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Abstract. Extending a subtyping-constraint-based type inference frame-
work with conditional constraints and rows yields a powerful type infe-
rence engine. We illustrate this claim by proposing solutions to three
delicate type inference problems: “accurate” pattern matchings, record
concatenation, and “dynamic” messages. Until now, known solutions re-
quired significantly different techniques; our theoretical contribution is
in using only a single (and simple) set of tools. On the practical side,
this allows all three problems to benefit from a common set of constraint
simplification techniques, leading to efficient solutions.

1 Introduction

Type inference is the task of examining a program which lacks some (or even all)
type annotations, and recovering enough type information to make it acceptable
by a type checker. Its original, and most obvious, application is to free the
programmer from the burden of manually providing these annotations, thus
making static typing a less dreary discipline. However, type inference has also
seen heavy use as a simple, modular way of formulating program analyses.

This paper presents a common solution to several seemingly unrelated type
inference problems, by unifying in a single type inference system several pre-
viously proposed techniques, namely: a simple framework for subtyping-constraint-
based type inference [15], conditional constraints inspired by Aiken, Wimmers
and Lakshman [2], and rows & la Rémy [1§].

Constraint-Based Type Inference

Subtyping is a partial order on types, defined so that an object of a subtype may
safely be supplied wherever an object of a supertype is expected. Type inference
in the presence of subtyping reflects this basic principle. Every time a piece
of data is passed from a producer to a consumer, the former’s output type is
required to be a subtype of the latter’s input type. This requirement is explicitly
recorded by creating a symbolic subtyping constraint between these types. Thus,
each potential data flow discovered in the program yields one constraint. This
fact allows viewing a constraint set as a directed approximation of the program’s
data flow graph — regardless of our particular definition of subtyping.

Various type inference systems based on subtyping constraints exist. One
may cite works by Aiken et al. [1 2, B], the present author [I6], [[5], Trifonov
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and Smith [22], as well as an abstract framework by Odersky, Sulzmann and
Wehr [12]. Related systems include set-based analysis [8] [6] and type inference
systems based on feature constraints [9, [10].

Conditional Constraints

In most constraint-based systems, the expression if ej then e; else ey may,

at best, be described by
a<a AN o<«

where «; stands for e;’s type, and « stands for the whole expression’s type.
This amounts to stating that “e;’s (resp. e2’s) value may become the whole
expression’s value”, regardless of the test’s outcome. A more precise description
— “if ep may evaluate to true (resp. false), then e;’s (resp es’s) value may
become the whole expression’s value” — may be given using natural conditional
constraints:

true<oag?a; <a A false<ag?as <«

Introducing tests into constraints allows keeping track of the program’s control
flow — that is, mirroring the way evaluation is affected by a test’s outcome, at
the level of types.

Conditional set expressions were introduced by Reynolds [2I] as a means
of solving set constraints involving strict type constructors and destructors.
Heintze [§] uses them to formulate an analysis which ignores “dead code”. He
also introduces case constraints, which allow ignoring the effect of a branch, in
a case construct, unless it is actually liable to be taken. Aiken, Wimmers and
Lakshman [2] use conditional types, together with intersection types, for this
purpose.

In the present paper, we suggest a single notion of conditional constraint,
which is comparable in expressive power to the above constructs, and lends itself
to a simple and efficient implementation. (A similar choice was made indepen-
dently by Fahndrich [5].) We emphasize its use as a way not only of introducing
control into types, but also of delaying type computations, thus introducing some
“laziness” into type inference.

Rows

Designing a type system for a programming language with records, or objects,
requires some way of expressing labelled products of types, where labels are
field or method names. Dually, if a programming language allows manipulating
structured data, then its type system shall likely require labelled sums, where
labels are names of data constructors.

Rémy [18] elegantly deals with both problems at once by introducing notation
to express denumerable, indexed families of types, called rows:

pu=a,f,...,00, ... la:T; p|OT
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(Here, T ranges over types, and a,b,... range over indices.) An unknown row
may be represented by a row variable, exactly as in the case of types. (By lack
of symbols, we shall not syntactically distinguish regular type variables and row
variables.) The term a : 7; p represents a row whose element at index a is 7,
and whose other elements are given by p. The term O7 stands for a row whose
element at any index is 7. These informal explanations are made precise via an
equational theory:

a:7q; (b:mp; p)=b:1; (a:7a; p)
or=a:T1; OT

For more details, we refer the reader to [18].

Rows offer a particularly straightforward way of describing operations which
treat all labels (except possibly a finite number thereof) uniformly. Because every
facility available at the level of types (e.g. constructors, constraints) can also be
made available at the level of rows, a description of what happens at the level
of a single label — written using types — can also be read as a description of the
whole operation — written using rows. This interesting point will be developed
further in the paper.

Putting It All Together

Our point is to show that the combination of the three concepts discussed above
yields a very expressive system, which allows type inference for a number of
advanced language features. Among these, “accurate” pattern matching con-
structs, record concatenation, and “dynamic” messages will be discussed in this
paper. Our system allows performing type inference for all of these features at
once. Furthermore, efficiency issues concerning constraint-based type inference
systems have already been studied [5, [15]. This existing knowledge benefits our
system, which may thus be used to efficiently perform type inference for all of
the above features.

In this paper, we focus on applications of our type system, i.e. we show how
it allows solving each of the problems mentioned above. Theoretical aspects of
constraint solving are discussed in [15, [7]. Furthermore, a robust prototype
implementation is publicly available [14]. We do not prove that the types given
to the three problematic operations discussed in this paper are sound, but we
believe this is a straightforward task.

The paper is organized as follows. Section [ gives a brief technical overview
of the type system, focusing on the notion of constrained type scheme, which
should be enough to gain an understanding of the paper. Sections 3, [ and El
discuss type inference for “accurate” pattern matchings, record concatenation,
and “dynamic” messages, respectively, within our system. Section [B sums up
our contribution, then briefly discusses future research topics. Appendix [Al gives
some more technical details, including the system’s type inference rules. Lastly,
Appendix [B] gives several examples, which show what inferred types look like in
practice.
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2 System’s Overview

The programming language considered throughout the paper is a call-by-value
A-calculus with let-polymorphism, i.e. essentially core ML.

ex=1a,y,...| Ar.e| (ee) | X,Y,...|let X =€ in e

The type algebra needed to deal with such a core language is simple. The set
of ground terms contains all regular trees built over L, T (with arity 0) and —
(with arity 2). It is equipped with a straightforward subtyping relationship [I5],
denoted <, which makes it a lattice. It is the logical model in which subtyping
constraints are interpreted.

Symbols, type variables, types and constraints are defined as follows:

su=1]|—=|T vi=a,f,...
To=v|LjTt—=7]|T cu=7<T
| s<ov?r<rT

A ground substitution ¢ is a map from type variables to ground terms. A con-
straint of the form 7 < 75, which reads “m; must be a subtype of 7", is satisfied
by ¢ if and only if ¢(m1) < ¢(72). A constraint of the form s < a?m < 7,
which reads “if a exceeds s, then 71 must be a subtype of 757, is satisfied by ¢ if
and only if s <gs head(¢(a)) implies ¢(m1) < ¢(72), where head maps a ground
term to its head constructor, and <g is the expected ordering over symbols. A
constraint set C is satisfied by ¢ if and only if all of its elements are.
A type scheme is of the form

oc:=VC. 1

where 7 is a type and C' is a constraint set, which restricts the set of ¢’s ground
instances. Indeed, the latter, which we call o’s denotation, is defined as

{T’; dp ¢ satisfies C A ¢(7) < T/}

Because all of a type scheme’s variables are universally quantified, we will usually
omit the V quantifier and simply write “7 where C”.

Of course, the type algebra given above is very much simplified. In gene-
ral, the system allows defining more type constructors, separating symbols (and
terms) into kinds, and making use of rows. (A full definition — without rows — ap-
pears in [I7].) However, for presentation’s sake, we will introduce these features
only step by step.

The core programming language described above is also limited. To extend it,
we will define new primitive operations, equipped with an operational semantics
and an appropriate type scheme. However, no extension to the type system —
e.g. in the form of new typing rules — will be made. This explains why we do
not further describe the system itself. (Some details are given in Appendix [Al)
Really, all this paper is about is writing expressive constrained type schemes.
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3 Accurate Analysis of Pattern Matchings

When faced with a pattern matching construct, most existing type inference
systems adopt a simple, conservative approach: assuming that each branch may
be taken, they let it contribute to the whole expression’s type. A more accurate
system should use types to prove that certain branches cannot be taken, and
prevent them from contributing.

In this section, we describe such a system. The essential idea — introducing
a conditional construct at the level of types — is due to [8, 2]. Some novelty
resides in our two-step presentation, which we believe helps isolate independent
concepts. First, we consider the case where only one data constructor exists.
Then, we easily move to the general case, by enriching the type algebra with
TOWS.

3.1 The Basic Case
We assume the language allows building and accessing tagged values.
e:=...|Pre|Pre!

A single data constructor, Pre, allows building tagged values, while the destruc-
tor Pre~! allows accessing their contents. This relationship is expressed by the
following reduction rule:

Pre ! w; (Prevy) reduces to (v;vs)

The rule states that Pre™! first takes the tag off the value vo, then passes it to
the function v.

At the level of types, we introduce a (unary) variant type constructor [-].
Also, we establish a distinction between so-called “regular types,” written 7, and
“field types,” written ¢.

Ti=o,0,7,... | L] T|7—=71|[¢]
¢ = @,,... | Abs | Pre T | Any

A subtype ordering over field types is defined straightforwardly: Abs is its least
element, Any is its greatest, and Pre is a covariant type constructor.
The data constructor Pre is given the following type scheme:

Pre: a — [Pre a]

Notice that there is no way of building a value of type [Abs]. Thus, if an ex-
pression has this type, then it must diverge. This explains our choice of names.
If an expression has type [Abs], then its value must be “absent”; if it has type
[Pre 7], then some value of type 7 may be “present”.
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The data destructor Pre~! is described as follows:

ia—=pB) = el =
where ¢ < Pre «
Pre < p?7p <7y

Pre

The conditional constraint allows (Pre~!e; es) to receive type L when e has
type [Abs], reflecting the fact that Pre~! isn’t invoked until e, produces some
value. Indeed, as long as ¢ equals Abs, the constraint is vacuously satisfied, so
~ is unconstrained and assumes its most precise value, namely 1. However, as
soon as Pre < ¢ holds, 8 < v must be satisfied as well. Then, Pre~!’s type
becomes equivalent to (o — () — [Pre o] — (3, which is its usual ML type.

3.2 The General Case
We now move to a language with a denumerable set of data constructors.
ex=...| K| K !|close

(We let K, L, ... stand for data constructors.) An expression may be tagged,
as before, by applying a data constructor to it. Accessing tagged values beco-
mes slightly more complex, because multiple tags exist. The semantics of the
elementary data destructor, K ', is given by the following reduction rules:

K1y vq (K wvs) reduces to (v1v3)

K~y vs (L v3) reduces to (vy (Lwvs)) when K # L
According to these rules, if the value v carries the expected tag, then it is passed
to the function v;. Otherwise, the value — still carrying its tag — is passed to the
function vy. Lastly, a special value, close, is added to the language, but no
additional reduction rule is defined for it.

How do we modify our type algebra to accommodate multiple data construc-

tors? In Section Bl we used field types to encode information about a tagged
value’s presence or absence. Here, we need exactly the same information, but

this time about every tag. So, we need to manipulate a family of field types,
indexed by tags. To do so, we add one layer to the type algebra: rows of field

types.
Ti=o,0,7...|L|T|7—=71]|[p]
pu=@,...|K:¢;p|0e
¢ =@,1,... | Abs | Pre 7 | Any
We can now extend the previous section’s proposal, as follows:
K :a — [K :Pre a; OAbs]
K™':(a— B) = ([K:Abs; ] =) = [K : ¢ ¥] =
where ¢ < Pre «
Pre <78 <7y
close: [OAbs] — L
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K~’s type scheme involves the same constraints as in the basic case. Using a
single row variable, namely 1, in two distinct positions allows expressing the fact
that values carrying any tag other than K shall be passed unmodified to K ~1’s
second argument.

close’s argument type is [OAbs ], which prevents it from ever being invoked.
This accords with the fact that close does not have an associated reduction
rule. It plays the role of a function defined by zero cases.

This system offers extensible pattern matchings: k-ary case constructs may
be written using k£ nested destructor applications and close, and receive the
desired, accurate type. Thus, no specific language construct or type inference
rule is needed to deal with them.

4 Record Concatenation

Static typing for record operations is a widely studied problem [4l [13]. Com-
mon operations include selection, extension, restriction, and concatenation. The
latter comes in two flavors: symmetric and asymmetric. The former requires its
arguments to have disjoint sets of fields, whereas the latter gives precedence to
the second one when a conflict occurs.

Of these operations, concatenation is probably the most difficult to deal
with, because its behavior varies according to the presence or absence of each
field in its two arguments. This has led many authors to restrict their attention
to type checking, and to not address the issue of type inference [7]. An inference
algorithm for asymmetric concatenation was suggested by Wand [23]. He uses
disjunctions of constraints, however, which gives his system exponential com-
plexity. Rémy [19] suggests an encoding of concatenation into A-abstraction and
record extension, whence an inference algorithm may be derived. Unfortunately,
its power is somewhat decreased by subtle interactions with ML’s restricted poly-
morphism; furthermore, the encoding is exposed to the user. In later work [20],
Rémy suggests a direct, constraint-based algorithm, which involves a special
form of constraints. Our approach is inspired from this work, but re-formulated
in terms of conditional constraints, thus showing that no ad hoc construct is
necessary.

Again, our presentation is in two steps. The basic case, where records only
have one field, is tackled using subtyping and conditional constraints. Then, rows
allow us to easily transfer our results to the case of multiple fields.

4.1 The Basic Case

We assume a language equipped with one-field records, whose unique field may
be either “absent” or “present”. More precisely, we assume a constant data con-
structor Abs, and a unary data constructor Pre; a “record” is a value built with
one of these constructors. A data destructor, Pre™!, allows accessing the contents
of a non-empty record. Lastly, the language offers asymmetric and symmetric
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concatenation primitives, written @ and @QQ, respectively.
e:=...|Abs |Pre|Pre”! | @ | @Q

The relationship between record creation and record access is expressed by a
simple reduction rule:

Pre ! (Prev) reducesto v
The semantics of asymmetric record concatenation is given as follows:

v1 @Abs reduces to vy

v] @ (Prewvy) reduces to Prews

(In each of these rules, the value v; is required to be a record.) Lastly, symmetric
concatenation is defined by

Abs @@ vy reduces to  wvg
v1 Q@ Abs reduces to v

(In these two rules, v; and vy are required to be records.)

The construction of our type algebra is similar to the one performed in Sec-
tion Bl We introduce a (unary) record type constructor, as well as a distinction
between regular types and field types:

Tio=a,0,7,... | L|T|7—71|{¢}
¢ = ,,...|Bot | Abs | Pre 7 | Either 7 | Any

Let us explain, step by step, our definition of field types. Our first, natural step
is to introduce type constructors Abs and Pre, which allow describing values
built with the data constructors Abs and Pre. The former is a constant type
constructor, while the latter is unary and covariant.

Many type systems for record languages define Pre 7 to be a subtype of
Abs. This allows a record whose field is present to pretend it is not, leading
to a classic theory of records whose fields may be “forgotten” via subtyping.
However, when the language offers record concatenation, such a definition isn’t
appropriate. Why? Concatenation — asymmetric or symmetric — involves a choice
between two reduction rules, which is performed by matching one, or both, of the
arguments against the data constructors Abs and Pre. If, at the level of types,
we allow a non-empty record to masquerade as an empty one, then it becomes
impossible, based on the arguments’ types, to find out which rule applies, and
to determine the type of the operation’s result. In summary, in the presence of
record concatenation, no subtyping relationship must exist between Pre 7 and
Abs. (This problem is well described — although not solved — in [4].)

This leads us to making Abs and Pre incomparable. Once this choice has been
made, completing the definition of field types is rather straightforward. Because
our system requires type constructors to form a lattice, we define a least element
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Bot, and a greatest element Any. Lastly, we introduce a unary, covariant type
constructor, Either, which we define as the least upper bound of Abs and Pre,
so that AbsU(Pre 7) equals Either 7. This optional refinement allows us to keep
track of a field’s type, even when its presence is not ascertained. The lattice of
field types is shown in figure [T on page

Any

|

Either 7

Abs Pre T
Bo

7

Fig. 1. The lattice of record field types

Let us now assign types to the primitive operations offered by the language.
Record creation and access receive their usual types:

Abs : {Abs}
Pre: o — {Pre a}
Pre !: {Prea} — a

There remains to come up with correct, precise types for both flavors of record
concatenation. The key idea is simple. As shown by its operational semantics,
(either flavor of) record concatenation is really a function defined by cases over
the data constructors Abs and Pre — and Section[3 has shown how to accurately
describe such a function. Let us begin, then, with asymmetric concatenation:

Q: {p1} = {p2} = {p3}
where o < Either ap

Abs < 2 71 < 3
Pre < 9 ?Pre as < (3

Clearly, each conditional constraint mirrors one of the reduction rules. In the
second conditional constraint, we assume as is the type of the second record’s
field — if it has one. The first subtyping constraint represents this assumption.
Notice that we use Pre aq, rather than o, as the second branch’s result type;
this is strictly more precise, because po may be of the form Either as.
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Lastly, we turn to symmetric concatenation:

QQ: {p1} = {2} = {ps}
where Abs < 1 79 < @3
Abs < o 71 < w3
Pre < 1 7y < Abs
Pre < 371 < Abs

Again, each of the first two constraints mirrors a reduction rule. The last two
constraints disallow the case where both arguments are non-empty records. (The
careful reader will notice that any one of these two constraints would in fact
suffice; both are kept for symmetry.)

In both cases, the operation’s description in terms of constraints closely re-
sembles its operational definition. Automatically deriving the former from the
latter seems possible; this is an area for future research.

4.2 The General Case

We now move to a language with a denumerable set of record labels, written
I, m, etc. The language allows creating the empty record, as well as any one-
field record; it also offers selection and concatenation operations. Extension and
restriction can be easily added, if desired; we shall dispense with them.

ex=g|{l=e}|el]|Q|QQ

We do not give the language’s semantics, which should hopefully be clear enough.

At the level of types, we again introduce rows of field types, denoted by p.
Furthermore, we introduce rows of regular types, denoted by p. Lastly, we lift
the five field type constructors to the level of rows.

Tuo=a,0,7,... | L|T|7—=71|{p}
¢ :=,1,...|Bot | Abs | Pre 7 | Either 7 | Any
ou=a,B,7y,...|l:71; 0| OT
pu=p,b,...|1:¢; p|Op|Bot | Abs | Pre o | Either o | Any
This allows writing complex constraints between rows, such as ¢ < Pre «, where

o and « are row variables. A constraint between rows stands for an infinite family
of constraints between types, obtained component-wise. That is,

(1:¢; ¢")<Pre(l:d'; a”) stands for (¢ <Prea’)A (¢"” <Prea”)

We may now give types to the primitive record operations. Creation and
selection are easily dealt with:
@ : {OAbs}
{l="}:a— {l:Pre a; OAbs}
.l :{l:Pre o; OAny} — «
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Interestingly, the types of both concatenation operations are unchanged from the
previous section — at least, syntactically. (For space reasons, we do not repeat
them here.) A subtle difference lies in the fact that all variables involved must
now be read as row variables, rather than as type variables. In short, the previous
section exhibited constraints which describe concatenation, at the level of a single
record field; here, the row machinery allows us to replicate these constraints over
an infinite set of labels. This increase in power comes almost for free: it does not
add any complexity to our notion of subtyping.

5 Dynamic Messages

So-called “dynamic” messages have recently received new attention in the static
typing community. Bugliesi and Crafa [3] propose a higher-order type system
which accounts for first-class messages. Nishimura [11] tackles the issue of type
inference and suggests a second-order system & la Ohori [13]. Miiller and Nishi-
mura [I0] propose a simplified approach, based on an extended feature logic.

The problem consists in performing type inference for an object-oriented lan-
guage where messages are first-class values, made up of a label and a parameter.
Here, we view objects as records of functions, and messages as tagged values.
(Better ways of modeling objects exist, but that is an independent issue.) Thus,
we consider a language with records and data constructors, as described in Sec-
tions B2land EE2. Furthermore, we let record labels and data constructors range
over a single name space, that of message labels. (To save space, we choose to deal
directly with the case of multiple message labels; however, our usual, two-step
presentation would still be possible.) Lastly, we define a primitive message-send
operation, written #, whose semantics is as follows:

#{m =wv1;...}(mvg) reducesto (vyvs)

In plain words, # examines its second argument, which must be some message
m with parameter vo. It then looks up the method named m in the receiver
object, and applies the method’s code, vy, to the message parameter.

In a language with “static” messages, a message-send operation may only
involve a constant message label. So, instead of a single message-send operation,
a family thereof, indexed by message labels, is provided. In fact, in our simple
model, these operations are definable within the language. The operation #m,
which allows sending the message m to some object o with parameter p, may be
defined as Ao.Ap.(o.m p). Then, type inference yields

#m : {m:Pre (o« = f); dAny} > a — [

Because the message label, m, is statically known, it may be explicitly mentioned
in the type scheme, making it easy to require the receiver object to carry an
appropriate method. In a language with “dynamic” messages, on the other hand,
m is no longer known. The problem thus appears more complex; it has, in fact,
sparked the development of special-purpose constraint languages [10]. Yet, the
machinery introduced so far in this paper suffices to solve it.
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Consider the partial application of the message send primitive # to some
record 7. It is a function which accepts some tagged value (mv), then invokes an
appropriate piece of code, selected according to the label m. This should ring a
bell — it is merely a form of pattern matching, which this paper has extensively
discussed already. Therefore, we propose

#:{pt =29l =8
where 1 < Pre «
Pre < ¢ 7y < Pre (a — 90)

(Here, all variables except @ are row variables.) The operation’s first (resp. se-
cond) argument is required to be an object (resp. a message), whose contents
(resp. possible values) are described by the row variable ¢ (resp. v). The first
constraint merely lets « stand for the message parameter’s type. The conditional
constraint, which involves two row terms, should again be understood as a family,
indexed by message labels, of conditional constraints between record field types.
The conditional constraint associated with some label m shall be triggered only
if ¢’s element at index m is of the form Pre _, i.e. only if the message’s label may
be m. When it is triggered, its right-hand side becomes active, with a three-fold
effect. First, ¢’s element at index m must be of the form Pre (- — _), i.e. the
receiver object must carry a method labeled m. Second, the method’s argument
type must be (a supertype of) a’s element at label m, i.e. the method must be
able to accept the message’s parameter. Third, the method’s result type must
be (a subtype of) 3, i.e. the whole operation’s result type must be (at least) the
join of all potentially invoked methods’ return types.

Our proposal shows that type inference for “dynamic” messages requires
no dedicated theoretical machinery. It also shows that “dynamic” messages are
naturally compatible with all operations on records, including concatenation —
a question which was left unanswered by Nishimura [11].

6 Conclusion

In this paper, we have advocated enriching an existing constraint-based type
inference framework [15] with rows [I8] and conditional constraints [2]. This
provides a single (and simple) solution to several difficult type inference pro-
blems, each of which seemed to require, until now, special forms of constraints.
From a practical point of view, it allows them to benefit from known constraint
simplification techniques [I7], leading to an efficient inference algorithm [T4].

We believe our system subsumes Rémy’s proposal for record concatena-
tion [20], as well as Miiller and Nishimura’s view of “dynamic” messages [10].
Aiken, Wimmers and Lakshman’s “soft” type system [2] is more precise than
ours, because it interprets constraints in a richer logical model, but otherwise
offers similar features. In fact, the ideas developed in this paper could have been
presented in the setting of BANE [5], or, more generally, of any system which
allows writing sufficiently expressive constrained type schemes.
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A  Rules

This appendix gives a short description of the system’s type inference rules
(Figure 2)). Even though only the core language is explicitly treated, these rules
are sufficient to deal with a full-featured programming language. Indeed, any
extra language construct may be viewed either as syntactic sugar, or as a new
primitive operation, which can be bound in an initial typing environment [5.
Also, note that these type inference rules use neither conditional constraints, nor
rows; these will come only from I5.

For simplicity, we distinguish identifiers bound by A, denoted z,vy,... from
those bound by let, denoted X,Y,... Furthermore, we expect A-identifiers to
be unique; that is, each A-identifier must be bound at most once in a given
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Fig. 2. Type inference rules

program. Lastly, in every expression of the form let X =e; in ey, we require
X to appear free within es. It would be easy to overcome these restrictions, at
the expense of heavier notation.

The rules are fairly straightforward. The main point of interest is the way
each application node produces a subtyping constraint. The only peculiarity is
in the way type environments are dealt with. The environment I', which appears
on the left of the turnstile, is a list of bindings of the form X : . Type schemes
are slightly more complex than initially shown in Section Bl They are, in fact,
of the form ¢ ::= VC. A = 7, where the context A is a set of bindings of the
form x : 7. The point of such a formulation is to obtain a system where no type
scheme has free type variables. This allows a simpler theoretical description of
constraint simplification.

As far as notation is concerned, (z : «) represents a context consisting of a
single entry, which binds z to a. A\ x is the context obtained by removing x’s
binding from A, if it exists. For the sake of readability, we have abused notation
slightly. In rule (ABS;), A(x) stands for the type associated with x in A, if A
contains a binding for x; it stands for T otherwise. In rule (App;), A; M Ay
represents the point-wise intersection of A; and As. That is, whenever z has
a binding in A; or As, its binding in A; M Ay is Aj(z) M Az(x). Because we
do not have intersection types, this expression should in fact be understood as
a fresh type variable, accompanied by an appropriate conjunction of subtyping
constraints.

The rules implicitly require every constraint set to admit at least one solution.
Constraint solving and simplification are described in [I5] [1I7].
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B Examples

Example 1. We define a function which reads field [ out of a record r, returning a
default value d if r has no such field, by setting extract = Ad.A\r.({l =d}@r).l.
In our system, extract’s inferred type is

extract:a — {l:p; v} —~

where ¢ < Either f3 1) < Either €
Abs < p?a <y Abs <9 7 Abs < Any
Pre < p?78 <% Pre < ¢ ?7Pre € < Any

The first constraint retrieves r.l’s type and names it 3, regardless of the field’s
presence. (If the field turns out to be absent, 8 will be unconstrained.) The left-
hand conditional constraints clearly specify the dependency between the field’s
presence and the function’s result.

The right-hand conditional constraints have tautologous conclusions — the-
refore, they are superfluous. They remain only because our current constraint
simplification algorithms are “lazy” and ignore any conditional constraints whose
condition has not yet been fulfilled. This problem could be fixed by implementing
slightly more aggressive simplification algorithms.

The type inferred for extract 0 {{ = 1} and extract 0 {m = 1} is int. Thus,
in many cases, one need not be aware of the complexity hidden in extract’s type.

Ezample 2. We assume given an object o, of the following type:

0:{ getText:Pre (unit — string); setText :Pre (string — unit);
select : Pre (int X int — unit); JAbs }

o may represent, for instance, an editable text field in a graphic user interface
system. Its methods allow programmatically getting and setting its contents, as
well as selecting a portion of text.

Next, we assume a list data structure, equipped with a simple iterator:

iter : (¢ — unit) —» « list — unit

The following expression creates a list of messages, and uses iter to send each of
them in turn to o:

iter (# o) [ setText “Hello!”; select (0,5)]

This expression is well-typed, because o contains appropriate methods to deal
with each of these messages, and because these methods return unit, as expected
by iter. The expression’s type is of course unit, iter’s return type.

Here is a similar expression, which involves a getText message:

iter (# o) [setText “Hello!”; getText ()]

This time, it is ill-typed. Indeed, sending a setText message to o produces a
result of type unit, while sending it a getText message produces a result of type
string. Thus, (# 0)’s result type must be T, the join of these types. This makes
(#0) an unacceptable argument for iter, since the latter expects a function
whose return type is unit.
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