what the arguments to the φ-functions are, some-
thing Cytron’s algorithm does not know until variable renaming. It is possible



Simple Generation of Static Single-Assignment Form 123

that we can concoct a faster and/or simpler variable renaming algorithm as a
result.

7 Applications

Our algorithm is particularly suitable in applications where a simple algorithm
would be preferred, without the baggage of extra data structures. One might
argue that the “extra” information computed by other algorithms will be used
later: in fact, Cytron et al. suggest this [10]. However, in the two compilers
we found employing SSA, neither made further use of the iterated dominance
frontier information.

Some optimizations necessitate the re-generation of minimal SSA form. For
example, re-minimization is required in the SSA-based partial redundancy elim-
ination algorithm of [8], for which they suggest re-running the φ-insertion algo-
rithm. Other optimizations may force SSA re-generation by changing the struc-
ture of the control-flow graph. Our algorithm may be useful in these situations.

8 Conclusions

We have presented a new, simple method of generating SSA form which finds
a minimal φ-function placement for an important class of control-flow graph
— reducible ones — and which finds a correct placement for all control-flow
graphs, even nonreducible ones. Our timings indicate that it is competitive with
the prevalent method of generating SSA form, especially when viewed in context.

9 Acknowledgments

Many thanks to John Gough for use of the Gardens Point Modula-2 compiler.
The IFIP Working Group 2.4 made a number of helpful comments; in partic-
ular, Bob Morgan suggested applying our algorithm for re-minimization. The
anonymous referees made many helpful comments. This work was supported in
part by a grant from the National Science and Engineering Research Council of
Canada.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Code Optimization and Finite Church-
Rosser Systems. In Design and Optimization of Compilers, R. Rustin, ed. Prentice
Hall, 1971, pp. 89–105. 118

2. B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting Equality of Variables in
Programs. Proceedings of the Fifteenth Annual ACM Symposium on Principles of
Programming Languages, 1988, pp. 1–11. 111

3. A. W. Appel. SSA is Functional Programming. ACM SIGPLAN 33, 4 (April 1998),
pp. 17–20. 111, 112



124 John Aycock and Nigel Horspool

4. A. W. Appel. Modern Compiler Implementation in Java. Cambridge, 1998. 111
5. M. M. Brandis and H. Mössenböck. Single-Pass Generation of Static Single-

Assignment Form for Structured Languages. ACM TOPLAS 16, 6 (November
1994), pp. 1684–1698. 122

6. P. Briggs, T. Harvey, and T. Simpson. Static Single Assignment Construction,
Version 1.0. Unpublished document, 1995. 115

7. J.-D. Choi, R. Cytron, and J. Ferrante. Automatic Construction of Sparse Data
Flow Evaluation Graphs. ACM POPL ’91, pp. 55–66. 122

8. F. Chow, S. Chan, R. Kennedy, S.-M. Liu, R. Lo, and P. Tu. A New Algorithm for
Partial Redundancy Elimination based on SSA Form. ACM PLDI ’97, pp. 273–286.
123

9. R. K. Cytron and J. Ferrante. Efficiently Computing φ-Nodes On-The-Fly. ACM
TOPLAS 17, 3 (May 1995), pp. 487–506. 122

10. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently
Computing Static Single-Assignment Form and the Control Dependence Graph.
ACM TOPLAS 13, 4 (October 1991), pp. 451–490. 111, 112, 119, 120, 122, 123

11. R. Cytron, A. Lowry, K. Zadeck. Code Motion of Control Structures in High-Level
Languages. Proceedings of the Thirteenth Annual ACM Symposium on Principles
of Programming Languages, 1986, pp. 70–85. 122

12. M. J. Fischer. Efficiency of Equivalence Algorithms. In Complexity of Computer
Computations, R. E. Miller and J. W. Thatcher, eds. Plenum Press, 1972. 120

13. M. S. Hecht. Flow Analysis of Computer Programs, North-Holland, 1977. 116, 118
14. M. S. Hecht and J. D. Ullman. Flow Graph Reducibility. SIAM Journal of Com-

puting 1, 2 (June 1972), pp. 188–202. 115, 118, 119
15. J. E. Hopcroft and J. D. Ullman. Set Merging Algorithms. SIAM Journal of Com-

puting 2, 4 (December 1973), pp. 294–303. 120
16. R. Johnson, D. Pearson, and K. Pingali. The Program Structure Tree: Computing

Control Regions in Linear Time. ACM PLDI ’94, pp. 171–185. 122
17. D. E. Knuth. An Empirical Study of FORTRAN Programs. Software — Practice

and Experience 1, 1971, pp. 105–133. 112
18. D. E. Knuth. The Art of Computer Programming, Volume 1: Fundamental Algo-

rithms, Addison Wesley, 1997. 120
19. D. B. Loveman and R. A. Faneuf. Program Optimization — Theory and Practice.

Conference on Programming Languages and Compilers for Parallel and Vector
Machines, 1975, pp. 97–102. 122

20. R. Morgan. Building an Optimizing Compiler, Digital Press, 1998. 115
21. S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-

mann, 1997. 111
22. B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global Value Numbers and Re-

dundant Computations. Proceedings of the Fifteenth Annual ACM Symposium on
Principles of Programming Languages, 1988, pp. 12–27. 122

23. R. M. Shapiro and H. Saint. The Representation of Algorithms. Rome Air Devel-
opment Center TR-69-313, Volume II, September 1969. 122

24. V. C. Sreedhar and G. R. Gao. A Linear Time Algorithm for Placing φ-Nodes.
Proceedings of the Twenty-Second Annual ACM Symposium on Principles of Pro-
gramming Languages, 1995, pp. 62–73. 122

25. R. E. Tarjan. Efficiency of a Good But Not Linear Set Union Algorithm. JACM
22, 2 (April 1975), pp. 215–225. 120

26. J. D. Ullman. Fast Algorithms for the Elimination of Common Subexpressions.
Acta Informatica 2, 1973, pp. 191–213. 119



Simple Generation of Static Single-Assignment Form 125

27. M. N. Wegman and F. K. Zadeck. Constant Propagation with Conditional
Branches. ACM TOPLAS 13, 2 (April 1991), pp. 181–210. 111, 112


	Introduction
	Converting to SSA Form
	Converting to SSA Form, Revisited
	Our Algorithm
	Correctness
	Proof of Minimality
	Improvements to the Basic Algorithm

	Timing Results
	Related Work
	Reducible CFGs
	Nonreducible CFGs

	Future Work
	Applications
	Conclusions
	Acknowledgments
	References

