
Analyzing Non-functional Properties of Mobile

Agents

Pascal Fradet, Valérie Issarny, and Siegfried Rouvrais

Irisa/Inria, Campus Universitaire de Beaulieu, 35042 Rennes, France
{fradet,issarny,rouvrais}@irisa.fr

Abstract. The mobile agent technology is emerging as a useful new way
of building large distributed systems. The advantages of mobile agents
over the traditional client-server model are mainly non-functional. We
believe that one of the reasons preventing the wide-spread use of mobile
agents is that non-functional properties are not easily grasped by system
designers. Selecting the right interactions to implement complex services
is therefore a tricky task. In this paper, we tackle this problem by con-
sidering efficiency and security criteria. We propose a language-based
framework for the specification and implementation of complex services
built from interactions with primitive services. Mobile agents, Rpc, re-
mote evaluation, or any combination of these forms of interaction can
be expressed in this framework. We show how to analyze (i.e. assess and
compare) complex service implementations with respect to efficiency and
security properties. This analysis provides guidelines to service design-
ers, enabling them to systematically select and combine different types
of protocols for the effective realization of interactions with primitive
services.

1 Introduction

Code mobility is gaining more acceptance as a useful and hopefully future tech-
nology [1]. In particular, the mobile agent technology is emerging as a new way of
building large distributed systems. Here, we consider a mobile agent as an entity
in which code, data and execution state can explicitly migrate from host to host
in heterogeneous networks [3]. Other types of interaction exist; let us cite re-
mote evaluation or the classical Rpc-based client-server1 (i.e. remote procedure
calls). Functionally, all that can be implemented using mobile agents can also be
achieved by using Rpc communication protocols. The advantages/drawbacks of
mobile agents compared to Rpc are mainly non-functional [9]. The motto being
to move the computation to the data rather than the data to the computation,
mobile agents can improve performances by reducing the bandwidth usage. On
the other hand, they pose new security problems, namely how to protect agents
against malicious hosts (or vice versa).
1 In our context, we consider them both as degenerate forms of mobile agents. Remote

evaluations execute remotely the code on a single server. A Rpc amounts to sending
a request (not a code) to a primitive service.

T. Maibaum (Ed.): FASE2000, LNCS 1783, pp. 319–333, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

320 Pascal Fradet, Valérie Issarny, and Siegfried Rouvrais

In this paper, we are specifically concerned with the use of mobile agents
for the construction of complex services. By complex services we mean client re-
quests built from primitive services available over networks composed of various
devices ranging from powerful workstations to Pdas. Clearly, there is not a sin-
gle best interaction protocol to combine such a variety of primitive services. The
goal of this paper is to guide the choice of the adequate protocols (mobile agent,
remote evaluation, Rpc or a mixture) depending on the efficiency and security
properties that the complex service requires. There have been experiments com-
paring performance of those different forms of interaction, but to the best of our
knowledge, the formal assessment of non-functional properties of mobile compu-
tation has not been addressed so far. Yet, the need for formalization is obvious
when dealing with security properties. On the other hand, mobility complicates
seriously the specification and analysis of non-functional properties. Thus, we
decided to restrict ourselves to a simple language of services but to tackle the
analysis and comparisons of interaction protocols using a formal approach.

We specify complex services as simple expressions where primitive services
and treatments are represented as basic functions. These expressions are mainly
used to specify dependencies. The specification also includes information about
the place (host), and non-functional properties of basic services. The abstract
expressions are refined into concrete expressions, which make implementation
choices (number of agents and their route) syntactically explicit. Mobile agents,
Rpc, remote evaluation or any combination of these forms of interactions can be
represented, analyzed, and compared with respect to performance and security
properties. The notion of performance considered in this paper is the total size
of data exchanged in the interactions, whilst the notion of security focused on is
confidentiality. The proposed framework enables designers to analyze (i.e assess
and compare) various implementations of a complex service and to select the one
that suits best their overall design goals. In addition, our framework can conve-
niently be integrated in a design environment supporting the abstract description
of service software architectures, which further eases the actual implementation
of services.

This paper is structured as follows. Section 2 introduces the basic setting
of our abstract model of interactions using two simple functional languages. It
further shows how to automatically refine expressions from one language (the
specification) to the other (the implementation). Section 3 addresses the analysis
of the implementations of complex services with respect to efficiency and security.
Section 4 briefly discusses the practical application of our model through its
combination with the architectural description of service architectures. Section
5 reviews related work and concludes.

2 Functional Models of Interactions

We describe complex services (i.e. client requests) as functional expressions where
primitive functions represent services (i.e. basic services offered by providers) or
treatments (i.e. basic actions defined by clients). Such complex services can be

Analyzing Non-functional Properties of Mobile Agents 321

specified at two levels of abstraction. At the abstract level, a client request is
a simple (abstraction-less, recursive-less) functional expression. This expression
specifies the functional semantics of the request and makes the dependencies
between basic services clear. At the concrete level, expressions can be seen as a
collection of remote evaluation, mobile agent or Rpc interactions. Compared to
abstract expressions, implementations choices such as the number, the type, the
path (or route) and the composition of interactions are now explicit. The benefit
of concrete expressions is that they can be easily analyzed with respect to non-
functional properties such as efficiency or security. A way to assess implemen-
tation choices is to compile the abstract client request into concrete expressions
which can be analyzed and compared.

In this section, we present in turn the abstract language, the concrete lan-
guage, and their relationship.

2.1 Abstract Language

The abstract language used to specify complex services is given in Figure 1. A
service is either a tuple of independent expressions, a primitive function applied
to an expression, or a data. Service and Treatment denote respectively the set of
primitive services and the set of client actions. Data denotes the data provided by
clients with their requests; it could be seen as the 0-ary treatment functions. The
semantics of such expressions is straightforward and relative to an environment
(e) associating a meaning to each primitive functions and data identifiers (see
Figure 2).

E ::= (E, ..., E) | fE | d

where f ∈ Primitive = Service ∪ Treatment and d ∈ Data

Fig. 1. Abstract language

Ea : Expa → Env → V alue
Ea[[(E1, . . . , En)]] e = (Ea[[E1]] e, . . . , Ea[[En]] e)
Ea[[f E]] e = (e f) (Ea[[E]] e)
Ea[[d]] e = e d

Fig. 2. Semantics of abstract expressions

322 Pascal Fradet, Valérie Issarny, and Siegfried Rouvrais

Examples. Let us take two examples of abstract expressions that will be con-
sidered throughout the paper. One of the simplest example is requesting a basic
service s on a data d, and applying a treatment t on the result. This is specified
as:

t(s d) (1)

An instance of this kind of service is taken in [8] to illustrate the benefit of
mobile agents compared to Rpc interactions. In their weather forecast example,
the services are requests to a picture database. The data d specifies a picture, the
service s (actually the database) returns the picture matching the specification
d, and t is an image processing treatment (e.g. a filter). If t decreases drastically
the size of the image then it is clearly more bandwidth efficient to implement
the service as a mobile agent. The treatment t is then executed on the server
and only the much smaller image is sent back to the client.

As a more complex example, consider the following expression:

t(s1(d1, s2 d2), t3(s3 d3)) (2)

Such an expression may represent a service to book plane and train tickets
depending on various criteria: for example, the sub-expression t3(s3 d3) is a
request (d3) to a train company service (s3) returning schedules that are then
filtered (by t3) to retain only daily trains going to the airport; independently,
the service s2 returns a list of possible destinations according to the criteria d2

(e.g. hotel descriptions); the service s1 takes a list of possible dates (d1) and a
list of destinations (s2 d2) and returns a list of flights; then, the final treatment
t matches selected flights and trains.

�

Abstract expressions specify the functionality of complex services as well as
dependencies between base services and treatments. For the latter example, the
base service s2 must be accessed before s1, whereas s3 can be accessed indepen-
dently. Even if abstract expressions are particularly simple, they are sufficient
to model many realistic complex services and to pose interesting challenges.

2.2 Concrete Language

The concrete language makes implementation choices explicit. Its syntax is de-
scribed in Figure 3. A concrete expression is a collection of let-expressions, each
one representing an interaction (i.e. a mobile agent, a remote evaluation or re-
mote procedure call). We use a uniform representation for the interactions, in
the sense that Rpc and remote evaluation protocols are seen as particular agents
in our concrete language. An interaction is a continuation expression A applied
to a data argument D. Continuation-passing-style (Cps) [13] is the standard
technique to encode a specific evaluation order in functional expressions. We use
it here to express the sequencing of basic services and treatments. A function f
now takes an additional argument, a continuation A, and applies it to the result

Analyzing Non-functional Properties of Mobile Agents 323

of its evaluation. The Cps version of a function f such that fd = d′ is a function
f which takes an additional argument A (a continuation), and applies it to the
result of its evaluation, that is f A d = A d′. The continuation represents the
sequence of primitive services or treatments that remain to be executed. The
functions goi,j denote migrations from a place i to a place j2. Functionally, the
go functions are just the identity. Once combined with continuation expressions,
they suffice to express the agent’s route precisely. The special continuation end
terminates the evaluation of an interaction. The semantics of the concrete lan-
guage is described in Figure 4.

E ::= let (r1, ..., rn) = A D in E | D

A ::= f A | goid1,id2 A | end

D ::= (D1, ..., Dn) | d | r

where f ∈ Primitive, idi ∈ Place, and d ∈ Data

Fig. 3. Syntax of concrete language

Ec : Expc → Env → V alue
Ec[[let (r1, ..., rn) = A D in E]] e = (λ(r1, . . . , rn).Ec[[E]] e)(Ac[[A]] e (Dc[[D]] e))
Ec[[D]] e = Dc[[D]] e

Ac[[f A]] e = e f (Ac[[A]] e)
Ac[[goid1,id2 A]] e = Ac[[A]] e
Ac[[end]] e = λd.d

Dc[[(D1, ..., Dn)]] e = (Dc[[D1]] e, ...,Dc[[Dn]] e)
Dc[[d]] e = e d

Fig. 4. Semantics of concrete expressions

Examples. The expression t(s d) can be implemented in two different ways:
either by Rpc (i.e. processing the treatment at the client place) or by using a
mobile agent (i.e. executing the treatment at the service place). Two concrete
2 Actually, even if some migrations could be deduced from the locations of base ser-

vices, the go functions are needed to specify where treatments are to be executed.

324 Pascal Fradet, Valérie Issarny, and Siegfried Rouvrais

expressions correspond to these two options. Let us write s and t for the Cps
versions of s and t, and write c and 1 to denote the client place and service
place respectively. The first, Rpc-based, implementation is represented by the
following expression:

let r1 = goc,1(s(go1,c end)) d in
let r2 = t end r1 in
r2

The data d is transmitted to place 1 (goc,1), the remote service s is called and its
result is returned to the client (go1,c). Then, the treatment is performed locally
by the client. The second, agent-based, implementation is represented by the
expression:

let r1 = goc,1(s(t(go1,c end))) d in
r1

The treatment is transmitted and executed at the service place (i.e. 1).
Let us describe now two possible implementations of the abstract complex

service (2) presented earlier. We assume that the three base services s1, s2, and
s3 are located at different places, respectively 1, 2 and 3. The implementation
based on two Rpc protocols to interact with s1 and s2 and a mobile agent
for s3 with a remote treatment t3 can be represented by the following concrete
expression:

let r1 = goc,3(s3(t3(go3,c end))) d3 in
let r2 = goc,2(s2(go2,c end)) d2 in
let r3 = goc,1(s1(go1,c end)) (d1, r2) in
let r4 = t end (r3, r1) in
r4

Figure 5-a gives the graphical representation of the interactions, where boxes
represent the client and the service places, and arrows represent the data-flow
between the components. Dashed-arrows indicate the place where the treatments
are executed. The implementation based on a mobile agent protocol to interact
with both s1 and s2 and on a Rpc protocol to interact with s3 can be represented
by:

let r1 = goc,3(s3(go3,c end)) d3 in
let r2 = t3 end r1 in
let r3 = goc,2(s2(go2,1(s1(go1,c end)))) (d1, d2) in
let r4 = t end (r3, r2) in
r4

The graphical representation of this complex-service is given in Figure 5-b.

�

Of course, different implementations of the same abstract expression are func-
tionally equivalent. As we see in the next section, a concrete expression is func-
tionally equivalent to the abstract expression it implements.

Analyzing Non-functional Properties of Mobile Agents 325

S2 S2

S1

S3 S3

S1

d1 + d2

d3 + t3

C

(a) Concrete expression 1 (b) Concrete expression 2

t3(s3 d3)

s1(d1,s2 d2)
d1 + s2 d2

s3 d3

s1(d1,s2 d2)

C

d3

t3

t

t3

t

d2

s2 d2

d1 + s2 d2

Fig. 5. Graphical representations of two implementations

2.3 From Abstract to Concrete Expressions

We outline here how to compile an abstract expression into a concrete one. The
compilation process depends on three choices: the number and constituents of
agents, their route, and the place for the execution of each treatment. The third
choice is represented by an environment (p) mapping any primitive function to
its location (i.e. the server providing the service or the execution environment).
The two first choices are represented as a list of lists of primitive functions.
The outer list represents the agents whereas inner lists describe the route of
each agent. For example, the choices corresponding to the concrete expression
depicted in Figure 5-a are summarized in the following list of agents:

[[t3; s3]; [s2]; [s1]; [t]]

That is, there are four interactions; for example, the first one (i.e. sublist [t3; s3])
is a mobile agent that calls s3 and then applies t3. Of course, not all agent lists are
valid. A valid list of lists must include all the different treatments and services of
the abstract expression and must respect the dependencies of the abstract term.

Given a valid list of agents and an environment (p) mapping primitive func-
tions to places, it is easy to translate an abstract expression into a concrete
one. This compilation is described by the function Abs2Conc given in Figure 6.
Abs2Conc takes a list of agents ll and produces a let-expression for each of them.
It supposes that all functions have been renamed so that a function in the list
denotes unambigously a call in the expression. For each sub-list l (i.e. an agent),

326 Pascal Fradet, Valérie Issarny, and Siegfried Rouvrais

Abs2Conc extracts (using the function SubExp) the sub-expressions (E1, . . . , En)
of the global expression E involving the primitives in l. For example:

SubExp [t3; s3] (t(s1(d1, s2 d2), t3(s3 d3))) = t3(s3 d3)

and

SubExp [t3; s3; s2] (t(s1(d1, s2 d2), t3(s3 d3))) = (s2 d2, t3(s3 d3))

Abs2Conc : Expa → List(List(Primitive)) → (Expc, Env)

Abs2Conc E nil e = (E, e)
Abs2Conc E (l.ll) e =

let (E1, ..., En) = SubExp(l,E) in
let (X1, e1) = Agent[[(E1, . . . , En)]] l client end e in
let (X2, e2) = Abs2Conc E[ri/Ei] ll e1 in
(let (r1, . . . , rn) = X1 in X2 , e2)

Agent : Expa → List(Primitive) → Place → Cont→ Env → (Exp,Env)

Agent[[E]] nil i k e = (goclient,i k E , e)
Agent[[(E1, . . . , fEi, . . . , En)]] (f.l) i k e =

Agent[[(E1, . . . , Ei, . . . , En)]] l (p f) (f(go(p f),ik))

e[f ← λc.λ(x1, . . . , xn). c (x1, . . . , e f xi, . . . , xn)]

Fig. 6. Translation algorithm

Each collection of sub-expressions is translated into an agent using the func-
tion Agent. The function Agent takes the sub-expressions to compile, the or-
dered list which indicates the sequentialization of services and treatments, the
current place (initially the client place), the current continuation (initially the
final continuation end) and the primitive function environment. Calls to services
and treatments are sequentialized using Cps and goi,j are inserted according
to the environment p. The environment e is updated to reflect the fact that
new Cps versions of primitive functions are introduced. The correctness of the
translation is expressed by the following property:

Property: (Ec, ec) = Abs2Conc Ea ll ea ⇒ Ea[[Ea]] ea = Ec[[Ec]] ec

In theory, the function Abs2Conc could be used to produce automatically all
possible implementations of an abstract term, enabling their analysis and their
comparison. It suffices to consider all possible valid agent lists, that is to say,

Analyzing Non-functional Properties of Mobile Agents 327

all possible arrangements of primitive functions respecting the abstract depen-
dencies, and for each of them, every admissible permutations. The algorithm to
verify that an agent list is valid is a simple check of the order of functions ap-
pearing in the list w.r.t the dependencies of the abstract term. In practice, this
use of Abs2Conc might be considered only for small abstract expressions. In fact,
there are up to 2n−1 agent arrangements (where n is the number of primitive
functions), and up to p! possible routes for an agent with p primitives.

We see in Section 4 more practical ways to use the compilation function
Abs2Conc.

3 Analyzing Performance and Security Properties

Concrete expressions make the analysis of performance and security properties
easy. The number and paths of agents of our concrete expressions are explicit in
the syntax. The only additional information needed is basic properties associated
with primitive objects (data, functions, codes, places, . . .). We consider that this
information is given via environments mapping primitive objects to performance
or security properties. The definitions of analyses are expressed similarly as the
semantic functions of Figure 4; actually our analyses can be seen as abstract
semantics/interpretations of concrete expressions. For performance properties,
the measure we consider is the amount of traffic generated on the network. For
security properties, we focus on confidentiality properties, without considering
integrity for space reasons.

3.1 Performance

To estimate the cost (in terms of bandwidth) of the implementation of a complex-
service, we consider two environments es and ef . The environment es associates
primitive functions to the size of their source code. For primitive services, this
size is zero: services are tied to servers and do not travel on the network. The
environment ef associates each data to a size and each primitive function f to an
abstract function sf yielding the size of the result of f depending of the size of its
argument (i.e. sf (size x) = size(f x)). Sizes can be represented numerically or
symbolically 3. Of course, it is not always possible to know precisely in advance
the sizes of results (e.g. number of hits for a query to an arbitrary database).
In such cases, approximations such as the average or maximum sizes should be
considered.

Using the two environments es and ef , the amount of traffic involved by an
implementation is evaluated by the function CostE (see Figure 7). Compared to
the semantics of Figure 4, the environment (ef) now associates data and primi-
tive functions to performance properties and the raison d’etre of goi,j functions
becomes clear now. Note that the environment es is only read and used as a
3 Numerical values are easy to normalize and compare whereas symbolic values are

more generic and represent more faithfully the reality. Both fit in our framework and
we do not dwell on this issue any further in this paper.

328 Pascal Fradet, Valérie Issarny, and Siegfried Rouvrais

global constant. The cost of a let-expression is the cost of its sub-expressions.
The cost of the body (E) is evaluated with its variables (ri) associated with their
size (di). The function CostA evaluates the cost of an agent and takes as pa-
rameters the environment ef , the size of the agent (Source[[A]], where αgo is the
size of an instruction go), and the size of its data (d). The cost of an expression
goi,jA is the cost of the continuation A plus the cost of transmitting the data
and the agent source code (i = j implies that there is no migration and therefore
no transmission induced). More precisely, the transmission cost involved with a
migration is:

αi,j(s + Sum d)

where Sum d represents the total size of data (i.e. the summation of all the
basic sizes in d), s denotes the size of the agent source code, and the coefficient
αi,j permits to take into account the bandwidth between places i and j (i.e. the
quality of the connection).

CostE : Expc → Env → Size
CostE[[let (r1, . . . , rn) = A D in E]] ef = let (d1, . . . , dn) = Ac[[A]] ef (Dc[[D]] ef) in

CostE [[E]] (ef [ri ← di])
+ CostA[[A]] ef (Source[[A]]) (Dc[[D]] ef)

CostE[[D]]ef = 0

CostA[[f A]] ef s d = ef f (CostA[[A]] ef s) d
CostA[[goi,j A]] ef s d = CostA[[A]] ef s d +

if i = j then 0 else αi,j(s + Sum d)

CostA[[end]] ef s d = 0

Source[[f A]] = es f + Source[[A]]
Source[[goi,j A]] = αgo + Source[[A]]
Source[[end]] = 0

Fig. 7. Cost evaluation

Example. Let us consider the simple expression t(s d) again and suppose that
the abstract environments are:

ef = [d ← 104; s ← λx.107; t ← λx.xdiv10]
es = [s ← 0; t ← 105]

That is to say, the request is of 10Kb, the database s returns 10Mb images,
the treatment t divides image size by 10, the size of the source of t is 100Kb,
whereas, by convention, the size of the service s is null. The performance of an
implementation choice ll for this expression is represented by:

let (E, e′f) = Abs2Conc [[t(s d)]] ll ef in CostE [[E]] e′f

Analyzing Non-functional Properties of Mobile Agents 329

Assuming that the cost of a go (αgo) is null and that αi,j = 1 for all places i and
j, the cost of the associated Rpc implementation (see Section 2.2) is 1.001 107

(the data and the complete picture travel on the network, i.e. 10Kb + 10Mb)
and the cost of the mobile agent implementation (see Section 2.2) is 1.11 106

(the data, the reduced size picture, and the code of the treatment travel on the
network i.e. 10Kb + 1Mb + 100Kb).

�

We have focused on the volume of transmission implied by an implementa-
tion. Other criteria, such as time efficiency could be considered as well. Some
additional information such as the service response times or communication de-
lays should be introduced in environments but the analysis would remain similar.

3.2 Security

Security is regarded by many designers as the most critical issue to address
before promoting the use of mobile agents in large service-provisioning systems.
There are now good and accepted techniques to protect hosts from malicious
mobile agents. However, protecting mobile agent from malicious hosts is a much
more difficult task [11]. The analysis of security properties can be of a great help
to the system designer. In particular, this kind of information should permit to
rule out implementations that make sensitive data or treatments travel through
untrusted hosts.

In our framework, each object (data, code, place) is associated with a value
taken from a lattice of security levels. As before, we consider two environments.
The environment es associates server places to the security level they insure4

and treatments to the security level their source requires to roam safely. The
environment ef associates each primitive function f to an abstract function sf

returning the security level of the result of f depending of the security level of
its argument. The environment ef also contains the security level associated to
data. In the following, we consider confidentiality (non-divulgation) properties.
Integrity (i.e. non-modification) properties are dual and can be analyzed likewise.

The analysis in Figure 8 checks if confidentiality requirements are met by a
given concrete expression. The function ConfE is defined as a recursive scan of
the expression and returns a boolean. The symbols v, ⊥, t denote respectively
the partial order relation, the smallest element, and the join of the lattice of
security levels. The expression

⊔
d denotes the least upper bound of all the con-

fidentiality levels in d. The auxiliary function Lub evaluates the confidentiality
level required by the source code of an agent; this is the least upper bound of the
levels of all its treatments. Note that the environment es is only read and is used
as a global constant. The function ConfA takes as parameters the expression to
check, the environment ef , the current place (initially client), the confidential-
ity level of the source code (Lub[[A]]) and the confidentiality level of the data.
4 When there is no knowledge on the security of a place, the lowest security level

should be taken.

330 Pascal Fradet, Valérie Issarny, and Siegfried Rouvrais

Checking an agent amounts to verifying at each step that the level required by
the current data (

⊔
d) and by the source code (c) is less or equal than the one

insured by the current place (es p). Furthermore, for each migration goi,j , the
confidentiality level required by the data and the code must be less or equal
than the confidentiality level insured by the network connection from place i to
j (αi,j).

ConfE : Expc → Env → Bool
ConfE [[let (r1, . . . , rn) = A D in E]] ef = let (d1, . . . , dn) = Ec[[A]] ef (Dc[[D]] ef) in

ConfE [[E]] (ef [ri ← di]) ∧
ConfA[[A]] ef client (Lub [[A]]) (Dc[[D]] ef)

ConfE [[D]] ef = true

ConfA[[X]] ef p c d = (
F

d t c) v es p ∧
Case X in
f A : ef f (ConfA[[A]] ef p c) d
goi,j A : (

F
d t c) v αi,j ∧

ConfA[[A]] ef j c d
end : true

Lub [[t A]] = (es t) t Lub [[A]]
Lub [[s A]] = Lub [[A]]
Lub [[goi,j A]] = Lub [[A]]
Lub [[end]] = ⊥

Fig. 8. Confidentiality checking

In the context of mobile agents, integrity properties, that is to say the non-
modification of data and treatments, is as important as confidentiality. Checking
integrity requirements can be specified in much the same way as confidentiality.
One difference is that once a treatment is executed on a host, it is not necessary to
check its integrity until the end of the agent’s route (whereas the confidentiality
of treatment has to be checked for the complete journey).

4 Practical Uses of the Model

For our model to be of practical interest, it should be integrated within a design
environment. At the implementation level, the environment should be based
on a platform offering both Rpc and mobile agent interactions (such as the
Grasshopper platform [5] based on Corba middleware). At an abstract level,
an environment based on architecture description language is an ideal ground
for our approach [10]. Software architecture lies at the heart of successful large

Analyzing Non-functional Properties of Mobile Agents 331

design [4]. The main contribution of this promising research area is to abstract
away from the implementation details (macroscopic view of the system) and to
mostly concentrate on the organization of the system to be specified, built and/or
analyzed. This structural model is composed of components interconnected by
connectors. The components are usually seen as processing units described by
their behaviors and interfaces whereas the connectors are an abstract way of
specifying the interaction protocols between those components.

In order to apply our approach, primitive services will be represented by
components, interactions by connectors, and the location of base services (i.e.
physical place) together with their associated attributes must be provided by the
architecture description (i.e. functionality, efficiency and security levels). Several
uses of such a framework can be considered:

– Refinement of component. Suppose that a component is specified as a com-
plex service in our abstract language. The goal of the designer might be to
refine this component into an architecture built from basic services. This
refinement can be represented as a concrete expression. In other words, our
approach can be used to choose the connectors. The naive generation of all
the possible implementations is rapidly untractable if the complex service is
not trivial. There are however admissible heuristics that permits to reduce
this complexity. For example, if a treatment always increases the size of its
inputs, then a simple mobile agent interaction will generate more bandwidth
consumption than a Rpc. Also asking for certain security properties permits
to filter out many unsafe implementations.

– Verification. Given an architecture, the designer may want to verify that
the protocols used are valid with respect to non-functional properties such
as security. The architecture can be represented as a concrete expression and
the analysis of Section 3.2 used to check the property.

– Adaptation. Given an architecture, the designer may want to change some
parameters (such as service locations, bandwidth of connections, etc.) in or-
der to meet non-functional requirements. The use of analyses in this context
is much less problematic than in the context of refinement. Most param-
eters are already fixed and the best choice for the remaining ones can be
found without combinatory explosion. For example, one may focus on op-
timal routes for fixed mobile agent in order to minimize bandwidth usage.
Similarly, the security analysis may guide the designer in the use of securized
connections, encrypted programs [14], or tamper-proof hardware, in order to
ensure a security property.

5 Conclusion

Little work has been done towards evaluating non-functional properties of mobile
agents. Some comparisons of Rpc based vs mobile agent based applications on
a given network have been done (e.g. see [6]). These approaches to performance
evaluation are purely experimental. Furthermore, they do not consider hybrid

332 Pascal Fradet, Valérie Issarny, and Siegfried Rouvrais

interactions mixing mobile agents, remote evaluations, and remote procedure
calls. To the best of our knowledge, Carzaniga, Picco, and Vigna [2] were the
first to provide some basic hints (relative to bandwidth consumption) to select
the adequate interactions. Their simple performance model was extended for
network load and execution time by Straßer and Schwehm [16] for a sequence
of mixed interactions of Rpcs and agent migrations. In our framework, these
approaches boil down to analyzing a concrete expression where the size of all
requests and replies is fixed.

Several formalisms have been proposed to model mobility. Variants of the
π-calculus (e.g. the Ambiant-calculus [1]) are very powerful models of compu-
tation. They contain an explicit notion of space composed of components (code
or physical device) that move through locations. They describe precisely the
distribution, mobility, or inter-communication of a group of agents and can pro-
vide some security checks to control the channels of communication. Their final
goal is to propose a language for modeling Internet applications. The calculus
of Sekiguchi and Yonezawa [15] is an extension of the lambda-calculus closer to
our proposal. Their goal was to describe and compare different mobile agents
movement mechanisms (like Obliq, Telescript, etc.).

The goal of our work is to analyze non-functional properties in order to
guide designers in building large distributed systems. As a first step, we found
it more reasonable to consider a simple language. On the other hand, our ap-
proach is formal and takes into account any kind of hybrid interactions. There
are many avenues for further research. One is to investigate the integration of
other service interaction protocols in our model. In [12], Picco identifies three
paradigms that can be used to design distributed applications exploiting code
mobility (i.e. remote evaluation, mobile agent, and code on demand). In code
on demand interactions the client sends a request and gets a function to be
processed locally. Modeling these applet-like interactions implies a higher-order
version of our language (i.e. services may return treatments). Other important
language extensions are non deterministic choice and iteration. In addition, more
complex inter-service dependencies could be specified by adding variables and
the let construction in the abstract language. Another plan for future work is to
consider other non-functional properties like fault tolerance and to complete the
integration of our model within a software architecture design environment. We
are currently looking at the Aster environment [7] associated with a platform
providing both mobile agent and Rpc interactions. Although some extensions
should be considered, we believe however that our approach paves the way to-
wards the systematic selection of interactions in service architectures.

Acknowledgments

This work has been partially supported by grants from the C3ds project5.

5 Control and Coordination of Complex Distributed Services. Esprit Long Term Re-
search Project Number 24962 - www.newcastle.research.ec.org/c3ds

Analyzing Non-functional Properties of Mobile Agents 333

References

[1] L. Cardelli. Abstractions for mobile computations. In Jan Vitek and Christian D.
Jensen, editors, Secure Internet Programming, Security Issues for Mobile and Dis-
tributed Objects, volume 1603 of LNCS, pages 51–94. Springer, 1999.

[2] Antonio Carzaniga, Gian Pietro Picco, and Giovanni Vigna. Designing distributed
applications with mobile code paradigms. In R. Taylor, editor, Proceedings of the
19th International Conference on Software Engineering (ICSE’97), pages 22–32.
ACM Press, may 1997.

[3] David M. Chess, Colin G. Harrison, and Aaron Kershebaum. Mobile agents:
Are they a good idea? Research report RC 19887, IBM Research Division, T. J.
Watson Research Center, Yorktown Heights, NY 10598, february 1994.

[4] David Garlan and Mary Shaw. An introduction to software architecture. In
V. Ambriola and G. Tortora, editors, Series on Software Engineering and Knowl-
edge Engineering, Vol 2, Worlds Scientific Publishing Company, pages 1–39. 1993.

[5] IKV++ GmbH. Grasshopper - www.ikv.de/products/grasshopper/index.html.
[6] L. Ismail and D. Hagimont. A performance evaluation of the mobile agent

paradigm. In Proceedings of the Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 306–313, 1999.

[7] Valérie Issarny and Titos Saridakis. Defining open software architectures for
customized remote execution of web agents. Autonomous Agents and Multi-Agent
Systems Journal. Special Issue on Coordination Mechanisms and Patterns for
Web Agents, 2(3):237–249, september 1999.

[8] Dag Johansen. Mobile agent applicability. In 2nd International Workshop on Mo-
bile Agents, MA’98, Stuttgart, Germany, volume 1477 of Lecture Notes in Com-
puter Science, pages 80–98. Springer, september 1998.

[9] Danny B. Lange and Mitsuru Oshima. Seven good reasons for mobile agents.
Communications of the ACM, Multiagent Systems on the Net and Agents in E-
commerce, 42(3):88–89, march 1999.

[10] Nenad Medvidovic and Richard N. Taylor. A framework for classifying and com-
paring architecture description languages. SIGSOFT Software Engineering Notes,
22(6):60–76, november 1997.

[11] Jonathan T. Moore. Mobile Code Security Techniques. Technical Report MS-
CIS-98-28, University of Pennsylvania, Department of Computer and Information
Science, may 1998.

[12] Gian Pietro Picco. Understanding, Evaluating, Formalizing, and Exploiting Code
Mobility. Ph.d. thesis, Politecnico di Torino, Italy, february 1998.

[13] John C. Reynolds. The discoveries of continuations. Lisp and Symbolic Compu-
tation, 6(3/4):233–248, november 1993.

[14] T. Sander and C. Tschudin. Towards mobile cryptography. In Proceedings of the
IEEE Symposium on Research in Security and Privacy, Research in Security and
Privacy, Oakland, CA, may 1998. IEEE Computer Society Press.

[15] T. Sekiguchi and A. Yonezawa. A calculus with code mobility. In Chapman and
Hall, editors, Proc. 2nd IFIP Workshop on Formal Methods for Open Object-Based
Distributed Systems (FMOODS), pages 21–36, London, 1997.

[16] Markus Straßer and Markus Schwehm. A Performance Model for Mobile Agent
Systems. In H. R. Arabnia, editor, Proceedings of the International Conference
on Parallel and Distributed Processing Techniques and Applications PDPTA’97,
pages 1132–1140, Las Vegas, 1997.

	Introduction
	Functional Models of Interactions
	Abstract Language
	Concrete Language
	From Abstract to Concrete Expressions

	Analyzing Performance and Security Properties
	Performance
	Security

	Practical Uses of the Model
	Conclusion

