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1 Overview

KIV is a tool for formal systems development. It can be employed, e.g.,

— for the development of safety critical systems from formal requirements spec-
ifications to executable code, including the verification of safety requirements
and the correctness of implementations,

— for semantical foundations of programming languages from a specification of
the semantics to a verified compiler,

— for building security models and architectural models as they are needed for
high level ITSEC [7] or CC [1] evaluations.

Special care was (and is) taken to provide strong proof support for all validation
and verification tasks. KIV can handle large scale formal models by efficient
proof techniques, multi-user support, and an ergonomical user interface. It has
been used in a number of industrial pilot applications, but is also useful as an
educational tool for formal methods courses. Details on KIV can be found in [9]
[10] [I1] and under http://www.informatik.uni-ulm.de/pm/kiv/.

2 Specification Language

KIV supports both the functional and the state-based approach to describe
hierarchically structured systems.

The functional approach uses higher-order algebraic specifications. The first-
order part is a subset of CASL [2]. Specifications are built up from elementary
specifications with the operations enrichment, union, renaming, parameteriza-
tion and actualization. Specifications have a loose semantics and may include
generation principles to define inductive data types. Specification components
can be implemented by stepwise refinement using modules with imperative pro-
grams. The designer is subject to a strict decompositional design discipline lead-
ing to modular systems with compositional correctness. As a consequence, the
verification effort for a modular system becomes linear in the number of its
modules.

For the state-based approach KIV uses abstract state machines (ASMs, [5])
over algebraically specified data types. The semantics of an ASM is the set of
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traces generated by the transition relation defined by the rules of the ASM.
ASMs are implemented using a compositional refinement notion. Correctness of
a refinement requires the commutativity of diagrams for corresponding traces.
An important instance of ASM refinement is compiler correctness, e.g. for Prolog
[13]. A modularization theorem allows to decompose the correctness proof for
each refinement into subproofs for arbitrary subdiagrams [4]. Correctness proofs
use Dynamic Logic, a program logic for imperative programs.

In KIV, formal specifications of software and system designs are represented
explicitly as directed acyclic graphs called development graphs. Each node corre-
sponds to a specification component, an ASM, a module or an ASM refinement.
Each node has a theorem base attached. Theorem bases initially contain axioms,
ASM rules and automatically generated proof obligations for refinements. The
theorem base also stores theorems added by the user (proved and yet unproved
ones), and manages proofs and their dependencies.

3 Proof Support

In KIV, proofs for specification validation, design verification, and program ver-
ification are supported by an advanced interactive deduction component based
on proof tactics. It combines a high degree of automation with an elaborate inter-
active proof engineering environment. Deduction is based on a sequent calculus
with proof tactics like simplification, lemma application, and induction for first-
order reasoning and a proof strategy based on symbolic execution and induction
for the verification of implementations with imperative programs using Dynamic
Logic [6].

To automate proofs, KIV offers a number of heuristics [L0]. Among others,
heuristics for induction, unfolding of procedure calls, and quantifier instantiation
are provided. Heuristics can be chosen freely, and changed any time during the
proof. Additionally, a ‘problem specific’ heuristic exists which is easily adaptable
to specific applications. Usually, the heuristics manage to find 80 — 100 % of the
required proof steps automatically.

The conditional rewriter in KIV (called simplifier) handles thousands of rules
very efficiently, using the compilation technique of [§] with some extensions like
AC-rewriting and forward reasoning. As the structure of a formula helps to
understand its meaning, the KIV simplifier preserves this structure. The user
explicitly chooses the rewrite and simplification rules. Different sets of simplifi-
cation rules can be chosen for different tasks.

Frequently, the problem in engineering high assurance systems is not to ver-
ify proof obligations affirmatively, but rather to interpret failed proof attempts
that may indicate errors in specifications, programs, lemmas etc. Therefore, KIV
offers a number of proof engineering facilities to support the iterative process of
(failed) proof attempts, error detection, error correction and re-proof. Dead ends
in proof trees can be cut off, proof decisions may be withdrawn both chrono-
logically and non-chronologically. Unprovable subgoals can be detected by au-
tomatically generating counter examples. This counter example can be traced
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backwards through the proof to the earliest point of failure. Thereby the user is
assisted in the decision whether the goal to prove is not correct, proof decisions
were incorrect, or there is a flaw in the specification. After a correction the goal
must be re-proved. Here another interesting feature of KIV, the strategy for
proof reuse, can be used. Both successful and failed proof attempts are reused
automatically to guide the verification after corrections [12]. This goes far be-
yond proof replay or proof scripts. We found that typically 90% of a failed proof
attempt can be recycled for the verification after correction.

The correctness management in KIV ensures that changes to or deletions of
specifications, modules, and theorems do not lead to inconsistencies, and that
the user can do proofs in any order (not only bottom up). It guarantees that
only the minimal number of proofs are invalidated after modifications, that there
are no cycles in the proof hierarchy and that finally all used lemmas and proof
obligations are proved (in some sub-specification).

4 User Interface

KIV offers a powerful graphical user interface which has been constantly im-
proved over the years. The intuitive user interface allows easy access to KIV for
first time users, and is an important prerequisite for managing large applica-
tions. The interface is object oriented, and is implemented in Java to guarantee
platform independency.

The top-level object of a development, the development graph, is displayed
using daVinci [3], a graph visualization tool which automatically arranges large
graphs conveniently. The theorem base, which is attached to each development
node, is arranged in tables, and context sensitive popup menus are provided for
manipulation. While proving a theorem, the user is able to restrict the set of
applicable tactics by selecting a context, i.e. a formula or term in the goal, with
the mouse. This is extremely helpful for applying rewrite rules, as the set of
hundreds of rewrite rules is reduced to a small number of applicable rules for
the selected context. Proofs are presented as trees, where the user can click on
nodes to inspect single proof steps.

In large applications, the plentitude of information may be confusing. There-
fore, important information is summarized, and more details are displayed on
request. Different colors are used to classify the given information. Additionally
a special font allows the use of a large number of mathematical symbols.

KIV automatically produces LaTeX documentation for a development on
different levels of detail. Specifications, implementations, theorem bases, proof
protocols, and various kinds of statistics are pretty printed. The user is encour-
aged to add comments to specifications, which are also used to automatically
produce a data dictionary. As several users may work simultaneously on a large
project, the documentation facilities of KIV are very important. The automati-
cally extracted information can also be included into reports.
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