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Abstract. This paper presents a new closure conversion algorithm for
simply-typed languages. We have have implemented the algorithm as
part of MLton, a whole-program compiler for Standard ML (SML).
MTLton first applies all functors and eliminates polymorphism by code du-
plication to produce a simply-typed program. MLton then performs clo-
sure conversion to produce a first-order, simply-typed program. In con-
trast to typical functional language implementations, MLton performs
most optimizations on the first-order language, after closure conversion.
There are two notable contributions of our work:

1. The translation uses a general flow-analysis framework which inclu-
des OCFA. The types in the target language fully capture the results
of the analysis. MLton uses the analysis to insert coercions to trans-
late between different representations of a closure to preserve type
correctness of the target language program.

2. The translation is practical. Experimental results over a range of
benchmarks including large real-world programs such as the compiler
itself and the ML-Kit [25] indicate that the compile-time cost of
flow analysis and closure conversion is extremely small, and that the
dispatches and coercions inserted by the algorithm are dynamically
infrequent.

1 Introduction

This paper presents a new closure conversion algorithm for simply-typed langu-
ages. We have implemented the algorithm as part of MLtod , a whole-program
compiler for Standard ML (SML). MLton first applies all functors and elimi-
nates polymorphism by code duplication to produce a simply-typed program.
MLton then performs closure conversion to produce a first-order, simply-typed
program. Unlike typical functional language implementations, MLton performs
most optimizations on the first-order language, after closure conversion. The
most important benefit of this approach is that numerous optimization techni-
ques developed for other first-order languages can be immediately applied. In
addition, a simply-typed intermediate language simplifies the overall structure
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of the compiler. Our experience with MLton indicates that simply-typed inter-
mediate languages are sufficiently expressive to efficiently compile higher-order
languages like Standard ML.

An immediate question that arises in pursuing this strategy concerns the
representation of closures. Closure conversion transforms a higher-order program
into a first-order one by representing each procedure with a tag identifying the
code to be executed (typically a code pointer) when the procedure is applied,
and an environment containing the values of the procedure’s free variables. The
code portion of a procedure is translated to take its environment as an extra
argument.

Like previous work on defunctionalization [19J3], the translation implements
closures as elements of a datatype, and dispatches at call-sites to the appropriate
code. We differ in that the datatypes in the target language express all proce-
dures that may be called at the same call-site as determined by flow analysis.
Consequently, the size of dispatches at calls is inversely related to the precision
of the analysis.

Using dispatches instead of code pointers to express function calls has two
important benefits: (1) the target language can remain simply-typed without the
need to introduce existential types [16], and (2) optimizations can use different
calling conventions for different procedures applied at the same call-site. Howe-
ver, if the simplicity and optimization opportunities afforded by using dispatches
are masked by the overhead of the dispatch itself, this strategy would be inferior
to one in which the code pointer is directly embedded within the closure record.
We show that the cost of dispatches for the benchmarks we have measured is a
small fraction of the benchmark’s overall execution time. We elaborate on these
issues in Sections [ and

Our approach extends the range of expressible flow analyses beyond that of
previous work [26] by inserting coercions in the target program that preserve
a closure’s meaning, but change its type. Using coercions, the translation ex-
presses higher-order flow information in the first-order target language in a form
verifiable by the type system. Since the results of flow analysis are completely
expressed in the types of the target program, ordinary optimizations performed
on the target automatically take advantage of flow information computed on
the source. In Section [, we show that representations can be chosen so that
coercions have no runtime cost.

Experimental results over a range of benchmarks including the compiler itself
(approximately 47K lines of SML code) and the ML Kit (approximately 75K
lines) indicate that the compile-time cost of flow analysis and closure conversion
is small, and that local optimizations can eliminate almost all inserted coercions.
Also, MLton often produces code significantly faster than the code produced by
Standard ML of New Jersey [1].

The remainder of the paper is structured as follows. Section 2] describes the
source and target languages for the closure converter. Section[3 defines the class
of flow analyses that the translation can use. Section [ presents the closure con-
version algorithm. A detailed example illustrating the algorithm is given in Sec-
tion [ Section [ describes MLton and presents experimental results. Sections [7]
presents related work and conclusions.
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2 Source and Target Languages

We illustrate our flow-directed closure conversion translation using the source
language shown on the left-hand side of Figure[ll. A program consists of a collec-
tion of datatype declarations followed by an expression. As in ML, a datatype
declaration defines a new sum type along with constructors to create and di-
scriminate among values of that type. The source language is a lambda calculus
core augmented by constructor application, case, tuple construction, selection
of tuple components, and exceptions. Exceptions are treated as elements of a
datatype. The source language is simply-typed, where types are either type con-
structors, arrow types, or tuple types. We omit the type rules and assume that
every expression and variable is annotated with its type. We write e : 7 to mean
that e has type 7. We write x : 7 to mean that variable x has type 7. We assume
that all bound variables in a program are distinct. We use Exp, Bind, Lam, App,
and Tuple to name the sets of specific occurrences of subterms of the forms e,
b,fnx=>e,y z,and (..., x, ...), respectively, in the given program (occur-
rences can be defined formally using paths or unique expression labels). TyCon
names the set of datatypes declared in a program.

Like the source language, the target language (see right-hand side of Figure[I])
is simply-typed, but without arrow types, since the target language does not
contain lambda expressions. A target language program is prefixed by a collection
of mutually recursive first-order functions, and function application explicitly
specifies the first-order function to be called.

Source Language Target Language
C € Con f € Func
t € Tycon Tu=1
w,x,y,z € Var | kT kL
r —_— P :=1let ... data ... in
| 7->7 let ... fun ... in e end
R end
P |: let data in e end data ::= datatype t = ... | Cof 7| ...
- u=f ey Ty ..) =
data ::= datatype t = ... | C'of 7| ... fuz o xun A v )=e
e =g T .
| let z=bin e end | letz=bineend
b . bu=ce
| fnw=>e BTN AR
| yz | Cy
| Cy | caseyof ... |Cz=>el ...
| caseyof ... | Cz=>el ... | (.'"’y"")
|« ; ) | #iy
| #i' y I | raisey
| raise y | e1 handle y => e2
| e1 handle y => ez
Fig. 1. Source and target languages.
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p € Env

p,x — p(x)
b= v plr— vpl,e— v/p

v € Value = (Lam X Env) + Value® + (Con x Value)
= Var — Value

pyfnw =>e— <fn w => e7p|FV(fn w => e)>

p(y) = (fn w => ¢,p')

plw e pl2)], e > v

pylet x =bin eend — v/p

pb—=p
p,let z=bin eend — p

Py 2

0, Cy—(C,(p(y)))

py) =(Civ) plz—v]e=
p,caseyof ... |Cz=>el| ...—
ply) =(C,v) plz—vle=p
p,caseyof ... | Cz=>el ...—p
Gy, )= (G, ply), -0
) = (oo viy o)
p,#i Yy — v;
p,raise y = [p(y)]
Py el v
p, e1 handle y => ex — v
p,er = [n]  ply— ) ez = v

p, e1 handle y => ex — 12

Fig. 2. Source language semantics.

We specify the source language semantics via the inductively defined relations
in Figure 2l For example, expression evaluation defined via the relation written
p, e — v/p, is pronounced “in environment p, expression e evaluates either to
value v or an exception packet p.” In this regard, the semantics of exceptions
is similar to the presentation given in [I5]. We write [v] to denote an exception
packet containing the value v. A value is either a closure, a tuple of values, or a
value built by application of a datatype constructor. The semantic rules for the

target language are identical except for the rule for function application:

.. 2= p(yi)

ye=v/p

p7f("" Yis

)=

where fun f(..., x;, ..

)= u/p

e is a function declaration in the program.
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3 Flow Analysis

Our flow analysis is a standard monovariant analysis that uses abstract values
to approximate sets of exact values:

a € AVal = TyCon+ P(Lam) + AVal*

An abstract value may either be a Tycon, which represents all constructed values
of that type, a set of A-occurrences, which represents a set of closures, or a
sequence of abstract values, which represents a set of tuples.

Definition 1. An abstract value a is consistent with a type T if and only if one
of the following holds:

1.a=tandT=1.
2. a€P(Lam), T=m7 => To, and for oll f € a, f: 11 => T5.
3. a=(..,ai ...), T=... T, * ..., a; is consistent with T; for all i.

We define our flow analysis as a type-respecting [12] function from variables,
constructors, and exception packets to abstract values in the program.

Definition 2. A flow is a function F : (Var + Con + {packet}) — AVal such
that

1. For allx in P, if x : T then F(x) is consistent with 7.
2. For all C in P, if C carries values of type T then F(C) is consistent with 7.

Informally, F'(z) conservatively approximates the set of values that z may take
on at runtime. Similarly, F(C) over-approximates the set of values to which C
may be applied at runtime. The special token packet models exception values;
all exception values are collected into the abstract value F(packet).

To formally specify the meaning of an analysis, we define a pair of relations by
mutual induction. The first, between environments and flows (p C F'), describes
when an environment is approximated by the flow.

p C F if for all x € dom(p), p(x) Cp F(x)

The second relation, between values and abstract values (v Cp a), describes
when a value is approximated by an abstract value (relative to a flow).

1. Cwv Cp tif Cis a constructor associated with datatype ¢, and v Cp F(C).
2. (oo, vy . )ER (., agy ... ifv; EF a; for all 4.
3. (fnx=>e,p)Craiffnx=>ec€aand pC F.

Figure B defines a collection of safety constraints such that any flow meeting
them will conservatively approximate the runtime behavior of the program. We
use the following partial order on abstract values:

Definition 3. a > d’ if and only if
—a=t=ad for somet € TyCon,
— a2 d, where a,a’ € P(Lam), or
—a=(.., a, ...),d =(..,al, ...)and a; > a} for all i.

79
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Theorem 1. If F is safe and p C F then

— if p,e— v then v Cp F(last(e)).
— if p, e = [v] then v Cp F(packet).
if p,b—= v and x =be€ P then v Cp F(x).
if p,b— [v] then v Cp F(packet).

Proof. By induction on p,e < v and p,b— v O

Definition 4. The last variable of an expression, which yields the expression’s
value,
is defined as follows:

last(x) =z
last(let x = b in e end) = last(e)

Definition 5. A flow F is safe if and only if, for allz =0 in P,

~

if b is e, then F(x) = F(last(e)).
if b is fny => e, then F(x) > {fn y => e}.
3. ifbisy z, then for all fn w => e € F(y),
a) F(w) > F(z), and

b) F(x) > F(last(e))

if bis C y, then F(C) > F(y).
ifbisx=caseyof ... | C; z; =>e; | ..., then for all i,

a) F(z)=F(C;), and

b) F(x) > F(last(e;))
ifbis Coooy yiy ...), then F(z) = (..., F(y), ...).
ifbis#iy and F(y) = (..., ai, ...) then F(x) = a;.
if b is raise y then F(packet) > Fy.
if b is e1 handle z => ex then F(z) > F(packet), F(z) > F(last(e1)),
and F(x) > F(last(e2)).

]

Si

© N>

Fig. 3. Safety constraints on flows.

The constraints are standard for a monovariant control-flow analysis [917]
with the following two exceptions. First, rule 4 merges all arguments to a con-
structor. This is to avoid introducing recursive coercions, and to reduce the
number of coercions performed at runtime. Second, we use “=" instead of “>”
in some flow constraints to simplify the specification of the translation, although
it is straightforward to incorporate the extra generality in practice. One can also
prove that for any program, there is a minimum safe flow; this corresponds to the
usual 0CFA. Another example of a safe flow is the unification-based flow analysis
described by Henglein [11] and used by Tolmach and Oliva [26]. We can view
this analysis as adhering to the safety constraints in Figure 3 with containment
(>) replaced by equality in the rules.
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4 Closure Conversion
Given a safe flow F' for the following source program:
let ...(datatypet= ... | Cof 7| ...)... in eend

the closure conversion algorithm produces the following target program:

let datatype t= ... | C of T(F(CO))I ...

datatype T (L) | C(L, fnxz =>e)of (... * T(F(y;)) * ...)|
in let
fun N(fnz =>e€)(r, ) =let ... y; =#i 7 ... in [e] end
in [¢]
end
end

The translation inserts one datatype declaration for each set L that appears in
the range of F', with one constructor for each A-expression in L. We write 7 (L)
to denote the new datatype for L and C(L, fn x => e) to denote the name of the
constructor corresponding to fn x => e € L. The constructor’s argument has the
type of the tuple of free variables of fn x => e, that is (..., ¥;,...). We extend T
to abstract values by defining 7(¢) =t and T((..., a;, ...)) =... * T(a;) * ...

The translation also creates one function declaration for each A-expression
that occurs in the source program. The name of the target language first-order
function for fn x => e is denoted by N (fn x => ¢). Each function extracts all
the free variables of the closure record passed as the first argument, and then
continues with the translated body.

The translation uses auxiliary functions [e] : Exp — FEzxp and [e], : Bind —
Bind, which appear in Figure 4. The interesting cases in the translation are for
A-expressions and application. Rule 2b builds a closure record by applying the
appropriate constructor to the tuple of the procedure’s free variables. Rule 2¢
translates an application to a dispatch on the closure record of the procedure
being applied. Because the safety constraints only require containment instead
of equality, the translation inserts coercions at program points where the flow
becomes less precise.

The coercion function X', defined in Figure @] changes the representation of a
value from a more precise to a less precise type. For example, the translation of
an application may require coercions at two points. First, if the abstract value
of the argument is more precise than the formal, a coercion is inserted to change
the argument’s type to the formal’s. Second, a coercion is required if the abstract
value of the result is more precise than the abstract value of variable to which
it becomes bound.
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1. a) [let 2 =b in e end] = let = = [b], in [e] end
b) [z] ==
2 ) [de =[]
b) [fnw=>¢e,=CC..,y, ...),
where C = C(F(x),fnw =>¢) and FV(fnw =>¢)=... y ....

¢) [y 2]« = case y of

.I é(F(y),fn w=>e)r = let 2 =X(z, F(2), F(w))
v=N(Enw=>e)(r, 2)
. /U, = X(v, F(last(e)), F(x))
end

where there is one branch for each fn w => e € F(y) and 2’, v, and v’ are
fresh.
d) [Cyle = 1et ¢y = X(y, F(y), F(C))
r=Cy
inr
end
where 3’ and r are fresh variables.
e) [caseyof ... | Cz=>el ..]Jo=
case y of

.|”C’z=> let r=[[€]]
1= X Fllast(e), F(x))
end

where r, ' are fresh variables.
0 [C..,y, . ) ]e=C.vy, ..0)
g) [#iyl.=#iy
h) [raise y], = raisey
i) [er handle z => e2], = let yi= [e1]
y2= X (y1, F(last(e1)), F(x))
in y2 end
handle z => let y3=e2
ya= X (y2, F(last(e2)), F(last(x)))
in y4 end

Fig. 4. Closure conversion of expressions.

4.1 Practical Issues

Although for a simple type system we must express coercions as a case expres-
sion with each arm simply changing the constructor (and the type) representing
the closure, it is easy to pick an underlying representation for these datatypes
so that no machine code actually has to be generated. In terms of the under-
lying memory objects, all coercions are the identity. If these datatypes are all
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We define X : Var x AVal x AVal — Bind by cases on abstract values. (Note,
X (x,a,a’) is only defined when a < a’.)

1. if a = a’ then X(z,a,a’) = z.
2. X(z,(..., aiy ...), (..., a}, ...)) = let
Yy, = #i
y7/4 = X(yivaiaafi)

Z=C,y, )
in 2/
end
where 2, ..., v, v, ... are fresh variables.
3. X(z,L,L") = case x of

| C(Lyfnz =>e)r=>C(L,fnx =>¢€)r

where there is one branch for each fn z => e € L.

Fig. 5. The coercion function.

represented as a tag word (whose only function is to distinguish between the
summands forming the datatype) followed by some fixed representation of the
value being carried by that summand, then the only thing which might be chan-
ged by the coercion function is the tag word. It is thus easy to pick the tags so
that they also don’t change (for instance, use the address for the code of the
procedure). However, we do not do this in MLton. As shown in Section B dy-
namic counts indicate coercions are so rare that their cost is unimportant. The
advantage of allowing the coercions to change representations is that one can
choose specialized representations for environment records.

The closure conversion algorithm is designed to be safe-for-space [I]. Note
that each closure record is destructed at the beginning of each first order func-
tion. The alternative of replacing each reference to a closed-over variable with a
selection from the closure record violates space safety because it keeps the entire
record alive. Another possible violation is rule 2¢, which can turn a tail-call into
a non-tail-call by requiring a coercion after the call. However, since each such
coercion corresponds to a step up the lattice of abstract values which is of finite
height, the space usage of the program can only increase by a constant factor.

Finally, it is possible to share all of the dispatches generated for calls to a
given set of A-expressions. However, MLton does not do this, since it has not
been necessary for performance.
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5 Example

Consider the example in Figure

let £ = fna =>fnb=>a datatype t1 = C1 of unit (* fn a *)
g=fnc=>fnd=>4d datatype t2 = C2 of int (% fn b *)
h = case ... of datatype t3 = C3 of unit (* fn c *)
...=> f datatype t4 = C4 of unit (% fn d *)
> g datatype t5 = C5 of unit (x fn a € F(h) *)
m=nh 13 | C6 of unit(* fn ¢ € F(h) *)
_=m7 datatype t6 = C7 of int (* fn b € F(m) *)
(a) Source program | C8 of unit (* fn d € F(m) *)
fun F (r, a) = C2 a (x fn a *)
fun F’ (r, b) =
let a = #1 r in a end (* code: fn b *)
fun G (r, c) =C4 O (* code: fn c *)
F(£) = {fn a} fun G’ (r, d) =d (* code: fn d *)
F(g) = {fn c} val f = C10
F() ={fna,fnc} val g = C30
F(m) = {fn b, fn d} val h = case ... of
...> case f of C1r = C5 r
(b) Flow ...=> case gof C3 r = C6 r
val m = case h of
C5 r =(case F (r, 13) of C2 r = C7 r)
| C6 r =(case G (r, 13) of C4 r = C8 r)
val _ = case m of
C7Tr=F (r, 7)
| C8r = G (r, 7)
(c) Target program
Fig. 6. Example.

The source appears in part (a), the OCFA flow is in part (b), and the result
of closure conversion appears in part (c). We use fn a to represent the entire \-
expression beginning with fn a. Consider the translation of the last expression,
the call to m. Since m may be bound to a procedure corresponding to fn b or
fn d, the call must dispatch appropriately. For the expression which defines h,
each branch of the case-expression must coerce a procedure corresponding to
a known A-expression to one which is associated with an element of {fn a, fn
c}. In the expression defining m, both a dispatch and a coercion occur: first a
dispatch based on the A-expression which provides the code for the h is required.
Then, each arm of this case expression must coerce the result (a function with
known code) to one associated with either fn b or fn d.
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6 Experiments

We have have implemented the algorithm as part of MLton, a whole-program
compiler for Standard ML. MLton does not support separate compilation, and
takes advantage of whole program information in order to perform many opti-
mizations. Here, we give a brief overview of the relevant compiler passes and
intermediate languages. First, MLton translates the input SML program into
an explicitly-typed, polymorphic intermediate language (XML)[8]. XML does
not have any module level constructs. All functor applications are performed at
compile-time[6], and all uses of structures and signatures are eliminated by mo-
ving declarations to the top-level and appropriately renaming variables. Next,
MLton translates the XML to SXML (a simply-typed language) by monomor-
phisation, eliminating all uses of polymorphism by duplicating each polymorphic
expression for each monotype at which it is used. After monomorphisation, small
higher-order functions are duplicated; a size metric is used to prevent excessive
code growth. MLton then performs flow analysis as described in Section Blon the
resulting SXML, and closure converts procedures to FOL (a first-order simply-
typed language) via the algorithm described in Section @l After a series of opti-
mizations (e.g., inlining, tuple flattening, redundant argument elimination, and
loop invariant code motion), the FOL program is translated to a C program,
which is then compiled by gcc. Like [22], a trampoline is used to satisfy tail-
recursion. To reduce trampoline costs, multiple FOL procedures may reside in
the same C procedure; a dispatch on C procedure entry jumps to the appropriate
code [].

To demonstrate the practicality of our approach, we have measured its im-
pact on compile time and code size for benchmarks with sizes up to 75K lines.
Among the benchmarks, knuth-bendix, life, lexgen, mlyacc, and simple are
standard [1]; ratio-regions is integer intensive; tensor is floating-point inten-
sive, and count-graphs is mostly symbolidd. MLton is the compiler itself, and
kit is the ML-kit [25]24]. The benchmarks were executed on a 450 MHz Intel
Xeon with 1 GB of memory.

In Table [ we give the number of lines of SML for each benchmark, along
with compile times both under SML/NJ (version 110.9.1 and MLton. The
number of lines does not include approximately 8000 lines of basis library code
that MLton prefixes to each program. The compile time given for SML/NJ is the
time to batch compile the entire program. In order to improve the performance
of the code generated by SML/NJ, the entire program is wrapped in a local
declaration whose body performs an exportFn. For MLton, we give the total
compile time, the time taken by flow analysis and closure conversion, and the
percentage of compile time spent by gcc to compile the C code.

The flow analysis times are shorter than previous work [2/T0J4] would suggest,
for several reasons. First, the sets of abstract values are implemented using hash

% ratio-regions was written by Jeff Siskind (qobi@research.nj.nec.com), tensor

was written by Juan Jose Garcia Ripoll (worm@arrakis.es), and count-graphs was
written by Henry Cejtin (henry@clairv.com).

3 Except for the kit which is run under SML/NJ version 110.0.3 because 110.9.1
incorrectly rejects the kit as being ill-typed.
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consing and the binary operations (in particular set union) are cached to avoid
re-computation. Second, because of monomorphisation, running 0CFA on SXML
is equivalent to the polyvariant analysis given in [I2]. Thus, it is more precise
than OCFA performed directly on the (non-monomorphised) source alone, and
hence fewer set operations are performed. Third, the analysis only tracks higher-
order values. Finally, the analysis is less precise for datatypes than the usual
birthplace[l3] approach (see rules 4 and 5a in Figure [J). Also, unlike earlier
attempts to demonstrate the feasibility of 0CFA [2(]] which were limited to small
programs or intramodule analysis, our benchmarks confirm that flow analysis is
practical for programs even in excess of 50K lines.

MLton compile-times are longer than SML/NJ. However, note that the ratio
of MLton’s to SML/NJ’s compile-time does not increase as program size increa-
ses. We believe MLton’s compile-time is in practice linear. In fact, gcc is a major
component of MLton’s compile-time, especially on large programs. We expect a
native back-end to remove much of this time.

Table [ gives various dynamic counts for these benchmarks to quantify the
cost of closure conversion. To make the presentation tractable, the entries are
in millions per second of the running time of the program. Nonzero entries less
than .01 are written as 0. SXML Known and Unknown measure the number of
known and unknown procedure calls identified in the SXML program using only
syntactic heuristics [I]. FOL Known indicates the number of known procedure
calls remaining in the FOL program after flow analysis and all optimizations on
the FOL program have been performed. The difference between SXML and FOL
Known is due to inlining and code simplificaton. Dispatch indicates the number
of case expressions introduced in the FOL program to express procedure calls
where the flow set is not a singleton. Thus, the difference between Dispatch
and Unknown gives a rough measure of the effectiveness of flow analysis above
syntactic analyses in identifying the procedures applied at call-sites. Finally,

Table 1. Program sizes (lines) and compile times (seconds).

lines MLton
Program SML||SML/NJ Total‘Flow‘Convert‘gcc%
count-graphs 204 1.2 4.02| .01 .25 38%
kit 73489|| 1375.75(|2456.39| 1.34| 27.96| 82%
knuth-bendix | 606 2.7 6.55] .01 .32 47%
lexgen 1329 4.5|| 19.52| .03 78| 53%
life 161 .9 3.2] .01 16| 41%
MLton 47768 637.5|| 1672.0] 1.94| 33.84| 81%
mlyacc 7297 30.1|| 144.86| .10 2.34| 38%
ratio-regions| 627 2.2 6.22| .01 .35 34%
simple 935 4.7 34.11| .04 87| 54%
tensor 2120 9.7/ 10.12| .03 .32 30%
tsp 495 .8 3.56| .01 22| 30%
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Table 2. Dynamic counts (millions/second).

SXML FOL
Program Known\Unknown Known\Dispatch\Coerce
count-graphs 60.2 0 1.0 0 0
kit 13.1 11 5.8 .02 “0
knuth-bendix 28.8 “0|| 11.3 0 0
lexgen 63.4 2.68|| 154 "0 0
life 28.4 o|| 22.3 0 0
MLton 14.5 A48 5.2 .34 .01
mlyacc 37.5 .03|| 10.6 "0 0
ratio-regions| 119.4 0| 14.3 0 0
simple 34.2 .26 6.2 .26 0
tensor 140.6 "0 7.6 "0 0
tsp 34.5 "0 3.4 "0 0

Coerce indicates the number of coercions performed on closure tags to ensure
that the closure’s type adheres to the appropriate flow set.

For most benchmarks, monomorphisation, and aggressive syntactic inlining
make most calls known. However, for several of the benchmarks, there still remain
a significant number of unknown calls. Flow analysis uniformly helps in reducing
this number. Indeed, the number of dispatches caused by imprecision in the
analysis is always less than 5% of the number of calls executed. Notice also that
the number of coercions performed is zero for the majority of the benchmarks;
this means imprecision in the flow analysis rarely results in unwanted merging
of closures with different representations.

Table Bl gives runtime results for both SML/NJ and MLton. Of course, be-
cause the two systems have completely different compilation strategies, optimi-
zers, backends, and runtime systems, these numbers do not isolate the perfor-
mance of our closure conversion algorithm. However, they certainly demonstrate
its feasibility.

Table 3. Runtimes (in seconds) and ratio of SML/NJ to MLton.

lProgram [SML/NJ (sec) [MLton (sec) [NJ/MLtonl
count-graphs 28.8 11.9 2.40
kit 27.5 30.9 .89
knuth-bendix 44.1 15.2 2.90
lexgen 52.7 31.8 1.66
life 51.5 54.2 .95
MLton 198.7 101.3 1.96
mlyacc 43.4 20.6 2.11
ratio-regions 122.5 18.9 6.48
simple 25.3 18.4 1.38
tensor 154.4 19.8 7.78
tsp 191.7 25.4 7.54
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7 Related Work and Conclusions

Closure conversion algorithms for untyped target languages have been explored
in detail [TJ21]. Algorithms that use a typed target language, however, must solve
the problem created when procedures of the same type differ in the number and
types of their free variables. Since closure conversion exposes the types of these
variables through an explicit environment record, procedures having the same
source-level type may compile to closures of different types. Minamide et al. [T6]
address this problem by defining a new type system for the target language that
uses an existential type to hide the environment component of a closure record
in the closure’s type, exposing the environment only at calls. Unfortunately, the
target language is more complex than the simply-typed A-calculus and makes
it difficult to express control-flow information. For example, the type system
prevents expressing optimizations that impose specialized calling conventions
for different closures applied at a given call-site.

An alternative to Minamide et al.’s solution was proposed by Bell et al. [3].
Their approach has the benefit of using a simply-typed target language, but
does not express control-flow information in the target program. Inspired by a
technique first described by Reynolds [19], they suggest representing closures
as members of a datatype, with one datatype for each different arrow type in
the source program. Tolmach and Oliva [26] extend Bell et al. by using a weak
monovariant flow analysis based on type inference [I1]. They refine the closure
datatypes so that there is one datatype for each equivalence class of procedures
as determined by unification. Although their approach does express flow ana-
lysis in a simply-typed target language, it is restricted to flow analyses based
on unification. We differ from these approaches by using datatype coercions to
produce a simply-typed target program and in our use of 0CFA.

Dimock et al. [5] describe a flow-directed representation analysis that can
be used to drive closure conversion optimizations. Flow information is encoded
in the type system through the use of intersection and union types. Like our
work, their system supports multiple closure representations in a strongly-typed
context. However, they support only a limited number of representation choices,
and rely critically on a more complex type system to express these choices. Our
work also uses flow information to make closure representation decisions, but
does so within a simply-typed A calculus.

Palsberg and O’Keefe[18| define a type system that accepts the same set
of programs as OCFA viewed as safety analysis. Their type system is based
on simple types, recursive types, and subtyping. Although they do not discuss
closure conversion, our coercions correspond closely to their use of subtyping.
By inserting coercions, we remove the need for subtyping in the target language,
and can use a simpler language based on simple types, sum types, and recursive
types.

Our work is also related to other compiler efforts based on typed intermediate
representations [23|[14]. Besides helping to verify the implementation of compi-
ler optimizations by detecting transformations that violate type safety, typed
intermediate languages expose representations (through types) useful for code
generation. For example, datatypes in the target language describe environment
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representations as determined by flow analysis on the source language. Types
therefore provide a useful bridge to communicate information across different
compiler passes.

The results of our flow-directed closure conversion translation in MLton de-

monstrate the following:

1. First-order simply-typed intermediate languages are an effective tool for
compilation of languages like ML.

2. The coercions and dispatches introduced by flow-directed closure conversion
have negligible runtime cost.

3. Contrary to folklore, OCFA can be implemented to have negligible compile-
time cost, even for large programs.
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