
Ready-Simulation Is Not Ready

to Express a Modular Refinement Relation

Françoise Bellegarde, Jacques Julliand, and Olga Kouchnarenko

LIFC, Univ. Franche-Comté, 16, route de Gray, 25030 Besançon Cedex France
{bellegar,julliand,kouchna}@lifc.univ-fcomte.fr,

http://lifc.univ-fcomte.fr

Abstract. The B method has been successfully used to specify many
industrial applications by refinement. Previously, we proposed enriching
the B event systems by formulating its dynamic properties in LTL. This
enables us to combine model-checking with theorem-proving verification
technologies. The model-checking of LTL formulae necessitates that the
B event system semantics is a transition system. In this paper, we express
the refinement relation by a relationship between transition systems. A
result of our study shows that this relation is a special kind of simula-
tion allowing us to exploit the partition of the reachable state space for
a modular verification of LTL formulae. The results of the paper allow
us to build a bridge between the above view of the refinement and the
notions of observability characterized as simulation relations by Milner,
van Glabbeek, Bloom and others. The refinement relation we define in
the paper is a ready-simulation generalization which is similar to the re-
fusal simulation of Ulidowsky. The way the relation is defined allows us
to obtain a compositionality result w.r.t. parallel composition operation.

For complex systems, it is important in practice to associate a design by
refinement with a design by a parallel composition of their components.
This refinement relation has two main applications:

– it allows the splitting of the refined transition system into modules;
– it allows the construction of complex systems by a parallel compo-

sition of components.

It makes sense to qualify the refinement relation as being modular.

1 Introduction

In this paper, we express the refinement semantics as a relation between transi-
tion systems because we want to associate the verification of LTL formulae in
the framework of a refinement design of reactive systems.

The B refinement method has been successfully used to specify many reac-
tive systems: case studies such as an elevator [2], an industrial automatism [3], a
steam-boiler case study [4], as well as industrial applications such as MÉTÉOR [7]
by Matra Transport International, and the SPECTRUM project [23] by GEC-
Marconi Avionics Limited.

T. Maibaum (Ed.): FASE2000, LNCS 1783, pp. 266–283, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Ready-Simulation Is Not Ready to Express a Modular Refinement Relation 267

The B refinement method [1, 6] is used to specify reactive systems by event
systems. In [12, 14], we propose to enrich this specification wiht dynamic prop-
erties formulated in the Linear Temporal Logic (LTL). We can then combine
model-checking with theorem proving techniques. For that the verification has
to take place both at the syntactic level for theorem proving and at the op-
erational level for the verification of LTL formulae by model-checking. At the
operational level, the specification is expressed with a transition system. At this
level, the refinement relates transition systems between themselves. In [14, 18],
we show that the refinement splits the refined transition system into modules.
This allows us to verify some LTL properties separately on each module and
to let what remains to be proved. For that, the refinement needs to be defined
between transition systems. Therefore, the refinement verification takes place
also at the operational level.

The results of the paper allow us to build a bridge between the above view
of the refinement and the notions of observability characterized as simulation
relations by Milner, van Glabbeek, Bloom and others.

We define the refinement relation as a simulation which allows us to exploit
a partition of the refined reachable state space. With such a partition we are
able to avoid the model-checking blow-up by verifying LTL formulae in a mod-
ular way [14]. Moreover, we want this refinement relation to be compositional
w.r.t. parallel composition through refinement. That is why we call “modular”
our refinement relation.

This paper is organized as follows. After giving preliminary notions in Sec-
tion 2, Section 3 defines the behavior semantics of the transition systems derived
from the B refinement design. Then, we define the transition system modular
refinement relation in Section 4. Its expressiveness is studied in Sections 5 and 6.
In Section 7, we illustrate the use of our framework on the example of the robot
carrying parts from an arrival device towards two exit devices. Then, Section 8
explains how the refinement relation is used in the context of a verification tool
set which combines automatic-proof and model-checking technologies. We end
by some related works and some perspectives.

2 Preliminaries

In this paper we are concerned with a relationship between transitions systems
which is a binary relation on their sets of states. In this framework, a predicate
transformer is a function transforming sets of states into sets of states.

A transition systems is a pair 〈S,→〉, where S is a set of states and → is
a transition relation on S (→⊆ S × S).

Definition 1. (pre[ψ] and post[ψ] predicate transformers) Given a relation
ψ between two set of states S1 and S2 (ψ : S1×S2), we define pre[ψ] : 2S2×2S1

and post[ψ] : 2S1 × 2S2 by

268 Françoise Bellegarde, Jacques Julliand, and Olga Kouchnarenko

– pre[ψ] def= λX.{q1 ∈ S1 s.t. (∃q2 ∈ X s.t. q1ψq2)}
– post[ψ] def= λX.{q2 ∈ S2 s.t. (∃q1 ∈ X s.t. q1ψq2)}

So, for S′2 ⊆ S2, pre[ψ](S′2) represents the set of predecessors of the states of S′2
via the relation ψ, and, for S′1 ⊆ S1, post[ψ](S′1) represents the set of successors of
the states of S′1 via ψ. Some useful results concerning the pre and post predicate
transformers can be found in [22] as, for example, the two following propositions.

Proposition 1. For any relation ψ from a set S1 to a set S2 (ψ ⊆ S1 × S2),
we have:

– For any X1, X2 subsets of S2, pre[ψ](X1 ∪X2) = pre[ψ](X1) ∪ pre[ψ](X2).
– For any X1, X2 subsets of S1, post[ψ](X1∪X2) = post[ψ](X1)∪post[ψ](X2).

We adopt the following notations:

– We denote by IdS the identity function on 2S.
– We denote by α̃ the dual of a function α : 2S1 → 2S2 that is α̃ def= λX.α(X).
– We denote the composition of two relations ψ ⊆ S1 × S2 and φ ⊆ S2 × S3

by their juxtaposition ψ φ.
– We denote the composition of two predicate transformers α : X → Y and
β : Y → Z by β ◦ α : X → Z.

Proposition 2. Let be →⊆ S × S. Then pre[→2] = pre[→] ◦ pre[→].

We give hereafter the definition of Galois connections and some results about
them. More information can, e.g., be found in [19, 21].

Definition 2. (Galois connections) Let S1 and S2 be two sets of states. A
connection from 2S1 to 2S2 is a pair of monotonic functions (α, γ), where α :
2S1 → 2S2 and γ : 2S2 → 2S1 , such that IdS1 ⊆ γ ◦ α and α ◦ γ ⊆ IdS2 .

It is well-known that α and γ determine each other in a unique manner.
These characterizations allow obtaining in [16] a proposition showing the links
between the binary relation ψ from S2 to S1 and the connections from 2S2 to
2S1 in term of predicate transformers pre and post.

Proposition 3. (Connections generated by a binary relation on states)
If ψ ⊆ S1 × S2, then the pair (post[ψ], p̃re[ψ]) is a connection from 2S1 to 2S2,
and (pre[ψ], p̃ost[ψ]) is a connection from 2S2 to 2S1 .

3 Behavioral Semantics of Systems Derived from the B
Design

In this paper we look at the B refinement at the operational semantic level
since it splits the refined transition system into modules. This allows a modular
verification of some LTL properties.

Ready-Simulation Is Not Ready to Express a Modular Refinement Relation 269

We define an operational semantics of a B specification under the form of a
labeled transition system. We denote by S a set of states. We introduce a finite
set of variables V def= {x1, . . . , xn}. Let l be an injective function which allows
us to give values to the states as a conjunction of variable/value equalities. Let
q be a state, and v1, . . . , vn be values, then l(q) (l(q) holds in q) is defined by
x1 = v1 ∧ · · · ∧ xn = vn. Usually, to describe LTL formulae semantics, the set
of all the propositions holding in a state q is considered to be a label of q. We
consider one of them l(q) since, then, we know that a proposition P holds in q
by l(q) ⇒ P holds.

We call invariant a predicate I which holds on each state, and, as such,
formulates a safety property of the system. A specification in B always requires
such an invariant. A predicate I is an invariant of an interpreted transition
system iff ∀q ∈ S, l(q) ⇒ I.

Let Act def= {a, b, . . . } be a nonempty alphabet of interpreted actions. The
actions affect state variables. A labeled transition relation → (⊆ S × Act ×
S) is defined as a set of triples (q, a, q′) (written “q a→ q′”). The interpreted
transition system TS = 〈S,Act,→, l〉 has the state space S def= {q, q′, q1, . . . },
labeled transition relation →⊆ S×Act×S, and the state interpretation function
l.

The transition relation → can be extended on a sequence of transitions in
the standard way: q′ is reachable from q, written q′ ∈ (→)∗(q), (or there is a
path σ from q to q′) if there exist states q1, . . . , qn and transitions t1, . . . , tn−1

respectively labeled by a1, . . . , an−1 such that

(q =) q1
a1→ q2 . . .

an−1→ qn (= q′).

We note ΥTS(q) the set of the paths of the transition system TS beginning in
q. Given the path σ = q

a→ q′ b→ q′′ c→ . . . in ΥTS(q), we define its trace, note
tr(σ) by tr(σ) def= abc

Moreover, given a state q, any proposition P such that l(q) ⇒ P can be
used to verify a LTL formula along a path which contains q in its trace.

As usual, the inverse relation (→)−1 denotes the predecessor relation on
states, and we can say that q′ is reachable from q, q (→)∗ q′, iff q′

(
(→)∗

)−1
q′.

4 Modular Refinement Relation

In this section we consider two interpreted transition systems TS1=〈S1, Act1,→1

, l1〉 and TS2 = 〈S2, Act2,→2, l2〉 giving the operational semantics of two systems
at two levels of refinement. We say that TS2 is a refinement of TS1.

The syntactical requirements of the B refinement are expressed as follows:

1. The refinement introduces new actions, so Act1 ⊆ Act2.
2. The invariant I2, commonly called the gluing invariant (for instance, cf. [6]),

expresses how the variables from the two interpreted transition systems are
linked. More precisely, the invariant of the refined system is I2 ∧ I1.

270 Françoise Bellegarde, Jacques Julliand, and Olga Kouchnarenko

4.1 Modular Refinement as State Space Partition

We exploit the B refinement so that we can build a partition of the state space.

First, we define a binary relation µ ⊆ S2 × S1 allowing us to express the
relation between values of two consecutive interpreted transition systems.

Definition 3. (Glued states) The state q2 ∈ S2 is glued to q1 ∈ S1, written
as q2 µ q1, iff l(q2) ∧ I2 ⇒ l(q1).

q1

q2

q′
2

µ

µ

Fig. 1. State space partition idea

The glue relation µ allows us to define an equivalence relation ∼µ between states
of the second level transition system. Formally, two states q2 and q′2 of the TS2

are equivalent iff there exists a state q1 of TS1 s.t. q2 µ q1 and q′2 µ q1 (see
Figure 1). Indeed, we get an equivalence since giving two distinct states q2 and
q′2 we cannot have two distinct states q1 and q′1 satisfying the above implication.
When there are states of TS2 glued to the state q1 of TS1, the state q1 gives its
name q1 to an element of the partition.

Definition 4. (Equivalence class name) Let X be an equivalence class of
S2/∼µ . The state q1 ∈ S1 is the name of X iff, for a state q2 ∈ X, we have
q2 µ q1.

4.2 Modular Refinement as a Relation

In this section we consider the refinement of an interpreted transition system as
a simulation and we motivate it as a path set inclusion. Our purpose is to define
a refinement relation to be a simulation allowing us to exploit the partition of
the reachable state space for a modular verification of LTL formulae. For that,
we restrict µ into a relation ρ which relates a refined transition system to one of
its abstraction, and, we restrict ρ−1 into a relation ξ which relates a transition
system to one of its refinement. These relations are useful to distinguish some
elements of the partition of the state space.

This partition is used first, to prove an invariant of a module, and second, to
verify propositional components of a LTL formula which is verified on a module.

Ready-Simulation Is Not Ready to Express a Modular Refinement Relation 271

From a Refined Transition System to One of Its Abstraction Let us call
ρ a relation included into µ between the states of TS2 and TS1 which satisfies
the following requirements:

1. In order to describe the refinement, we keep the transitions of TS2 labeled
over Act1 but the new ones (from Act2 \Act1) introduced by the refinement
are considered as non observable τ moves. These τ moves hide the transitions
of the modules viewed as interpreted transition systems. Indeed, the transi-
tions of a module with state space S are the τ moves between the states of
S (cf. Figure 2).

q1

q′
1

τ

τ
τ

a

a

Fig. 2. Silent moves

2. In the above modules, it is certainly not desirable that τ moves take control
forever. So, we want no deadlock and no infinite path of τ moves.

Let Act1τ
def= Act1 ∪ {τ}. For each a ∈ Act1τ , we note q a=⇒ q′ when there

is n ≥ 0 such that q τna−→ q′. Intuitively, a transition a=⇒ allows us to absorb a
finite number of τ before the action a. Notice that Milner in [17] uses a=⇒ for
τnaτm−→ with n ,m ≥ 0 but we force m to be equal to 0. The reason is that the
occurrence of an action a determines the end of a path of a module. Notice that
all the paths of a module are finite ones.

Definition 5. Let TS1 = 〈S1, Act1,→1, l1〉 and TS2 = 〈S2, Act1τ ,→2, l2〉 be
respectively a transition system and its refinement. Let a be in Act1. The relation
ρ ⊆ S2×S1 is defined as the greatest binary relation included into µ and satisfying
the following clauses:

1. (strict transition refinement) (q2 ρ q1 ∧ q2 a→2 q
′
2) ⇒ (∃q′1 s.t. q1

a→1

q′1 ∧ q′2 ρ q′1)
2. (stuttering transition refinement)

(q2 ρ q1 ∧ q2 τ→2 q
′
2

a=⇒2 q
′′
2) ⇒ (∃q′1 s.t. q1

a→1 q
′
1 ∧ q′2 ρ q1 ∧ q′′2 ρ q′1)

272 Françoise Bellegarde, Jacques Julliand, and Olga Kouchnarenko

q1

∃a

��

q2
ρoo

τ

��
q′1 q′2

∃
ρ

``@@@@@@@@

a

��
q′′2

∃
ρ

__???????

3. (lack of new deadlock) (q2 ρ q1 ∧ q2 92) ⇒ (q1 91)

4. (non τ-divergence) q2 ρ q1 ⇒ ¬ (q2
τ→ q′2

τ→ q′′2
τ→ · · · τ→ · · ·)

Notice that the presence of Clause 4 guarantees the monotonicity of an iterative
construction of the relation ρ and, this way, the existence of this relation.

The relation ρ implements the modular refinement viewed as a path set
inclusion. Given ΥTS1 and ΥTS2 , sets of paths of TS1 and TS2, we can see that

1. Clauses 1 and 2 of ρ-definition mean that every path of ΥTS2 refines some
path in ΥTS1 (see Figure 3).

· · · • • • an−1 // • an // • • • · · ·

· · · •

µ

77oooooooooooooo // •

??~~~~~~~ •
µ

OO

an−1
// • //

µ

OO

•

__@@@@@@@
•

an

//

µ

ggOOOOOOOOOOOOOO •

µ

ggOOOOOOOOOOOOOO · · ·

Fig. 3. Path refinement.

2. Clause 4 means that the refinement does not authorize infinite new paths
composed only with new transitions in TS2. In terms of graph, such infinite
paths are cycles, so, there always must be a way out of these cycles, if any, by
a strongly fair transition since such a transition, which is always eventually
taken, forbids the infinite loop.

3. Clause 3 implies that any deadlock in ΥTS2 corresponds to a deadlock in
ΥTS1 which means that new deadlocks are forbidden.

From an Abstract Transition System to One of Its Refinement

Definition 6. Let TS1 = 〈S1, Act1,→1, l1〉 and TS2 = 〈S2, Act1τ ,→2, l2〉 be
respectively a transition system and its refinement. Let a be in Act1. The relation
ξ ⊆ S1 × S2 is the greatest binary relation included into ρ−1 and satisfying the
following clause:

Ready-Simulation Is Not Ready to Express a Modular Refinement Relation 273

(non-determinism) (q1
a→1 q

′
1 ∧ q1 ξ q2)) ⇒ (∃ q′2, q′′2 s.t. q1 ξ q

′
2 ∧ q′2 a=⇒2

q′′2 ∧ q′1 ξ q′′2) q1

a

����
��
��
��

a

��

ξ //

∃
ξ

 @
@@

@@
@@

@
q2

. q′1

∃
ξ

��?
??

??
??

q′2

∃ a

��
q′′2

The construction stays monotonic.
Again, we explain the ξ relation in terms of the path set inclusion. If there is

an internal non-deterministic choice among the transitions of ΥTS1 which begins
at the same state q1 (see Definition 6), then there exists (at least) one of these
transitions which is refined by some path σ2 ∈ ΥTS2 (see Figure 4).

• •

· · · • •
a

OO
a

??~~~~~~~ a // • • · · ·

· · · •

µ

77nnnnnnnnnnnnnn // •

??~~~~~~~ •
µ

OO

a
// •

µ

OO

• · · ·

Fig. 4. Internal non-deterministic choice refinement.

Intuitively, the above notions of refinement mean that we observe the system
more often taking into account additional details about its behavior. In terms of
traces, the trace of the path σ1 is embedded into the trace of the transitions in σ2,
or, in other words, we find the path σ1 by removing the transitions labeled by new
(from Act2 \Act1) actions from the path σ2 but this holds only if the transition
systems are deterministic. In the presence of a non-deterministic choice, it is
possible that some traces disappear among a non-deterministic set of transitions,
but at least one trace remains.

The relation ξ allows us to define some elements of a partition of the refined
state space S2/∼µ as modules, i.e., X ∈ S2/∼µ of name q1 ∈ S1 (i.e. the equiv-
alence class name, see Definition 4) is also a module (named q1) if and only if,
for all the states q2 in X , we have q1ξq2. So, from a designer point of view, ”ξ
holds” means that TS1 is refined by TS2.

As a consequence of the definition of ξ, there can be no deadlock and no live-
lock inside a module. Moreover, each path τ∗a refines a a-transition beginning in
q1. Finally, the set of the labels of all the transitions beginning in q1 is equal to
the set of the labels a of all the paths τ∗a. This last consequence will be shown
in Section 5.2.

274 Françoise Bellegarde, Jacques Julliand, and Olga Kouchnarenko

q1

q′
1

τ

τ τ

τ

a

a

a

b

b

Fig. 5. Module

5 Modular Refinement as a Simulation

In this section, we consider the modular refinement relation η
def= ξ−1. So, from

a designer point of view, η holds means that TS2 refines TS1. We show that
the modular refinement relation can be viewed as a special kind of τ -simulation
which is derived from the observational equivalence of Milner [17] between a
refined transition system and its abstraction. Finally, it is a generalization of the
ready simulation of [10].

5.1 Modular Refinement as a τ -Simulation

In this section, we are interested in a view of the modular refinement as a τ -
simulation from TS2 to TS1.

From the relation η, Proposition 3 allows us to generate a Galois connec-
tion (post[η], p̃re[η]). The construction is inspired by [16]. Notice that the above
authors are looking for building an abstraction when we are interested in a mod-
ular refinement. We choose this approach to show a τ -simulation because we see
better the role of the modules by the way of the predicate transformers post[η]
and p̃re[η]. Notice that the Milner’s approach observes each time two related
states, so it does not allow to consider a whole module (a set of states) which is
related to one abstract state.

Let X be a subset of the refined state space S2 (X ⊆ S2). Then post[η](X)
is the set of the module names, i.e.,

post[η] def= λX.{q1 ∈ S1s.t. (∃q2 ∈ X s.t. q2 η q1)}
Let X be a subset of the abstract state space S1 (X ⊆ S1). Then p̃re[η](X)

is the union of the state space of the modules named in X , i.e.,

p̃re[η] def= λX.
⋃

i∈I Xi s.t.
(∀i. i ∈ I ⇒ Xi ∈ S2/∼µ) ∧ (∀q2.q2 ∈ Xi ⇒ (∃q1 ∈ X s.t. q2ηq1))

By using this Galois connection we show that the modular refinement is
a kind of τ -simulation which is derived from the observational equivalence of
Milner [17]. Now we give the definition of a η-simulation.

Ready-Simulation Is Not Ready to Express a Modular Refinement Relation 275

Definition 7. (vη) Let TS2 = 〈S2, Act1τ ,→2〉 and TS1 = 〈S1, Act1,→1〉 be
two transition systems and η be a relation from S2 to S1 (η ⊆ S2 × S1). Define
S2 vη S1 if and only if ((τ→2)∗)−1(a→2)−1 η ⊆ η (a→1)−1 for all a ∈ Act1.
If S2 vη S1, we say that S2 η-simulates S1. This η-simulation is closely related
to the τ -simulation in the sense of Milner. The difference is that in the tau-
simulation the action a can be the empty action, and that τ -transitions can
follow a.

In Theorem 1, we show that, by modular refinement, S2 η-simulates S1. For
that, we need another predicate transformer in the refined transition system.
Recall that a refined transition system TS2 has silent moves whereas an abstract
transition system TS1 has no silent moves. For TS2, the predicate transformer
pre[→2] is extended to preτ∗a[→2] to take into account the silent moves.

Definition 8. (preτ∗a[→2] predicate transformer) Given the relation →2 :
S2 × S2, we define preτ∗a[→2] : S2 × S2 by
preτ∗a[→2]

def= λX2.{q2 ∈ S2 s.t. (∃q′2 ∈ X2 s.t. q
′
2

a=⇒ q2)}.
The definition of preτ∗a is not a problem because there is no infinite τ -path (see
Clause 4 of Definition 5). Notice that Proposition 1 applies to preτ∗a[→2] by
finite composition of pre[→2] because of Proposition 2.

We need the following lemma to prove that S2 η-simulates S1.

Lemma 1. Let η be the relation between the two transition systems TS2 =
〈S2, Act1τ ,→2, l2〉 and TS1 = 〈S1, Act1,→1, l1〉. Let (α, γ) be the Galois connec-
tion (post[η], p̃re[η]). Then, we have

α ◦ preτ∗a[→2] ◦ γ ⊆ pre[→1] .

Proof. Let qi be the name of a module Yi (see Definition 4). Then

α ◦ preτ∗a[→2](Yi)

gives the modules names of the set P = preτ∗a[→2](Yi) by Definition of α. All
the elements of the set P are related to a predecessor of qi by Clauses 1 and 2
of Definition 5. Therefore, this is included into the set pre[→1]({qi}).

Let X be a subset of the abstract state space S1 (X ⊆ S1). Then, γ(X) =⋃
i∈I Yi where the Yi’s are the modules in S2 the names of which are elements

{q1, q2, . . . , qi, . . . } of X . Therefore,

α ◦ preτ∗a[→2] ◦ γ(X) = α ◦ preτ∗a[→2]
(⋃

i∈I

Yi

)

which is equal to
⋃

i∈I

(
α ◦ preτ∗a[→2] (Yi)

)
by Propositions 1 and 2.

Since α ◦ preτ∗a[→2] (Yi) is included into pre[→1]({qi}) for all i ∈ I, we
obtain that

⋃
i∈I

(
α ◦ preτ∗a[→2] (Yi)

)
is included into

⋃
i∈I pre[→1]({qi}). The

latter is included into pre[→1](X).

276 Françoise Bellegarde, Jacques Julliand, and Olga Kouchnarenko

Theorem 1. Let η be the relation between the two transition systems TS2 =
〈S2, Act1τ ,→2, l2〉 and TS1 = 〈S1, Act1,→1, l1〉. Then S2 vη S1.

We slightly adapt the proof from [16] to our case by using Lemma 1, Defini-
tion 2 and Definition 7.

So, the modular refinement relation is an η-simulation. However, this result
uses only Definition 5 of ρ. In the next section, we will point up the role played
by the non-determinism.

5.2 Modular Refinement as a Generalization of the
Ready-Simulation

In this section, we see the modular refinement relation η as a generalization of
the ready-simulation of [10].

For that we will keep the ready-set definition (see [9, 10]) for the abstract
system as readies(q1) = {a ∈ Act1 s.t. q1

a→1}, and, we will simply replace →2

by =⇒2 for the refined system, i.e., readies(q2) = {a ∈ Act1τ s.t. q2
a=⇒2}.

Moreover, we take into account the non-divergence of τ .

Theorem 2. Let TS1 = 〈S1, Act1,→1, l1〉 and TS2 = 〈S2, Act1τ ,→2, l2〉 be two
transition systems. If (q2 η q1) then readies(q1) =

⋃
q2 s.t. q2ηq1

readies(q2).

Proof. ⊆) It is immediate by Definition 6.
⊇) It is immediate by Clauses 1 and 2 of Definition 5.

Therefore, η implies the equality of the readies as it is the case for the ready
simulation of [10]. This result points up that the set of a module exiting actions
is equal to the set of this module name (see Definition 4) exiting actions.

Furthermore, the equality of the readies allows us to define ξ as follows:

Definition 9. Let TS1 = 〈S1, Act1,→1, l1〉 and TS2 = 〈S2, Act1τ ,→2, l2〉 be
respectively a transition system and its refinement. Let a be in Act1. The relation
ξ ⊆ S1 × S2 is the greatest binary relation included into ρ−1 and satisfying the
following clause:
(readies) (q1

a→1 q
′
1 ∧ q1 ξ q2)) ⇒ (readies(q1) =

⋃
q2 s.t. q1ξq2

readies(q2))

Theorem 3. Definition 6 and Definition 9 are equivalent.

Proof. ⇒) It is immediate by Theorem 2.
⇐) It is immediate because Clause readies of Definition 9 implies Clause non-
determinism of Definition 6.

Notice that Definition 9 is easily implementable since it is enough to verify the
equality of the readies when verifying that Definition 5 holds.

Ready-Simulation Is Not Ready to Express a Modular Refinement Relation 277

6 Compositionality of the Modular Refinement

We give a result concerning the compositionality of the modular refinement
relation η w.r.t. a parallel composition operation which is important for the
application of the modular refinement in practice since it allows to build complex
systems by a parallel composition of components.

Definition 10. (Parallel composition) Let TSi =〈Si, Acti,→i, li〉 and TSj =
〈Sj , Actj ,→j , lj〉 be two transition systems. The parallel composition of TSi and
TSj is TSi‖TSj

def= 〈S,Actτ ,→, l〉 where S is the set of the q‖q′′ (q ∈ Si and
q′′ ∈ Sj), Act is the union of Acti and Actj , l is the product of li and lj. Let
α ∈ Actτ , for k ∈ {i, j}, the transition relation → is defined by combining
individual actions in parallel as follows.

[PAR1] q
α→k q

′

q‖q′′ α→ q′‖q′′ [PAR2] q
α→k q

′

q′′‖q α→ q′′‖q′

This definition means that all moves of parallel composition are moves of either
TS1 or of TS2.

In the following theorem, η denotes the modular refinement relation linking
transition systems as well as their parallel compositions.

Theorem 4. Let q2 η q1 and q4 η q3. We have:

1. q2‖q4 η q1‖q3
2. q4‖q2 η q3‖q1

Proof. We prove the result for 1, the second proof being similar.
For the result 1, we show that S verifies clauses of Definitions 5 and 6, where

S def= {(q1‖q3, q2‖q4) s.t. q2 η q1 & q4 η q3}

for q1, q2, q3, q4 ∈ S. Now, suppose (q1‖q3, q2‖q4) ∈ S.

1. First, we consider Definition 5. Let q2‖q4 α→ q̃ with α ∈ Actτ . There are four
cases:
(a) q2

a→2 q
′
2, and q̃ = q′2‖q4. Then, because q2 η q1, we have q1

a→1 q
′
1 with

q′2 η q
′
1 by Clause 1 of Definition 5; hence also q1‖q3 a→ q′1‖q3 by [PAR1]

rule of Definition 10, and (q′1‖q3, q′2‖q4) ∈ S.
(b) q4

a→4 q
′
4, and q̃ = q2‖q′4. We get the result in the same way than the

case above by using [PAR2] rule of Definition 10.
(c) α = τ , and q2

τ→2 q′2. Moreover, we derive q′2
a=⇒2 q′′2 and q2‖q4 τ→

q′2‖q4 a=⇒ q′′2‖q4 (= q̃). Then, because q2 η q1, we have q1
a→1 q

′
1 with

q′2 η q1 and q′′2 η q′1 by Clause 2 of Definition 5; hence, we also get
q1‖q3 a→ q′1‖q3 by [PAR1] rule of Definition 10, and (q1‖q3, q′2‖q4) and
(q′1‖q3, q′′2‖q4) are in S.

278 Françoise Bellegarde, Jacques Julliand, and Olga Kouchnarenko

(d) α = τ , and q4
τ→4 q

′
4. We have the result by the same argument than the

case above.
2. Second, we consider Definition 6. Let q1‖q3 α→ q̃ with α ∈ Act. There are

two cases:
(a) q1

a→1 q
′
1, and q̃ = q′1‖q3. Then, because q2 η q1, we have q1 ξ q2. By

Definition 6, there exists q′2, q
′′
2 s.t. q1 ξ q

′
2 ∧ q′2 a=⇒2 q

′′
2 ∧ q′1 ξ q′′2 . By

[PAR1] rule of Definition 10, we have q′2‖q4, q′′2 ‖q4 s.t. q1‖q3 ξ q′2‖q4∧
q′2‖q4 a=⇒ q′′2‖q4 ∧ q′1‖q3 ξ q′′2‖q4), and (q1‖q3, q′2‖q4) and (q′1‖q3, q′′2 ‖q4)
are in S.

(b) We have the same proof for the case q3
a→3 q

′
3 and q̃ = q1‖q′3.

This compositionality result permits the modular design of the system into
separate components. So, the attribute “modular” of the refinement relation η
expresses the modular design ability as well as the partition of the refined system
state space into modules.

7 Example

The definition of the modular refinement relation is motivated by the conditions
expressed in terms of path set refinement as we saw in Section 4. We illustrate
the refinement design with a simple example of a robot carrying parts inspired
from [3]. It shows how the modules appear in the refined reachability graph,
and how the non-determinism decreases during the refinement process. This last
point justifies the clause non-determinism of Definition 6. The robot’s example
is voluntarily simple. We have studied the modular refinement relation about
less trivial applications such as the protocol T = 1 [13], a BRP protocol [5] and
so on.

We suppose the carrier device (CD) carries one part at a time from an arrival
device AD located to its left towards two exit devices located respectively to the
left (EDL) and the right (EDR) of the carrier device (see Figure 7).

The two refinement levels of transition systems (presented in Figure 8 and
Figure 6 by their reachability graphs) model the transportation of parts by
the carriage device on the exit devices. The first level ignores the movement of
the carriage device and how parts arrive in it. The second level introduces the
rotation movement of the carrier device.

At the first level of abstraction (see Figure 8), we are not concerned which of
the exit devices is receiving the part. This introduces what we call an internal
non-determinism in the abstract transition system. The variables are CD, EDL,
EDR. Here, the invariant is well-typing: CD,EDL,EDR ∈ {free, busy}. Ini-
tially, all the devices are free. The actions that can be observed are the loading
of a part (label L), the deposit of a part (label U), the exit of a part from the left
exit device (label ExL) and the exit of a part from the right exit device (label
ExR). The interpretation of the eight different states appears graphically. For
example, l(q5) is CD = busy∧EDL = free∧EDR = busy. One can notice two
transitions labeled by U originating from q1 (internal non-determinism).

Ready-Simulation Is Not Ready to Express a Modular Refinement Relation 279

The second level of refinement (see Figure 6) introduces the observation of
the two rotations, from the left to the right (RoR) and from the right to the
left (RoL) that the carrier device must do in order to deposit a part either to
the left or to the right. The glue invariant is I2

def= (CD′ = CD ∧ EDL′ =
EDL ∧ EDR′ = EDR ∧ Pos ∈ {l, r}).

A plausible behavior may remove the internal non-determinism by forcing
the carrier device to unload on the left exit device if it is turned toward the left;
respectively, to unload on the right exit device if it is turned toward the right (in
position). Moreover, the rotation towards the left becomes a priority in the other
situations since the arrival device is located to the left. This imposed behavior
is supposed to minimize the number of rotations towards the right.

We verify that S2 is a modular refinement of S1 by substituting τ transitions
by transitions labeled by RoL, RoR and verifying Definitions 5 and 6. Moreover,
one can notice how the refinement introduces a partition of the refined transition
system into modules. Notice in the example that the two transitions labeled by
U exiting from the module of name q1 are the reflection of the two transitions
labeled by U exiting from q1 at the abstract level. So, the traces containing U and
beginning with q1 remain. So, we have readies(q1) = readies(q′11)∪readies(q′12)
where q′11 and q′12 are the two states in the module of name q1.

Another plausible behavior may remove the internal non-determinism by
simply forcing the carrier device to unload on the left (left first) when both
devices are free. This imposed behavior is, as above, supposed to optimize the
number of rotations since the arrival device is located to the left.

Notice that there is only one transition labeled by U exiting from the module
q1 which is the reflection of the two transitions labeled by U exiting from q1 at
the abstract level. So, some traces containing U and beginning by q1 disappear
between the abstract and the refined level but at least one trace containing U
remains. We can use other strategies such as, for example, forcing the carrier
device to unload on the exit device which has been freed the first (first free, first
busy).

8 Application

As safety and liveness properties are essential for reactive systems, the verifi-
cation uses different methods which are based either on the model or on the
system description. The model-based verification methods use the labeled tran-
sition systems techniques equipped with logics or behavior equivalences. The
methods which are working on the system description via its denotational se-
mantics, prove theorems about the system behavior by using an appropriate
logic. The theorem provers or the proof assistants are semi-automatic in con-
trast with the model-checkers, but they can handle infinite systems.

To get the advantages of both methods in verifying that the B event system
satisfies its dynamic properties (expressed by LTL formulae), it is very inter-
esting to be able to combine model-checking with theorem proving in the same
verification tool set [8]. In [12, 14, 18], we propose an original combination of

280 Françoise Bellegarde, Jacques Julliand, and Olga Kouchnarenko

the above techniques. Proof is used when fully automatic (for example, tautol-
ogy checker in propositional calculus). At the abstract level of the refinement,
model-checking is used for dynamic property verification. The proposed refine-
ment relation allows us to cross both techniques at the best of their advantages
and possibilities. This is made possible because the proposed refinement relation
determines modules in the refined reachability graph (for that, see [8]).

For finite state transition systems, the refinement verification and the module
construction are implementable by an on-the-fly traversal of the refined transi-
tion system reachability graph. This is implemented as a component of a verifi-
cation tool set [8].

9 Conclusion and Related Works

We are following an approach using both automatic-proof and model-checking
technologies. This cooperation is permitted because of the refinement method-
ology [12, 14] which has been proposed to specify reactive systems and to verify
their dynamic properties expressed in the LTL.

We have defined a formal framework for this methodology: the modular re-
finement relation between an abstract and a refined transition systems derived
from the B design.

Since we apply the modular relation η to finitely branching transition sys-
tems, and since η does not accept the τ -divergence, it is closely related to the
refusal simulation as defined by Ulidowsky in [24]. The refusal simulation is also
a generalization of the ready simulation of Bloom et al. [10]. The main difference
between the modular refinement relation η and the refusal simulation is in the
non-determinism clause of Definition 6. This clause requires that q1 relates to
q2, i.e., that the module of name q1 exists but the refusal simulation does not.
This constraint is the key to obtain the equality of the readies (see Theorem 2).
Therefore, the modular refinement relation, which is also a generalization of the
ready simulation, seems to be strictly included in the refusal simulation.

We can also relate the clauses of Definition 5 to the clauses (a), (ε), (O), (∆),
(S) of van Glabbeek in [11] by taking into account of the fact that there is no
silent moves in the abstract transition system. Therefore, we could situate the
modular refinement relation as a divergence sensitive stability respecting com-
pleted simulation in the van Glabbeek’ spectrum.

Another contribution of this work is that it gives a good semantics which
authorizes us to compare the modular refinement relation with other refinement
definitions [20, 15]. We anticipate that without the non-determinism, it is also
equivalent to Lamport’s TLA refinement.

One of the consequences of Theorem 4 is that the modular refinement relation
is preserved w.r.t. the parallel composition. This allows us to keep the same
refinement notion for both modular design and modular verification of reactive
systems.

The partition of the refined system state space into modules is the second
reason to call modular our refinement relation. It facilitates the verification by

Ready-Simulation Is Not Ready to Express a Modular Refinement Relation 281

taking into account the system modularity introduced by the refinement. Ac-
cordingly we are currently building the verification tool set [8].

References

[1] J. R. Abrial. The B Book. Cambridge University Press - ISBN 0521-496195, 1996.
[2] J. R. Abrial. Extending B without changing it (for developing distributed sys-

tems). In 1st Conference on the B method, pages 169–190, Nantes, France, Novem-
ber 1996.

[3] J. R. Abrial. Constructions d’automatismes industriels avec B. In Congrès
AFADL, ONERA-CERT - Toulouse, France, May 1997. Invited lecture.

[4] J. R. Abrial, E. Bőrger, and H. Langmoeck. Specifying and Programming the
Steam Boiler Control. LNCS 1165. Springer Verlag, 1996.

[5] J. R. Abrial and L. Mussat. Specification and design of a transmission protocol
by successive refinements using B. LNCS, 1997.

[6] J. R. Abrial and L. Mussat. Introducing dynamic constraints in B. In Second
Conference on the B method, LNCS 1393, pages 83–128, Montpellier, France,
April 1998. Springer Verlag.

[7] P. Behm, P. Desforges, and J.M. Meynadier. MÉTÉOR: An industrial success in
formal development. In Second conference on the B method, LNCS 1393, Mont-
pellier, France, April 1998. Springer Verlag. Invited lecture.

[8] F. Bellegarde, J. Julliand, and H. Mountassir. Model-based verification through
refinement of finite B event systems. In Formal Method’99 B User Group Meeting,
CD-ROM publication, 1999.

[9] B. Bloom. Ready Simulation, Bisimulation, and the Semantics of CCS-Like Lan-
guages. PhD thesis, MIT, August 1989.

[10] B. Bloom, S. Istrail, and A. R. Meyer. Bisimulation can’t be traced. Journal of
the ACM, 42(1):232–268, January 1995.

[11] R. J. van Glabbeek. The linear time - branching time spectrum II: The seman-
tics of sequential systems with silent moves. In Proc. CONCUR’93, Hildesheim,
Germany, LNCS 715, pages 66–81. Springer-Verlag, August 1993.

[12] J. Julliand, F. Bellegarde, and B. Parreaux. De l’expression des besoins à
l’expression formelle des propriétés dynamiques. Technique et Science Informa-
tiques, 18(7), 1999.

[13] J. Julliand, B. Legeard, T. Machicoane, B. Parreaux, and B. Tatibouet. Spec-
ification of an integrated circuits card protocol application using B and linear
temporal logic. In Second conference on the B method, LNCS 1393, pages 273–
292, Montpellier, France, April 1998. Springer Verlag.

[14] J. Julliand, P.A. Masson, and H. Mountassir. Modular verification of dynamic
properties for reactive systems. In International Workshop on Integrated Formal
Methods (IFM’99), York, Great Britain, 1999.

[15] L. Lamport. A temporal logic of actions. 16:872–923, May 1994.
[16] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property pre-

serving abstractions for the verification of concurrent systems. Formal Methods
in System Design, 6:1–35, January 1995.

[17] R. Milner. Communication and Concurrency. Prentice Hall Int., 1989.
[18] H. Mountassir, F. Bellegarde, J. Julliand, and P.A. Masson. Coopération en-

tre preuve et model-checking pour vérifier des propriétés LTL. In submission
AFADL’2000, 2000.

282 Françoise Bellegarde, Jacques Julliand, and Olga Kouchnarenko

[19] O. Ore. Galois connections. Trans. Amer. Math. Soc., (55):493–513, February
1944.

[20] A. Pnueli. System specification and refinement in temporal logic. In Proc. 12th
Conf. Found. of Software Technology and Theor. Comp. Sci., New Delhi, India,
LNCS 652, pages 1–38. Springer-Verlag, December 1992.

[21] L. E. Sanchis. Data types as lattices : retractions, closures and projections. RAIRO
Informatique Théorique et Applications, 11(4):329–344, 1977.

[22] J. Sifakis. Property preserving homomorphisms of transition systems. In Proc.
Logics of Programs Workshop, Pittsburgh, LNCS 164, pages 458–473. Springer-
Verlag, June 1983.

[23] H. Treharne, J. Draper, and S. Schneider. Test case preparation using a prototype.
In Second conference on the B method, LNCS 1393, pages 293–312, Montpellier,
France, April 1998. Springer Verlag.

[24] I. Ulidowski. Equivalences on observable processes. In Proceedings of the 7th
Annual IEEE Symposium on Logic in Computer Sciences IEEE, New-York, IEEE
Computer Society Press, pages 148–161, 1992.

ExR

ExL

ExL

ExR

ExL

ExR

ExR

ExL

U U

L L

L

U U

L

RoL

RoL

RoLRoL

RoR

Init

q0

q2

q4

q1

q3

q5

q7

q6

Fig. 6. A refined transition system (in position).

Ready-Simulation Is Not Ready to Express a Modular Refinement Relation 283

EDL

CD

AD

EDR

Fig. 7. The physical system.

Init

L

LL

L

UU
ExL

ExR

ExR

ExR

ExR

ExL

ExL

ExL

q0

q1

q2

q3

q4

q5

q6

q7

U UU

Fig. 8. The abstract transition system.

	Introduction
	Preliminaries
	Behavioral Semantics of Systems Derived from the {B} Design
	Modular Refinement Relation
	Modular Refinement as State Space Partition
	Modular Refinement as a Relation

	Modular Refinement as a Simulation
	Modular Refinement as a $tau $-Simulation
	Modular Refinement as a Generalization of the Ready-Simulation

	Compositionality of the Modular Refinement
	Example
	Application
	Conclusion and Related Works

