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Abstract. Functional nets combine key ideas of functional program-
ming and Petri nets to yield a simple and general programming nota-
tion. They have their theoretical foundation in Join calculus. This paper
presents functional nets, reviews Join calculus, and shows how the two
relate.

1 Introduction

Functional nets are a way to think about programs and computation which is
born from a fusion of the essential ideas of functional programming and Petri
nets. As in functional programming, the basic computation step in a functional
net rewrites function applications to function bodies. As in Petri-Nets, a rewrite
step can require the combined presence of several inputs (where in this case
inputs are function applications). This fusion of ideas from two different areas
results in a style of programming which is at the same time very simple and very
expressive.

Functional nets have a theoretical foundation in join calculus [15,16]. They
have the same relation to join calculus as classical functional programming has to
λ-calculus. That is, functional nets constitute a programming method which de-
rives much of its simplicity and elegance from close connections to a fundamental
underlying calculus. λ-calculus [10,5] is ideally suited as a basis for functional
programs, but it can support mutable state only indirectly, and nondetermi-
nism and concurrency not at all. The pair of join calculus and functional nets
has much broader applicability – functional, imperative and concurrent program
constructions are supported with equal ease.

The purpose of this paper is two-fold. First, it aims to promote functional
nets as an interesting programming method of wide applicability. We present
a sequence of examples which show how functional nets can concisely model
key constructs of functional, imperative, and concurrent programming, and how
they often lead to better solutions to programming problems than conventional
methods.

Second, the paper develops concepts to link our programming notation of
functional nets with the underlying calculus. To scale up from a calculus to
a programming language, it is essential to have a means of aggregating func-
tions and data. We introduce qualified definitions as a new syntactic construct
for aggregation. In the context of functional nets, qualified definitions provide
more flexible control over visibility and initialization than the more conventional
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record- or object-constructors. They are also an excellent fit to the underlying
join calculus, since they maintain the convention that every value has a name.
We will present object-based join calculus, an extension of join calculus with
qualified definitions. This extension comes at surprisingly low cost, in the sense
that the calculus needs to be changed only minimally and all concepts carry over
unchanged. By contrast, conventional record constructors would create anony-
mous values, which would be at odds with the name-passing nature of join.

The notation for writing examples of functional nets is derived from Silk,
a small language which maps directly into our object-based extension of join.
An implementation of Silk is publicly available. There are also other languages
which are based in some form on join calculus, and which express the constructs
of functional nets in a different way, e.g. Join[17] or JoCaml[14]. We have chosen
to develop and present a new notation since we wanted to support both functions
and objects in a way which was as simple as possible.

As every program notation should be, functional nets are intended to be
strongly typed, in the sense that all type errors should be detected rather than
leading to unspecified behavior. We leave open whether type checking is done
statically at compile time or dynamically at run time. Our examples do not men-
tion types, but they are all of a form that would be checkable using a standard
type system with recursive records, subtyping and polymorphism.

The rest of this paper is structured as follows. Section 2 introduces functional
nets and qualified definitions. Sections 3 and 4 show how common functional and
imperative programming patterns can be modeled as functional nets. Section 5
discusses concurrency and shows how functional nets model a wide spectrum
of process synchronization techniques. Section 6 introduces object-based join
calculus as the formal foundation of functional nets. Section 7 discusses how the
programming notation used in previous sections can be encoded in this calculus.
Section 8 discusses related work and concludes.

2 A First Example

Consider the task of implementing a one-place buffer, which connects producers
and consumers of data. Producers call a function put to deposit data into the
buffer while consumers call a function get to retrieve data from the buffer. There
can be at most one datum in the buffer at any one time. A put operation on a
buffer which is already full blocks until the buffer is empty. Likewise, a get on
an empty buffer blocks until the buffer is full. This specification is realized by
the following simple functional net:

def get & full x = x & empty,
put x & empty = () & full x

The net contains two definitions which together define four functions. Two of the
functions, put and get, are meant to be called from the producer and consumer
clients of the buffer. The other two, full and empty, reflect the buffer’s internal
state, and should be called only from within the buffer.
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Function put takes a single argument, x. We often write a function argument
without surrounding parentheses, e.g. put x instead of put(x). We also admit
functions like get that do not take any argument; one can imagine that every
occurrence of such a function is augmented by an implicit empty tuple as argu-
ment, e.g. get becomes get().

The two equations define rewrite rules. A set of function calls that matches
the left-hand side of an equation may be rewritten to the equation’s right-hand
side. The & symbol denotes parallel composition. We sometimes call & a fork if
it appears on an equation’s right-hand side, and a join if it appears on the left.
Consequently, the left-hand sides of equations are also called join patterns.

For instance, the equation

get & full x = x & empty

states that if there are two concurrent calls, one to get and the other to full x
for some value x, then those calls may be rewritten to the expression x & empty.
That expression returns x as get’s result and in parallel calls function empty.
Unlike get, empty does not return a result; it’s sole purpose is to enable via the
second rewrite rule calls to put to proceed. We call result-returning functions
like get synchronous, whereas functions like empty are called asynchronous.

In general, only the leftmost operand of a fork or a join can return a result.
All function symbols of a left-hand side but the first one are asynchronous.
Likewise, all operands of a fork except the first one are asynchronous or their
result is discarded.

It’s now easy to interpret the second rewrite rule,

put x & empty = () & full x

This rule states that two concurrent calls to put x & empty and may be rewritten
to () & full x. The result part of that expression is the unit value (); it signals
termination and otherwise carries no interesting information.

Clients of the buffer still need to initialize it by calling empty. A simple usage
of the one-place buffer is illustrated in the following example.

def get & full x = x & empty,
put x & empty = () & full x;

put 1 &
( val y = get ; val r = y + y ; print r ; put r ) &
( val z = get ; val r = y ∗ y ; print r; put r ) &
empty

Besides the initializer empty there are three client processes composed in parallel.
One process puts the number 1 into the buffer. The other two processes both try
to get the buffer’s contents and put back a modified value. The construct

val y = get ; ...



4 M. Odersky

evaluates the right-hand side expression get and defines y as a name for the
resulting value. The defined name y remains visible in the expression following
the semicolon. By contrast, if we had written def y = get; ... we would have
defined a function y, which each time it was called would call in turn get. The
definition itself would not evaluate anything.

As usual, a semicolon between expressions stands for sequencing. The com-
bined expression print r; put r first prints its argument r and then puts it into the
buffer.

The sequence in which the client processes in the above example execute is
arbitrary, controlled only by the buffer’s rewrite rules. The effect of running the
example program is hence the output of two numbers, either (2, 4) or (1, 2),
depending which client process came first.

Objects The previous example mixed the definition of a one-place buffer and
the client program using it. A better de-coupling is obtained by defining a con-
structor function for one-place buffers. The constructor, together with a program
using it can be written as follows.

def newBuffer = {
def get & full x = x & empty,

put x & empty = () & full x;
(get, put) & empty

};
val (get’, put’) = newBuffer;
put’ 1 &

( val y = get’ ; val r = y + y ; print r ; put’ r ) &
( val z = get’ ; val r = y ∗ y ; print r ; put’ r )

The defining equations of a one-place buffer are now local to a block, from which
the pair of locally defined functions get and put is returned. Parallel to returning
the result the buffer is initialized by calling empty. The initializer empty is now
part of the constructor function; clients no longer can call it explicitly, since
empty is defined in a local block and not returned as result of that block. Hence,
newBuffer defines an object with externally visible methods get and put and
private methods empty and full. The object is represented by a tuple which
contains all externally visible methods.

This representation is feasible as long as objects have only a few externally
visible methods, but for objects with many methods the resulting long tuples
quickly become unmanageable. Furthermore, tuples do not support a notion
of subtyping, where an object can be substituted for another one with fewer
methods. We therefore introduce records as a more suitable means of aggregation
where individual methods can be accessed by their names, and subtyping is
possible.

The idiom for record access is standard. If r denotes a record, then r.f denotes
the field of r named f . We also call references of the form r.f qualified names. The
idiom for record creation is less conventional. In most programming languages,
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records are defined by enumerating all field names with their values. This notion
interacts poorly with the forms of definitions employed in functional nets. In
a functional net, one often wants to export only some of the functions defined
in a join pattern whereas other functions should remain hidden. Moreover, it
is often necessary to call some of the hidden functions as part of the object’s
initialization.

To streamline the construction of objects, we introduce qualified names not
only for record accesses, but also for record definitions. For instance, here is a
re-formulation of the newBuffer function using qualified definitions.

def newBuffer = {
def this.get & full x = x & empty,

this.put x & empty = () & full x;
this & empty

};
val buf = newBuffer;
buf.put 1 &

( val y = buf.get ; val r = y + y ; print r ; buf.put r ) &
( val z = buf.get ; val r = y ∗ y ; print r ; buf.put r )

Note the occurrence of the qualified names this.get and this.put on the left-hand
side of the local definitions. These definitions introduce three local names:

– the local name this, which denotes a record with two fields, get and put, and
– local names empty and full, which denote functions.

Note that the naming of this is arbitrary, any other name would work equally
well. Note also that empty and full are not part of the record returned from
newRef, so that they can be accessed only internally.

The identifiers which occur before a period in a join pattern always define
new record names, which are defined only in the enclosing definition. It is not
possible to use this form of qualified definition to add new fields to a record
defined elsewhere.

Some Notes on Syntax We assume the following order of precedence, from strong
to weak:

( ) and (.) , (&) , (=) , (,) , (;) .

That is, function application and selection bind strongest, followed by parallel
composition, followed by the equal sign, followed by comma, and finally followed
by semicolon. Function application and selection are left associative, & is asso-
ciative, and ; is right associatve. Other standard operators such as +, ∗, == fall
between function application and & in their usual order of precedence. When
precedence risks being unclear, we’ll use parentheses to disambiguate.

As a syntactic convenience, we allow indentation instead of ;-separators inside
blocks delimited with braces { and }. Except for the significance of indentation,
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braces are equivalent to parentheses. The rules are as follows: (1) in a block deli-
mited with braces, a semicolon is inserted in front of any non-empty line which
starts at the same indentation level as the first symbol following the opening
brace, provided the symbol after the insertion point can start an expression or
definition. The only modification to this rule is: (2) if inserted semicolons would
separate two def blocks, yielding def D1 ; def D2 say, then the two def blocks
are instead merged into a single block, i.e. def D1, D2. (3) The top level program
is treated like a block delimited with braces, i.e. indentation is significant.

With these rules, the newBuffer example can alternatively be written as fol-
lows.

def newBuffer = {
def this.get & full x = x & empty
def this.put x & empty = () & full x
this & empty

}
val buf = newBuffer
buf.put 1 &

{ val y = buf.get ; val r = y + y ; print r ; buf.put r } &
{ val z = buf.get ; val r = y ∗ y ; print r ; buf.put r }

A common special case of a qualified definition is the definition of a record with
only externally visible methods:

( def this.f = ... , this.g = ... ; this )

This idiom can be abbreviated by omitting the this qualifier and writing only
the definitions.

( def f = ... , g = ... )

3 Functional Programming

A functional net that does not contain any occurrences of & is a purely functional
program. For example, here’s the factorial function written as a functional net.

def factorial n = if (n == 0) 1
else n ∗ factorial (n–1)

Except for minor syntactical details, there’s nothing which distinguishes this
program from a program written in a functional language like Haskell or ML.
We assume that evaluation of function arguments is strict: In the call f (g x), g x
will be evaluated first and its value will be passed to f.

Functional programs often work with recursive data structures such as trees
and lists. In Lisp or Scheme such data structures are primitive S-expressions,
whereas in ML or Haskell they are definable as algebraic data types. Our fun-
ctional net notation does not have a primitive tree type, nor has it constructs



Functional Nets 7

for defining algebraic data types and for pattern matching their values. It does
not need to, since these constructs can be represented with records, using the
Visitor pattern[18].

The visitor pattern is the object-oriented version of the standard Church
encoding of algebraic data types. A visitor encodes the branches of a pattern
matching case expression. It is represented as a record with one method for each
branch. For instance, a visitor for lists would always have two methods:

def Nil = ...
def Cons (x, xs) = ...

The intention is that our translation of pattern matching would call either the
Nil method or the Cons method of a given visitor, depending what kind of list
was encountered. If the encountered list resulted from a Cons we also need to
pass the arguments of the original Cons to the visitor’s Cons.

Assume we have already defined a method match for lists that takes a list
visitor as argument and has the behavior just described. Then one could write
an isEmpty test function over lists as follows:

def isEmpty xs = xs.match {
def Nil = true
def Cons (x, xs1) = false

}
More generally, every function over lists can be defined in terms of match. So, in
order to define a record which represents a list, all we need to do is to provide a
match method. How should match be defined? Clearly, its behavior will depend
on whether it is called on an empty or non-empty list. Therefore, we define two
list constructors Nil and Cons, with two different different implementations for
match. The implementations are straightforward:

val List = {
def Nil = { def match v = v.Nil }
def Cons (x, xs) = { def match v = v.Cons (x, xs) }

}
In each case, match simply calls the appropriate method of its visitor argument
v, passing any parameters along. We have chosen to wrap the Nil and Cons
constructors in another record, named List. List acts as a module, which provides
the constructors of the list data type. Clients of the List module then construct
lists using qualified names List.Nil and List.Cons. Example:

def concat (xs, ys) = xs.match {
def Nil = ys
def Cons (x, xs) = List.Cons (x, concat (xs1, ys))

}
Note that the qualification with List lets us distinguish the constructor Cons,
defined in List, from the visitor method Cons, which is defined locally.
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4 Imperative Programming

Imperative programming extends purely functional programming with the addi-
tion of mutable variables. A mutable variable can be modeled as a reference cell
object, which can be constructed as follows.

def newRef initial = {
def this.value & state x = x & state x,

this.update y & state x = () & state y

this & state initial
}

The structure of these definitions is similar to the one-place buffer in Section 2.
The two synchronous functions value and update access and update the variable’s
current value. The asynchronous function state serves to remember the variable’s
current value. The reference cell is initialized by calling state with the initial value.

Here is a simple example of how references are used:

val count = newRef 0
def increment = count.update (count.value + 1)
increment

Building on reference cell objects, we can express the usual variable access not-
ation of imperative languages by two simple syntactic expansions:

var x := E expands to val x = newRef E ; def x = x.value
x := E expands to x.update E

The count example above could then be written more conventionally as follows.

var count := 0
def increment = count := count + 1

In the object-oriented design and programming area, an object is often characte-
rized as having “state, behavior, and identity”. Our encoding of objects expresses
state as a collection of applications of private asynchronous functions, and be-
havior as a collection of externally visible functions. But what about identity? If
functional net objects had an observable identity it should be possible to define
a method eq which returns true if and only if its argument is the same object
as the current object. Here “sameness” has to be interpreted as “created by the
same operation”, structural equality is not enough. E.g., assuming that the – as
yet hypothetical – eq method was added to reference objects, it should be pos-
sible to write val (r1, r2) = (newRef 0, newRef 0) and to have r1.eq(r1) == true
and r1.eq(r2) == false.

Functional nets have no predefined operation which tests whether two na-
mes or references are the same. However, it is still possible to implement an eq
method. Here’s our first attempt, which still needs to be refined later.
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Fig. 1. Analogy to Petri nets

def newObjectWithIdentity = {
def this.eq other & flag x = resetFlag (other.testFlag & flag true)

this.testFlag & flag x = x & flag x
resetFlag result & flag x = x & flag false

this & flag false
}

This defines a generator function for objects with an eq method that tests for
identity. The implementation of eq relies on three helper functions, flag, testFlag,
and resetFlag. Between calls to the eq method, flag false is always asserted. The
trick is that the eq method asserts flag true and at the same time tests whether
other.flag is true. If the current object and the other object are the same, that test
will yield true. On the other hand, if the current object and the other object are
different, the test will yield false, provided there is not at the same time another
ongoing eq operation on object other. Hence, we have arrived at a solution of
our problem, provided we can prevent overlapping eq operations on the same
objects. In the next section, we will develop techniques to do so.

5 Concurrency

The previous sections have shown how functional nets can express sequential
programs, both in functional and in imperative style. In this section, we will show
their utility in expressing common patterns of concurrent program execution.

Functional nets support an resource-based view of concurrency, where calls
model resources, & expresses conjunction of resources, and a definition acts as
a rewrite rule which maps input sets of resources into output sets of resources.
This view is very similar to the one of Petri nets [29,32]. In fact, there are
direct analogies between the elements of Petri nets and functional nets. This is
illustrated in Figure 1.

A transition in a Petri net corresponds to a rewrite rule in a functional net.
A place in a Petri net corresponds to a function symbol applied to some (formal
or actual) arguments. A token in a Petri net corresponds to some actual call
during the execution of a functional net (in analogy to Petri nets, we will also
call applications of asynchronous functions tokens). The basic execution step
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of a Petri net is the firing of a transition which has as a precondition that all
in-going places have tokens in them. Quite similarly, the basic execution step of
a functional net is a rewriting according to some rewrite rule, which has as a
precondition that all function symbols of the rule’s left-hand side have matching
calls.

Functional nets are considerably more powerful than conventional Petri nets,
however. First, function applications in a functional net can have arguments,
whereas tokens in a Petri net are unstructured. Second, functions in a functional
net can be higher-order, in that they can have functions as their arguments. In
Petri nets, such self-referentiality is not possible. Third, definitions in a functional
net can be nested inside rewrite rules, such that evolving net topologies are
possible. A Petri-net, on the other hand, has a fixed connection structure.

Colored Petri nets [24] let one pass parameters along the arrows connecting
places with transitions. These nets are equivalent to first-order functional nets
with only global definitions. They still cannot express the higher-order and evo-
lution aspects of functional nets. Bussi and Asperti have translated join calculus
ideas into standard Petri net formalisms. Their mobile Petri nets [4] support
first-class functions and evolution, and drop at the same time the locality re-
strictions of join calculus and functional nets. That is, their notation separates
function name introduction from rewrite rule definition, and allows a function
to be defined collectively by several unrelated definitions.

In the following, we will present several well-known schemes for process syn-
chronization and how they each can be expressed as functional nets.

Semaphores A common mechanism for process synchronization is a lock (or:
semaphore). A lock offers two atomic actions: getLock and releaseLock. Here’s
the implementation of a lock as a functional net:

def newLock = {
def this.getLock & this.releaseLock = ()
this & this.releaseLock

}
A typical usage of a semaphore would be:

val s = newLock ; ...
s.getLock ; “< critical region >” ; s.releaseLock

With semaphores, we can now complete our example to define objects with
identity:

val global = newLock
def newObjectWithIdentity = {

def this.eq other = global.getLock ; this.testEq other ; global.releaseLock
this.testEq other & flag x = resetFlag (other.testFlag & flag true)
this.testFlag & flag x = x & flag x
resetFlag result & flag x = x & flag false

this & flag false
}
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This code makes use of a global lock to serialize all calls of eq methods. This
is admittedly a brute force approach to mutual exclusion, which also serializes
calls to eq over disjoint pairs of objects. A more refined locking strategy is hard
to come by, however. Conceptually, a critical region consists of a pair of objects
which both have to be locked. A naive approach would lock first one object, then
the other. But this would carry the risk of deadlocks, when two concurrent eq
operations involve the same objects, but in different order.

Asynchronous Channels Quite similar to a semaphore is the definition of an
asynchronous channel with two operations, read and write:

def newAsyncChannel = {
def this.read & this.write x = x
this

}

Asynchronous channels are the fundamental communication primitive of asyn-
chronous π calculus [8,23] and languages based on it, e.g. Pict[30] or Piccola[1].
A typical usage scenario of an asynchronous channel would be:

val c = newAsyncChannel
def producer = {

var x := 1
while (true) { val y := x ; x := x + 1 & c.write y }

}
def consumer = {

while (true) { val y = c.read ; print y }
}
producer & consumer

The producer in the above scenario writes consecutive integers to the channel c
which are read and printed by the consumer. The writing is done asynchronously,
in parallel to the rest of the body of the producer’s while loop. Hence, there is
no guarantee that numbers will be read and printed in the same order as they
were written.

Synchronous Channels A potential problem with the previous example is that
the producer might produce data much more rapidly than the consumer consu-
mes them. In this case, the number of pending write operations might increase
indefinitely, or until memory was exhausted. The problem can be avoided by
connecting producer and consumer with a synchronous channel.

In a synchronous channel, both reads and writes return and each opera-
tion blocks until the other operation is called. Synchronous channels are the
fundamental communication primitive of classical π-calculus[27]. They can be
represented as functional nets as follows.
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def newSyncChannel = {
def this.read & noReads = read1 & read2,

this.write x & noWrites = write1 & write2 x,
read1 & write2 x = x & noWrites,
write1 & read2 = () & noReads

this
}

This implementation is more involved than the one for asynchronous channels.
The added complexity stems from the fact that a synchronous channel connects
two synchronous operations, yet in each join pattern there can be only one
function that returns. Our solution is similar to a double handshake protocol. It
splits up read and write into two sub-operations each, read1, read2 and write1,
write2. The sub-operations are then matched in two join patterns, in opposite
senses. In one pattern it is the read sub-operation which returns whereas in
the second one it is the write sub-operation. The noReads and noWrites tokens
are necessary for serializing reads and writes, so that a second write operation
can only start after the previous read operation is finished and vice versa. With
synchronous channels, our producer/consumer example can be written as follows.

val c = newSyncChannel
def producer = {

var x := 1
while (true) { c.write x ; x := x + 1 }

}
def consumer = {

while (true) { val y = c.read ; print y }
}
producer & consumer

Monitors Another scheme for process communication is to use a common store
made up of mutable variables, and to use mutual exclusion mechanisms to pre-
vent multiple processes from updating the same variable at the same time. A
simple mutual exclusion mechanism is the monitor [20,21] which ensures that
only one of a set of functions f1, ..., fk can be active at any one time. A monitor
is easily represented using an additional asynchronous function, turn. The turn
token acts as a resource which is consumed at the start of each function fi and
which is reproduced at the end:

def f1 & turn = ... ; turn,
...

fk & turn = ... ; turn

For instance, here is an example of a counter which can be incremented and
decremented:
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def newBiCounter = {
var count := 0
def this.increment & turn = count := count + 1 ; turn
def this.decrement & turn = count := count – 1 ; turn
this

}

Readers and Writers A more complex form of synchronization distinguishes bet-
ween readers which access a common resource without modifying it and writers
which can both access and modify it. To synchronize readers and writers we need
to implement operations startRead, startWrite, endRead, endWrite, such that:

– there can be multiple concurrent readers,
– there can only be one writer at one time,
– pending write requests have priority over pending read requests, but don’t

preempt ongoing read operations.

This form of access control is common in databases. It can be implemented using
traditional synchronization mechanisms such as semaphores, but this is far from
trivial. We arrive at a functional net solution to the problem in two steps.

The initial solution is given at the top of Figure 2. We make use of two
auxiliary tokens. The token readers n keeps track in its argument n of the number
of ongoing reads, while writers n keeps track in n of the number of pending writes.
A startRead operation requires that there are no pending writes to proceed, i.e.
writers 0 must be asserted. In that case, startRead continues with startRead1,
which reasserts writers 0, increments the number of ongoing readers, and returns
to its caller. By contrast, a startWrite operation immediately increments the
number of pending writes. It then continues with startWrite1, which waits for
the number of readers to be 0 and then returns. Note the almost-symmetry
between startRead and startWrite, where the different order of actions reflects
the different priorities of readers and writers.

This solution is simple enough to trust its correctness. But the present for-
mulation is not yet valid Silk because we have made use of numeric arguments in
join patterns. For instance readers 0 expresses the condition that the number of
readers is zero. We arrive at an equivalent formulation in Silk through factoriza-
tion. A function such as readers which represents a condition is split into several
sub-functions which together partition the condition into its cases of interest. In
our case we should have a token noReaders which expresses the fact that there
are no ongoing reads as well as a token readers n, where n is now required to be
positive. Similarly, writers n is now augmented by a case noWriters. After split-
ting and introducing the necessary case distinctions, one obtains the functional
net listed at the bottom of Figure 2.
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Initial solution:

def this.startRead & writers 0 = startRead1,
startRead1 & readers n = () & writers 0 & readers (n+1),

this.startWrite & writers n = startWrite1 & writers (n+1),
startWrite1 & readers 0 = (),

this.endRead & readers n = readers (n–1),
this.endWrite & writers n = writers (n–1) & readers 0

this & readers 0 & writers 0
}

After factorization:

def newReadersWriters = {
def this.startRead & noWriters = startRead1,

startRead1 & noReaders = () & noWriters & readers 1,
startRead1 & readers n = () & noWriters & readers (n+1),

this.startWrite & noWriters = startWrite1 & writers 1,
this.startWrite & writers n = startWrite1 & writers (n+1),

startWrite1 & noReaders = (),

this.endRead & readers n = if (n == 1) noReaders
else readers (n–1),

this.endWrite & writers n = noReaders &
if (n == 1) noWriters
else writers (n–1)

this & noReaders & noWriters
}

Fig. 2. Readers/writers synchronization

6 Foundations: The Join Calculus

Functional nets have their formal basis in join calculus [15]. We now present this
basis, in three stages. In the first stage, we study a subset of join calculcus which
can be taken as the formal basis of purely functional programs. This calculus is
equivalent to (call-by-value) λ-calculus[31], but takes the opposite position on
naming functions. Where λ-calculus knows only anonymous functions, functional
join calculus insists that every function have a name. Furthermore, it also insists
that every intermediate result be named. As such it is quite similar to common
forms of intermediate code found in compilers for functional languages.

The second stage adds fork and join operators to the constructs introduced
in the first stage. The calculus developed at this stage is equivalent in principle
to the original join calculus, but some syntactical details have changed.

The third stage adds qualified names in definitions and accesses. The calculus
developed in this stage can model the object-based functional nets we have used.
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Syntax:

Names a, b, c, . . . , x, y, z

Terms M, N = def D ; M | x(ỹ)
Definitions D = L = M

Left-hand sides L = x(ỹ)
Reduction contexts R = [ ] | def D ; R

Structural Equivalence: α-renaming.

Reduction:

def x(ỹ) = M ; R[x(z̃)] → def x(ỹ) = M ; R[[z̃/ỹ]M ]

Fig. 3. Pure functional calculus

All three stages represent functional nets as a reduction system. There is
in each case only a single rewrite rule, which is similar to the β-reduction rule
of λ-calculus, thus closely matching intuitions of functional programming. By
contrast, the original treatment of join calculus is based on a chemical abstract
machine[6], a concept well established in concurrency theory. The two versions
of join calculus complement each other and are (modulo some minor syntactical
details) equivalent.

6.1 Pure Functional Calculus

Figure 3 presents the subset of join calculus which can express purely functional
programs. The syntax of this calculus is quite small. A term M is either a
function application x(ỹ) or a term with a local definition, def D ; M (we let
x̃ stand for a sequence x1, . . . , xn of names, where n ≥ 0). A definition D is
a single rewrite rule the form L = M . The left-hand side L of a rewrite rule is
again a function application x(ỹ). We require that the formal parameters yi of
a left-hand side are pairwise disjoint. The right-hand side of a rewrite rule is an
arbitrary term.

The set of defined names dn(D) of a definition D of the form x(ỹ) = M con-
sists of just the function name x. Its local names ln(D) are the formal parameters
ỹ. The free names fn(M) of a term M are all names which are not defined by or
local to a definition in M . The free names of a definition D are its defined names
and any names which are free in the definition’s right hand side, yet different
from the local names of D. All names occurring in a term M that are not free
in M are called bound in M . Figure 6 presents a formal definition of these sets
for the object-based extension of join calculus.

To avoid unwanted name capture, where free names become bound inadver-
tently, we will always write terms subject to the following hygiene condition: We
assume that the set of free and bound names of every term we write are disjoint.
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This can always be achieved by a suitable renaming of bound variables, accor-
ding to the α-renaming law. This law lets us rename local and defined names of
definitions, provided that the new names do not clash with names which already
exist in their scope. It is formalized by two equations. First,

def x(ỹ) = M ; N ≡ def u(ỹ) = [u/x]M ; [u/x]N

if u 6∈ fn(M) ∪ fn(N). Second,

def x(ỹ) = M ; N ≡ def x(ṽ) = [ṽ/ỹ]M ; N

if {ṽ} ∩ fn(M) = ∅ and the elements of ṽ are pairwise disjoint. Here, [u/x] and
[ṽ/ỹ] are substitutions which map x and ỹ to u and ṽ. Generally, substitutions
are idempotent functions over names which map all but a finite number of names
to themselves. The domain dom(σ) of a substitution σ is the set of names not
mapped to themselves under σ.

Generally, we will give in each case a structural equivalence relation ≡ which
is assumed to be reflexive, transitive, and compatible (i.e. closed under formation
of contexts). Terms that are related by ≡ are identified with each other. For the
purely functional calculus, ≡ is just α-renaming. Extended calculi will have richer
notions of structural equivalence.

Execution of terms in our calculus is defined by rewriting. Figure 3 defines
a single rewrite rule, which is analogous to β-reduction in λ-calculus. The rule
can be sketched as follows:

def x(ỹ) = M ; . . . x(z̃) . . . → def x(ỹ) = M ; . . . [z̃/ỹ]M . . .

That is, if there is an application x(z̃) which matches a definition of x, say
x(ỹ) = M , then we can rewrite the application to the definition’s right hand
side M , after replacing formal parameters ỹ by actual arguments z̃.

The above formulation is not yet completely precise because we still have to
specify where exactly a reducible application can be located in a term. Clearly,
the application must be within the definition’s scope. Also, we want to reduce
only those applications which are not themselves contained in another local
definition. For instance, in

def f (x, k) = k x ;
def g (x, k) = f (1, k) ;
f(2, k)

we want to reduce only the second application of f, not the first one which is
contained in the body of function g. This restriction in the choice of reducible
applications avoids potentially unnecessary work. For instance in the code frag-
ment above g is never called, so it would make no sense to reduce its body. More
importantly, once we add side-effects to our language, it is essential that the
body of a function is executed (i.e. reduced) only when the function is applied.
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The characterization of reducible applications can be formalized using the
idea of a reduction context1. A context C is a term with a hole, which is written
[ ]. The expression C[M ] denotes the term resulting from filling the hole of the
context C with M . A reduction context R is a context of a special form, in which
the hole can be only at places where a function application would be reducible.
The set of possible reduction contexts for our calculus is generated by a simple
context free grammar, given in Figure 3. This grammar says that reduction can
only take place at the top of a term, or in the scope of some local definitions.

Reduction contexts are used in the formulation of the reduction law in Fi-
gure 3. Generally, we let the reduction relation → between terms be the smallest
compatible relation that contains the reduction law.

An alternative formulation of the reduction rule abstracts from the concrete
substitution operator:

def L = M ; R[σL] → def L = M ; R[σM ]

if σ is a substitution from names to names with dom(σ) ⊆ ln(L).
The advantage of the alternative formulation is that it generalizes readily to

the more complex join patterns which will be introduced in the next sub-section.
As an example of functional reduction, consider the following forwarding

function:

def f(x) = g(x) ; f(y) → def f(x) = g(x) ; g(y)

A slightly more complex example is the following reduction of a call to an eva-
luation function, which takes two arguments and applies one to the other:

def apply(f,x) = f(x) ; apply(print, 1) → def apply(f,x) = f(x) ; print(1)

6.2 Canonical Join Calculus

Figure 4 presents the standard version of join calculus. Compared to the purely
functional subset, there are three syntax additions: First and second, & is now
introduced as fork operator on terms and as a join operator on left-hand sides.
Third, definitions can now consist of more than one rewrite rule, so that multiple
definitions of the same function symbol are possible.

The latter addition is essentially for convenience, as one can translate every
program with definitions consisting of multiple rewrite rules to a program that
uses just one rewrite rule for each definition [15]. The convenience is great enough
to warrant a syntax extension because the encoding is rather heavy.

The notion of structural equivalence is now more refined than in the purely
functional subset. Besides α-renaming, there are three other sets of laws which
identify terms. First, the fork operator is assumed to be associative and commu-
tative. Second, the comma operator which conjoins rewrite rules is also taken to
1 The concept is usually known as under the name “evaluation context” [11], but

there’s nothing to evaluate here.
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Syntax:

Names a, b, c, . . . , x, y, z

Terms M, N = def D ; M | x(ỹ) | M & N

Definitions D = L = M | D, D | ε

Left-hand sides L = x(ỹ) | L & L

Reduction contexts R = [ ] | def D ; R | R & M | M & R

Structural Equivalence: α-renaming +

1. (&) on terms is associative and commutative:
M1 & M2 ≡ M2 & M1

M1 & (M2 & M3) ≡ (M1 & M2) & M3

2. (, ) on definitions is associative and commutative with ε as an identity:
D1, D2 ≡ D2, D1

D1, (D2, D3) ≡ (D1, D2), D3

D, ε ≡ D
3. Scope extrusion:

(def D ; M) & N ≡ def D ; (M & N) if dn(D) ∩ fn(N) = ∅.

Reduction:

def D, L = M ; R[σL] → def D, L = M ; R[σM ]

where σ is a substitution from names to names with dom(σ) ⊆ ln(L).

Fig. 4. Canonical join calculus

be associative and commutative, with the empty definition ε as identity. Finally,
we have a scope extrusion law, which states that the scope of a local definition
may be extended dynamically over other operands of a parallel composition,
provided this does not lead to clashes between names bound by the definition
and free names of the terms that are brought in scope.

There is still just one reduction rule, and this rule is essentially the same as
in the functional subset. The major difference is that now a rewrite step may
involve sets of function applications, which are composed in parallel.

The laws of structural equivalence are necessary to bring parallel subterms
which are “far apart” next to each other, so that they can match the join pattern
of left-hand side. For instance, in the following example of semaphore synchro-
nization two structural equivalences are necessary before rewrite steps can be
performed.
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Syntax:

Names a, b, c, . . . , x, y, z

Identifiers I, J = x | I.x

Terms M, N = def D ; M | I(J̃) | M & N

Definitions D = L = M | D, D | ε

Left-hand sides L = I(ỹ) | L & L

Reduction contexts R = [ ] | def D ; R | R & M | M & R

Structural Equivalence: α-renaming +

1. (&) on terms is associative and commutative:
M1 & M2 ≡ M2 & M1

M1 & (M2 & M3) ≡ (M1 & M2) & M3

2. (, ) on definitions is associative and commutative with ε as an identity:
D1, D2 ≡ D2, D1

D1, (D2, D3) ≡ (D1, D2), D3

D, ε ≡ D
3. Scope extrusion:

(def D ; M) & N ≡ def D ; (M & N) if dn(D) ∩ fn(N) = ∅.

Reduction:

def D, L = M ; R[σL] → def D, L = M ; R[σM ]

where σ is a substitution from names to identifiers with dom(σ) ⊆ ln(L).

Fig. 5. Object-based join calculus

def getLock(k) & releaseLock() = k();
releaseLock() & (def k’() = f() & g(); getLock(k’))

≡ (by commutativity of &)
def getLock(k) & releaseLock() = k();
(def k’() = f() & g(); getLock(k’)) & releaseLock()

≡ (by scope extrusion)
def getLock(k) & releaseLock() = k();
def k’() = f() & g(); getLock(k’) & releaseLock()

→ def getLock(k) & releaseLock() = k(); def k’() = f() & g(); k’()
→ def getLock(k) & releaseLock() = k(); def k’() = f() & g(); f() & g()

6.3 Object-Based Calculus

Figure 5 presents the final stage of our progression, object-based join calculus.
The only syntactical addition with respect to Figure 4 is that identifiers can now
be qualified names. A qualified name I is either a simple name x or a qualified
name followed by a period and a simple name. Qualified names can appear as



20 M. Odersky

first(x) = x
first(I.f) = first(f)

dn(I(x̃) = first(I)
dn(L1&L2) = dn(L1) ∪ dn(L2)
dn(D1, D2) = dn(D1) ∪ dn(D2)

ln(I(x1, . . . , xn)) = {x1, . . . , xn}
ln(L1&L2) = ln(L1) ∪ ln(L2)

fn(I(J1, . . . , Jn)) = {first(I), first(J1), . . . , first(Jn)}
fn(def D ; M) = (fn(D) ∪ fn(M))\dn(D)
fn(M1&M2) = fn(M1) ∪ fn(M2)
fn(L = M) = dn(L) ∪ (fn(M)\ln(L))
fn(D1, D2) = fn(D1) ∪ fn(D2)

Fig. 6. Local, defined, aiand free names

the operands of a function application and as defined function symbols in a
definition.

Perhaps surprisingly, this is all that changes! The structural equivalences and
reduction rules stay exactly as they were formulated for canonical join calculus.
However, a bit of care is required in the definition of permissible renamings. For
instance, consider the following object-based functional net:

def this.f(k) & g(x) = k(x) ; k’(this) & g(0)

In this net, both this and g can be consistently renamed. For instance, the follo-
wing expression would be considered equivalent to the previous one:

def that.f(k) & h(x) = k(x) ; k’(that) & h(0)

On the other hand, the qualified function symbol f cannot be renamed without
changing the meaning of the expression. For instance, renaming f to e would
yield:

def this.e(k) & g(x) = k(x) ; k’(this) & g(0)

This is clearly different from the expression we started with. The new expression
passes a record with an e field to the continuation function k’, whereas the
previous expressions passed a record with an f field.

Figure 6 reflects these observations in the definition of local, defined, and free
names for object-based join calculus. Note that names occurring as field selectors
are neither free in a term, nor are they defined or local. Hence α-renaming does
not apply to record selectors.

The α-renaming rule is now formalized as follows. Let a renaming θ be a sub-
stitution from names to names which is injective when considered as a function
from dom(θ) (remember that dom(θ) = {x | θ(x) 6= x}). Then,

def D ; M ≡ def θD ; θM

if θ is a renaming with dom(θ) ⊆ dn(D) and codom(θ) ∩ (fn(D) ∪ fn(M)) = ∅.
Furthermore,

def D, L = M ; N ≡ def D, θL = θM ; N
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Silk program:
def newChannel = ( def this.read & this.write(x) = x ; this );
val chan = newChannel;
chan.read & chan.write(1)

Join calculus program and its reduction:

def newChannel(k1) = (def this.read(k2) & this.write(x) = k2(x); k1(this));
def k3(chan) = chan.read(k0) & chan.write(1);
newChannel(k3)

→
def newChannel(k1) = (def this.read(k2) & this.write(x) = k2(x); k1(this));
def k3(chan) = chan.read(k0) & chan.write(1);
def this’.read(k′

2) & this’.write(x’) = k′
2(x’);

k3(this’)
→

def newChannel(k1) = (def this.read(k2) & this.write(x) = k2(x); k1(this));
def k3(chan) = chan.read(k0) & chan.write(1);
def this’.read(k′

2) & this’.write(x’) = k′
2(x’);

this’.read(k0) & this’.write(1);
→

def newChannel(k1) = (def this.read(k2) & this.write(x) = k2(x); k1(this));
def k3(chan) = chan.read(k0) & chan.write(1);
def this’.read(k′

2) & this’.write(x’) = k′
2(x’);

k0(1)

Fig. 7. Reduction involving an asynchronous channel object

if θ is a renaming with dom(θ) ⊆ ln(L) and codom(θ) ∩ fn(M) = ∅.
The definitions of Figure 6 and the α-renaming rule apply as stated to all

three versions of join calculus, not only to the final object-based version. When
reduced to the simpler syntax of previous calculi, the new definitions are equi-
valent to the old ones.

As an example of object-based reduction consider the Silk program at the
top of Figure 7. The program defines an asynchronous channel using function
newChannel and then reads and writes that channel.

This program is not yet in the form mandated by join calculus since it uses
a synchronous function and a val definition. We can map this program into join
calculus by adding continuation functions which make control flow for function
returns and value definitions explicit. The second half of Figure 7 shows how this
program is coded in object-based join calculus and how it is reduced. Schemes
which map from our programming notation to join calculus are further discussed
in the next section.
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7 Syntactic Abbreviations

Even the extended calculus discussed in the last section is a lot smaller than the
Silk programming notation we have used in the preceding sections. This section
fills the gap, by showing how Silk constructs which are not directly supported in
object-based join calculus can be mapped into equivalent constructs which are
supported.

Direct style An important difference between Silk and join calculus is that Silk
has synchronous functions and val definitions which bind the results of synchro-
nous function applications. To see the simplifications afforded by these additions,
it suffices to compare the Silk program of Figure 7 with its join calculus counter-
part. The join calculus version is much more cluttered because of the occurrence
of the continuations ki. Programs which make use of synchronous functions and
value definitions are said to be in direct style, whereas programs that don’t are
said to be in continuation passing style. Join calculus supports only continua-
tion passing style. To translate direct style programs into join calculus, we need
a continuation passing transform. This transformation gives each synchronous
function an additional argument which represents a continuation function, to
which the result of the synchronous function is then passed.

The source language of the continuation passing transform is object-based
join calculus extended with result expressions (I1, ..., In) and value definitions
val (x1, ..., xn) = M ; N. Single names in results and value definitions are also
included as they can be expressed as tuples of length 1.

For the sake of the following explanation, we assume different alphabets for
synchronous and asynchronous functions. We let Is range over identifiers whose
final selector is a synchronous function, whereas Ia ranges over identifiers whose
final selector is an asynchronous function. In practice, we can distinguish between
synchronous and asynchronous functions also by means of a type system, so that
different alphabets are not required.

Our continuation passing transform for terms is expressed as a function TC
which takes a term in the source language and a name representing a continuation
as arguments, mapping these to a term in object-based join calculus. It makes
use of a helper function TD which maps a definition in the source language
to one in object-based join calculus. To emphasize the distinction between the
transforms TC, TD and their syntactic expression arguments, we write syntactic
expressions in [[ ]] brackets. The transforms are defined as follows.

TC[[ val (x̃) = M ; N ]]k = def k’ (x̃) = TC[[ N ]]k ; TC[[ M ]]k’
TC[[ (I1, ..., In) ]]k = k(I1, ..., In)
TC[[ Is(J1, ..., Jn) ]]k = Is(J1, ..., Jn, k)
TC[[ Ia(J1, ..., Jn) ]]k = Ia(J1, ..., Jn)
TC[[ def D ; M ]]k = def TD[[ D ]] ; TC[[ M ]]k

TD[[ L = M ]] = TC[[ L ]]k’ = TC[[ M ]]k’
TD[[ D, D’ ]] = TD[[ D ]], TD[[ D’ ]]
TD[[ ε ]] = ε
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Here, the k’ in the first equations for TC and TD represent fresh continuation
names.

The original paper on join [15] defines a different contination passing trans-
form. That transform allows several functions in a join pattern to carry results.
Consequently, in the body of a function it has to be specified to which of the
functions of a left hand side a result should be returned to. The advantage of
this approach is that it simplifies the implementation of rendevouz situations
like the synchronous channel of Section 5. The disadvantage is a more complex
construct for function returns.

Structured Terms In Silk, the function part and arguments of a function ap-
plication can be arbitrary terms, whereas join calculus admits only identifiers.
Terms as function arguments can be expanded out by introducing names for
intermediate results.

M (N1, ...., Nk) ⇒ val x = M; val y1 = N1; ... val yk = Nk; x(y1,...,yk)

The resulting expression can be mapped into join calculus by applying the con-
tinuation passing transform TC. The same principle is also applied in other si-
tuations where structured terms appear yet only identifiers are supported. E.g.:

(M1, ...., Mk) ⇒ val x1 = M1; ... val xk = Mk; (x1,...,xk)
M.f ⇒ val x = M; x.f

We assume here that names in the expanded term which are not present in the
original source term are fresh.

8 Conclusion and Related Work

The first five sections of this paper have shown how a large variety of program
constructs can be modelled as functional nets. The last two sections have shown
how functional nets themselves can be expressed in object-based join calculus.
Taken together, these steps constitute a reductionistic approach, where a large
body of notations and patterns of programs is to be distilled into a minimal
kernel. The reduction to essentials is useful since it helps clarify the meaning of
derived program constructs and the interactions between them.

Ever since the inception of Lisp [26] and Landin’s ISWIM [25], functional
programming has pioneered the idea of developing programming languages from
calculi. Since then, there has been an extremely large body of work which aims to
emulate the FP approach in a more general setting. One strand of work has devi-
sed extensions of lambda calculus with state [13,34,36,28,3] or non-determinism
and concurrency [7,12,9]. Another strand of work has been designed concurrent
functional languages [19,33,2] based on some other operational semantics. Lan-
din’s programme has also been repeated in the concurrent programming field,
for instance with Occam and CSP [22], Pict [30] and π-calculus [27], or Oz and
its kernel [35].
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Our approach is closest to the work on join calculus [15,16,17,14]. Largely,
functional nets as described here constitute a simplification and streamlining
of the original treatment of join, with object-based join calculus and qualified
definitions being the main innovation.
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