
A Process Algebra for Real-Time Programs?

Henning Dierks

University of Oldenburg, Department of Computer Science,
P.O.Box 2503, 26111 Oldenburg, Germany,
dierks@informatik.uni-oldenburg.de

Abstract. We introduce a generalised notion of a real-time specifica-
tion language (“GPLC-Automata”) that can be translated directly into
real-time programs. In order to describe the behaviour of several GPLC-
Automata implemented on one machine we introduce composition op-
erators which form a process algebra. We give several algebraic laws
and prove that each system is equivalent to a system in a certain normal
form. Moreover, we demonstrate how a real-time specification in terms of
GPLC-Automata can be decomposed into an untimed part and a timed
part.

1 Introduction

In this paper we generalise PLC-Automata, a language to specify real-time sys-
tems that was motivated by the experiences we made in the UniForM-project
[11] with an industrial partner. This notion has been successfully applied to
specify a series of academic and industrial case studies [5].

The name stems from the fact that PLC-Automata are compilable into exe-
cutable code for “Programmable Logic Controllers” (PLC), the hardware target
of the project. For formal reasoning we presented in [4] (resp. [7]) a semantics
in terms of Duration Calculus [20, 9], an interval based temporal logic, and in
terms of Timed Automata [2].

These PLCs are very often used in practice to implement real-time systems.
The reason is that they provide both convenient methods to deal with time and
an automatic polling mechanism. Nevertheless, every computer system can be
used to implement the proposed language if a comparable handling of time and
an explicit polling is added.

The process algebra we introduce in this paper allows us to compose gen-
eralised PLC-Automata (“GPLC-Automata”) which are intended to be imple-
mented on the same PLC. In this case the automata are synchronised in a certain
way by the PLC and the process algebra gives us means to exploit this synchro-
nisation for transformations that preserve the semantics. Main benefits are a
normal form and a decomposition of a system into its timed and untimed parts.
Note that the generalisation of PLC-Automata to GPLC-Automata is necessary
because PLC-Automata are not closed under the composition operator we need.
? This research was partially supported by the Leibniz Programme of the German

Research Council (DFG) under grant Ol 98/1-1.

T. Maibaum (Ed.): FASE2000, LNCS 1783, pp. 66–81, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

A Process Algebra for Real-Time Programs 67

The main difference between the algebra proposed in this paper and existing
real-time process algebras like Timed CSP [3, 17] is that our algebra models real-
time programs including the reaction time of the executing hardware in contrast
to assumptions that synchronisation and communication may take place in 0
time units.

2 Programmable Logic Controllers

One goal of the UniForM-project [11] was to verify source code for Programmable
Logic Controllers (PLCs). This hardware is often used in industrial practice to
control real-time systems like production cells and it can be viewed as a simple
computer with a special real-time operating system. PLCs have features for
making the design of time- and safety-critical systems easier:

– PLCs have external input and output busses where sensors and actuators
can be plugged in.

– PLCs behave in a cyclic manner. Each cycle consists of the following three
phases:
Polling: In this phase the external input bus of the PLC is read and the

result is stored in special registers of the PLC. This phase is under the
control of the PLC’s operating system.

Computing: After this, the operating system of the PLC executes the
user’s program once. At this point, the program can make arbitrary
computations on the memory including the special registers for the in-
put read. Furthermore, it can change the values in special registers for
the output busses of the PLC.
Moreover, the program can use “timers” which are under the control of
the operating system. The program is allowed to set these timers with
time values and to check whether this time has elapsed or not. To this end
dedicated commands are part of all programming languages for PLCs.

Updating: In this final phase the special registers for the output busses
are read by the operating system. The read values become visible on the
output busses.

The repeated execution of this cycle is managed by the operating system.
The only part the programmer has to adapt is the computing phase.

– Depending on the program and on the number of inputs and outputs there
is an upper time bound for a cycle that can be used to calculate an upper
time bound for the reaction time.

– Convenient standardised libraries are given for the programming languages
to simplify the handling of time.

The time consumption of each cycle depends on the duration of actions of
the operating system for the polling and updating phases and the duration of the
execution of the user’s program. The duration of the operating system’s actions
depends on the number of input and output busses whereas the duration of the
program execution can consume an arbitrary amount of time.

68 Henning Dierks

max. cycle time max. cycle time max. cycle time

output values

Time

po
lli

ng computing

up
da

tin
g

po
lli

ng computing

up
da

tin
g

po
lli

ng

co
m

pu
tin

g

up
da

tin
g

po
lli

ng

PLC

Output

Input input values

Fig. 1. Cyclic behaviour of a PLC.
A cycle of a PLC consists of three phases: polling, computing, and updating.
In our setting we postulate an upper time bound for each cycle.

3 The Definition of GPLC-Automata

In this section we introduce an abstract notion of programs for PLCs. It is a
generalisation of PLC-Automata [4] which have been proposed in the UniForM
project [11] in order to serve as a common basis for computer scientists and
engineers. The idea is that we use extended state-transition diagrams to describe
the real-time behaviour of a PLC program. An example of these generalised
PLC-Automata is given in Fig. 2

The purpose of this controller is to determine the behaviour of the gas burner.
It starts in a state called “idle”; the output “out” is set to the value “id” initially.
This state holds as long as the polling yields that a Boolean input “hr” (standing
for heat request) is false. If the polling of the inputs produces “hr= true ”, then
the system has to switch to the state “purge”. When “purge” is entered a timer
called “t1” is set to the value of 30 seconds. This means that the Boolean variable
“t1” is true for the first 30 seconds after starting and false afterwards. Therefore
the system will stay in state “purge” for at least 30 seconds. A timer is equipped
with a set of states where it is activated (“activation region”). That means if the
system switches into the activation region, then the timer is started. Within the
activation region it is allowed to read the value of the timer variable.

The purpose of the “purge” state is to introduce a mandatory delay between
attempts of ignition. If such a delay is not present it could happen that several
failed attempts of ignition produce a dangerous concentration of gas. When the
“purge” state is left, the output is changed to “ig”. The state “ignite” holds for
at least one second due to timer “t2” and the definition of the transitions. If
state “burn” is entered the output is changed to “bn” and this state holds as
long as the polling of input yields that there is still a request for heat (“hr”) and
the Boolean input “fl” (standing for “flame”) indicates that a flame is present.

Figure 2 contains the equality ε = 0.2 s. This restricts the upper bound of the
cycle of the executing hardware. That means the machine has to execute a cycle

A Process Algebra for Real-Time Programs 69

�

�

�

�
ε = 0.2s

hr : In B

fl : In B

t1 : Tmr (30 s) In: {purge}
t2 : Tmr (1 s) In: {ignite}

out : Out {id , pg , ig, bn} Init: id out:=id
fl

out:=id
hr

not t2
out:=bn

out:=pg
hr

not t1
out:=ig

not hr

burn

idle

fl and hr

t1

purge

t2

ignite

t1

t2

Fig. 2. A gas burner controller as GPLC-Automaton.

within the 0.2 seconds. In the following we will formalise the notion presented
in Fig. 2 after some preliminaries.

Let Var be the set of all variables and assume that each v ∈ Var has a finite
type tv associated with. With BVar ⊆ Var we denote the set of all variables
with Boolean type.

Let V, W ⊆ Var . We call a function val that assigns to each v ∈ V a value of
type tv a valuation of V . We use V(V) to denote the set of all valuations of V .
If V ∩W = ?, val ∈ V(V), and val ′ ∈ V(W) we define the composed valuation
val ⊕ val ′ ∈ V(V ∪W) as follows:

(val ⊕ val ′)(v) df=
{

val (v), if v ∈ V
val ′(v), if v ∈ W

A generalised PLC-Automaton is in principle an automaton with a finite
number of states and several typed variables which are either input, local, or
output. Moreover, timer variables (of type Boolean) are allowed. To each timer
we assign a running time and a set of states where the timer is active. An upper
bound for the cycle time is also included.

Definition 1 (GPLC-Automaton). A generalised PLC-Automaton (GPLC-
Automaton) is a structure G = (Q, Σ, L, T, Ω, −−−−→ , g0, ε, Ξ, Θ) where

– Q is a nonempty, finite set of states.
– Σ ⊆ Var is a finite set of input variables.
– L ⊆ Var is a finite set of local variables.
– T ⊆ BVar is a finite set of timer variables.
– Ω ⊆ Var is a finite set of output variables.
– −−−−→ is a function of type Q×V(L∪Ω)×V(Σ)×V(T)−→ 2Q×V(L∪Ω)\{?}

that describes the transition relation.
– ? 6= g0 ⊆ Q × V (L ∪ Ω) is the initial condition, which restricts the initial

state and the initial values of the local variables and output variables.
– ε > 0 is the upper time bound for a cycle.
– Ξ is a function of type T −→ 2Q assigning to each timer variable a set of

states, where this timer is activated (activation function), and

70 Henning Dierks

– Θ is a function of type T −→ R>0 assigning to each timer variable a running
time.

Furthermore Σ, L, T , and Ω are disjoint and the well-formedness condition

∀q ∈ Q, v ∈ V(L ∪Ω), ϕ ∈ V(Σ), τ1, τ2 ∈ V(T) : (1)
τ1|{t∈T |q∈Ξ(t)} = τ2|{t∈T |q∈Ξ(t)} =⇒ −−−−→ (q, v, ϕ, τ1) = −−−−→ (q, v, ϕ, τ2)

has to hold which says that timer which are not active cannot influence the
behaviour of the system.

We will use the notation (q, v) ϕ,τ−−−−→ G(q′, v′) for q, q′ ∈ Q, v, v′ ∈ V(L ∪ Ω),
ϕ ∈ V(Σ), and τ ∈ V(T) if (q′, v′) ∈ −−−−→ G(q, v, ϕ, τ).

Note that we allow a set of initial states and do not need a notion of final
states since the polling systems are intended to run infinitely. The definition of
the transition relation postulates that there is at least one allowed reaction but
there may be several choices. In case that the transition relation allows more
than one transition the system may choose a transition nondeterministically.

The Boolean timer variables T can be used to measure the time. If tmr ∈ T
is a timer variable with activation region Ξ(tmr) ⊆ Q, then it carries the value
true if the systems stayed less than Θ(tmr) seconds in the activation region. It
carries the value false if Θ(tmr) seconds have elapsed in the activation region.

Note that in Fig. 2 a syntax for both guards and actions annotated to tran-
sitions is given. Here we omit the formal definition of syntax and semantics of
both since they are straightforward.

The operational behaviour of a GPLC-Automaton as in the definition above
is as follows: in each cycle the system stores the polled input values in the
variables of Σ. If there are more than one possible transition for the current
state, the current valuation of the input variable, timer variables, local variables,
and output variables, then the system chooses nondeterministically one of these
transitions. Finally, the cycle is finished and the values of the output variables
become visible from the outside.

In [5] it is shown how to generate systematically executable source code from
GPLC-Automata for PLCs. The semantics that will be presented in the following
section describes the behaviour of the PLC executing the source code within the
given upper bound for the cycle time. The analysis whether a given PLC is able
to execute the source code generated is not difficult since no loops or jumps are
necessary for the implementation.

4 The Timed Automaton Semantics of GPLC-Automata

In this section we present an operational semantics of GPLC-Automata in terms
of Timed Automata. For the definition of Timed Automata the reader is referred
to App. A. We first present the components of the Timed Automaton T (G) that
is associated to a given GPLC-Automaton G, and then give some intuition.

A Process Algebra for Real-Time Programs 71

Each location1 of T (G) is a 6-tuple (i, ϕ, φ, q, π, τ), where

i ∈ {0, 1, 2} describes the current status of the PLC (“program counter”),
ϕ ∈ V(Σ) contains the current input valuation,
φ ∈ V(Σ) contains the last input valuation that has been polled,
q ∈ Q is the current state of the GPLC-Automaton,
π ∈ V(L ∪Ω) is the current valuation of local and output variables, and
τ ∈ V(T) is the last timer valuation that has been tested.

There are three kinds of clocks in use:

x measures the time for which the current latest input valuation is stable,
yt measures the time that has elapsed since the latest start of timer t, and
z measures the time elapsed in the current cycle of the PLC.

The idea of the program counter for GPLC-Automata is to model the internal
status of the polling device. If the program counter is 0, then the polling has
not happened in the current cycle. The change from 0 to 1 ((GTA-2) in Table 1)
represents the polling of the system and hence we copy the second component
of the location to the third. This is not allowed if the current input valuation
has changed at the same point of time. Therefore we have to test whether the
x-clock is greater than 0. This clock is reset whenever the environment changes
the input valuation (GTA-1).

If the program counter is 1, then the polling has happened and the computa-
tion takes place. However, the result of the computation will not be visible before
the cycle ends (cf. Fig. 1). For the semantics it is important which valuation of
the timer variables was valid when the computing phase took place. Therefore,
we will record this valuation in the sixth component in the location of the Timed
Automaton (GTA-3). If the program counter has value 2, then the computation
is finished and the updating phase takes place. When this phase is left and the
counter is set to 0 again, the cycle ends and we change the state, local variables,
and output variables accordingly (GTA-4).

Definition 2 (Timed Automata semantics of GPLC-Automata). Let
G = (Q, Σ, L, T, Ω, −−−−→ , g0, ε, Ξ, Θ) be a GPLC-Automaton. We define T (G)
to be the Timed Automaton (S,X ,L, E , IV ,P , µ, S0) with

– S df= {0, 1, 2} × V(Σ)× V(Σ)×Q× V(L ∪Ω)× V(T) as locations,
– X df= {x, z} ∪ {yt|t ∈ T } as clocks,
– L df= V(Σ) ∪ {poll , test , tick} as labels,
– the set of edges E is given in Table 1,
– IV(s) df= z ≤ ε as invariant for each location s ∈ S,
– P df= {obs = v|obs ∈ Σ ∪ L ∪Ω}, v ∈ tobs} as the set of propositions,

1 Note that the notion “locations” refers to the Timed Automaton and the notion
“states” to the GPLC-Automaton.

72 Henning Dierks

(i, ϕ, φ, q, π, τ) ϕ′,true,{x}−−−−−−−→ (i, ϕ′, φ, q, π, τ) (GTA-1)

(0, ϕ, φ, q, π, τ) poll,0<x∧0<z,?−−−−−−−−−−→ (1, ϕ, ϕ, q, π, τ) (GTA-2)

(1, ϕ, φ, q, π, τ) test,C(q,τ ′),?−−−−−−−−→ (2, ϕ, φ, q, π, τ ′) (GTA-3)

(2, ϕ, φ, q, π, τ) tick ,true,RS(q,q′)∪{z}−−−−−−−−−−−−−−−→ (0, ϕ, φ, q′, π′, τ) (GTA-4)

with (q, π) φ,τ−−−−→ G(q′, π′)

Table 1. Transitions of the Timed Automaton T (G).
with i ∈ {0, 1, 2}, ϕ, ϕ′, φ ∈ V(Σ), q, q′ ∈ Q, π, π′ ∈ V(L ∪ Ω), τ, τ ′ ∈ V(T),

C(q, τ)
df
=
^

q∈Ξ(t)
τ(t)

yt < Θ(t) ∧
^

q∈Ξ(t)
¬τ(t)

yt ≥ Θ(t), and

RS(q, q′) df
= {yt|t ∈ T, q′ ∈ Ξ(t), q /∈ Ξ(t)}

– µ(i, ϕ, φ, q, π, τ) df= {σ = ϕ(σ)|σ ∈ Σ} ∪ {obs = π(obs)|obs ∈ L ∪ Ω} as the
propositions for each location (i, ϕ, φ, q, π, τ) ∈ S,

– S0
df= {(0, ϕ, φ, q, π, τ) ∈ S|(q, π) ∈ g0} as set of initial locations.

In [5] an alternative semantics in terms of the interval based temporal logic
Duration Calculus [20, 9] was presented. In contrast to the Timed Automaton
semantics above which is of operational kind, the Duration Calculus semantics
for GPLC-Automata is of denotational kind. It was shown that both semantics
are equivalent in an appropriate sense. The advantage of the Timed Automaton
semantics is that it is easier to understand and that Model-Checkers for Timed
Automata are applicable to GPLC-Automata. The advantage of the Duration
Calculus semantics is that logical reasoning is easier. In [6] a synthesis procedure
for GPLC-Automata was presented and proved to be correct with the help of
the logical semantics.

5 A Process Algebra for GPLC-Automata

In this section we present operators to compose GPLC-Automata which are im-
plemented on the same PLC. The most important operator is the sequential
composition (“G1;G2”). The name stems from the fact that the computation of
the composition is done by the computation of G1 first and second the computa-
tion of G2 in the same cycle of the implementing PLC (cf. Fig. 3). Note that we
assume that the cycle time of a composition is at least as fast as the cycle times
of the composed component. The reason is that in this case we get the property
that an automaton G in sequential composition with an arbitrary automaton is
still a refinement of the G.

When we define the sequential composition we have to consider that inputs
of one automaton which are triggered by outputs of the other automaton have
to be handled in a different way than usual inputs. The reason is that polling is

A Process Algebra for Real-Time Programs 73

1G

G1

G2

G1

G2

G1

G2

output values

Time

po
lli

ng

up
da

tin
g

po
lli

ng

up
da

tin
g

po
lli

ng

up
da

tin
g

po
lli

ng

PLC

Output

Input input values

comp. comp. comp.comp. c. c.

2 1 2 1 2

max. cycle time of

max. cycle time of

max. cycle time of

max. cycle time of

max. cycle time of

G G G G G

max. cycle time of

Fig. 3. Cyclic behaviour of G1;G2.

not necessary because the information is always present in the PLC. Therefore,
we have three cases of inputs for the sequential composition G1;G2:

– the input is not an output of the other automaton. In this case the input
values are determined by the polling phase.

– the input of G1 is triggered by an output of G2. Here the input value is
determined by the corresponding output value of G2 in the previous cycle.

– the input of G2 is triggered by an output of G1. In this case the input value
is determined by the corresponding output value of G1 in the current cycle.

Definition 3 (Sequential composition). Let Gi be GPLC-Automata with
Gi = (Qi, Σi, Li, Ti, Ωi, −−−−→ i, g0,i, εi, Ξi, Θi) for i = 1, 2 and disjoint vari-
able sets L1, L2, T1, T2, Ω1, Ω2 and Σi ∩ (L3−i ∪ T3−i) = ? for i = 1, 2. We call
the GPLC-Automaton

G1;G2 = (Q1 ×Q2, Σ, L1 ∪ L2, T1 ∪ T2, Ω1 ∪Ω2, −−−−→ , g0, ε, Ξ, Θ)

the sequential composition of G1 and G2 iff

Σ = (Σ1 ∪Σ2) \ (Ω1 ∪Ω2)

−−−−→ ((q1, q2), v, ϕ, τ) = {((q′1, q′2), v′) ∈ Q× V(L ∪Ω)|
(q1, v|L1∪Ω1) (ϕ⊕v)|Σ1 ,τ |T1−−−−−−−−−→ 1

(q′1, v
′|L1∪Ω1) ∧

(q2, v|L2∪Ω2) (ϕ⊕v′)|Σ2 ,τ |T2−−−−−−−−−−→ 2
(q′2, v

′|L2∪Ω2)

g0 = {((q1, q2), v) ∈ Q× V(L ∪Ω)|∀i : (qi, v|Li∪Ωi) ∈ g0,i}
ε = min{εi|i = 1, 2}

Ξ(tmr) =
{

Ξ1(tmr)×Q2, if tmr ∈ T1

Q1 ×Ξ2(tmr), if tmr ∈ T2

Θ = Θ1 ⊕Θ2

74 Henning Dierks

This definition of sequential composition assumes that the interface between the
automata is given by the sets Σ1 ∩Ω2 (inputs of G1 connected with outputs of
G2) and Σ2∩Ω1 (inputs of G2 connected with outputs of G1). This concept of an
interface definition by equality of names may be too weak. Moreover, we cannot
express that we want to connect an input with an output of the same automaton
or that we want to hide an output and conceive it as local.

Hence, we define ways to change the interface, i.e., the set of inputs and
the set of outputs. First, we introduce renaming of inputs where it is possible
to replace the current names of the inputs by other names. It is even possible
to choose locals and outputs as new name for inputs. In this case the input is
removed from the external interface.

Definition 4 (Renaming of inputs). Consider a GPLC-Automaton G =
(Q, Σ, L, T, Ω, −−−−→ , g0, ε, Ξ, Θ) and a function f with domain Σ which is
type consistent (∀σ ∈ Σ : tσ = tf(σ)) and which does not map into the timers
(f(Σ) ∩ T = ?). Then we call the automaton

f :G df= (Q, f(Σ) \ (L ∪Ω), L, T, Ω, −−−−→ f , g0, ε, Ξ, Θ)

the automaton G renamed by f where

(q, v) ϕ,τ−−−−→ f (q′, v′) iff (q, v) (ϕ⊕v)◦f,τ−−−−−−→ (q′, v′)

With the next definition we allow to remove outputs from the interface. This
transformation is called “hiding”. The hidden outputs are shifted into the set of
locals:

Definition 5 (Hiding of outputs).
Let G = (Q, Σ, L, T, Ω, −−−−→ , g0, ε, Ξ, Θ) be a GPLC-Automaton and H ⊆ Ω.
We call the automaton

G \H
df= (Q, Σ, L ∪H, T, Ω \H, −−−−→ , g0, ε, Ξ, Θ)

the automaton G with hidden outputs H.

In the following we examine some properties of the operations defined above.
To this end we define a notion of refinement and equivalence in usual man-
ner. This definition employs a notion of simulation for Timed Automata that is
defined in App. A.

Definition 6 (Refinement and equivalence). Let G1,G2 be GPLC-Automa-
ta with Σ1 ∪L1 ∪Ω1 ⊇ Σ2 ∪L2 ∪Ω2 and L1 ∪Ω1 ⊇ L2 ∪Ω2. We say that G1 is
a refinement of G2 (in symbols: G1 ≡> G2) iff

T (G1) .β T (G2)

with

β({obs =val(obs) | obs ∈ Σ1 ∪ L1 ∪Ω1})
= {obs =val(obs) | obs ∈ Σ2 ∪ L2 ∪Ω2}

for each valuation val ∈ V(Σ1 ∪ L1 ∪Ω1).

A Process Algebra for Real-Time Programs 75

If G1 ≡> G2 and G2 ≡> G1 hold we say that G1 and G2 are equivalent. In
symbols: G1 ≡ G2. It is clear how to lift ≡> and ≡ to composed systems.

Note that equivalence of G1 and G2 implies Σ1 = Σ2.

Lemma 1 (Algebraic rules). Let G,G1,G2,G3 be GPLC-Automata. It holds:

Associativity of sequential composition:
G1; (G2;G3) ≡ (G1;G2);G3 (2)

Monotonicity: (ΣG1 = ΣG2 , LG1 = LG2 , TG1 = TG2 , ΩG1 = ΩG2)
G1 ≡ G2 =⇒ G1 \H ≡ G2 \H provided that G1 \H is legal (3)

=⇒ f :G1 ≡ f :G2 provided that f :G1 is legal (4)
=⇒ G1;G ≡ G2;G provided that G1;G is legal (5)
=⇒ G;G1 ≡ G;G2 provided that G;G1 is legal (6)

Commutativity of sequential composition:
G1;G2 ≡ G2;G1 if ΣG1 ∩ΩG2 = ΣG2 ∩ΩG1 = ? (7)

Refinement by sequential composition:
G1;G2 ≡> G1 (8)
G1;G2 ≡> G2 (9)

Concatenation of renamings: (dom(f) = ΣG, dom(f ′) = Σf:G)

f ′ : (f :G) ≡ f ′′ :G with f ′′(σ) =
{

f ′(f(σ)), if f(σ) ∈ dom(f ′)
f(σ), if f(σ) /∈ dom(f ′) (10)

Concatenation of hidings: (H ⊆ ΩG , H ′ ⊆ ΩG \H)
(G \H) \H ′ ≡ G \ (H ∪H ′) (11)

Hiding and sequential composition: (Hi ⊆ ΩGi , H ⊆ ΩG1 ∪ΩG2)
(G1 \H1);G2 ≡ (G1;G2) \H1 where H1 ∩ΣG2 = ? (12)
G1; (G2 \H2) ≡ (G1;G2) \H2 where H2 ∩ΣG1 = ? (13)
(G1;G2) \H ≡ ((G1 \ (H \ΣG2)); (G2 \ (H \ΣG1))) \ (H ∩ (ΣG1 ∪ΣG2)) (14)

Hiding and renaming: (dom(f) = ΣG, H ⊆ ΩG)
f : (G \H) ≡ (f :G) \H (15)

Renaming and sequential composition: (dom(f) = ΣG1;G2 , dom(fi) = ΣGi)
f : (G1;G2) ≡ ((idΣG1∩ΩG2

⊕ f |ΣG1\ΩG2
) :G1); (16)

((idΣG2∩ΩG1
⊕ f |ΣG2\ΩG1

) :G2)

(f1 :G1);G2 ≡ (f1|ΣG1\f
−1
1 (ΩG2) ⊕ idΣG2\ΩG1

) : (17)

(((f1|f−1
1 (ΩG2) ⊕ idΣG1\f

−1
1 (ΩG2)) :G1);G2)

G1; (f2 :G2) ≡ (f2|ΣG2\f
−1
2 (ΩG1) ⊕ idΣG1\ΩG2

) : (18)

(G1; ((f2|f−1
2 (ΩG1) ⊕ idΣG2\f

−1
2 (ΩG1)) :G2))

76 Henning Dierks

Proof. of (8): It is clear from the definition of sequential composition that

ΣG1;G2 ∪ LG1;G2 ∪ΩG1;G2 = (Σ1 ∪Σ2) \ (Ω1 ∪Ω2) ∪ L1 ∪ L2 ∪Ω1 ∪Ω2

⊇ Σ1 ∪ L1 ∪Ω1

Also clear is LG1;G2 ∪ ΩG1;G2 ⊇ L1 ∪ Ω1. Hence, the requirements of Def. 6
are fulfilled. We have to construct for each run of T (G1;G2) a run of T (G1)
with the same time stamps and the same propositions. Let ((sj , vj , tj)j∈N0) ∈
R(T (G1;G2)). Due to the definition of the sequential composition we know that
the clock valuations vj are functions with domain {x, z} ∪ {yt|t ∈ T1 ∪ T2}.
Let v′j = vj |{x,z}∪{yt|t∈T1} the restriction of vj to the clocks of T (G1). Due to
the definitions we can conclude that sj = (ij , ϕj , φj , qj , πj , τj) with ij ∈ {0, 1, 2},
ϕj , φj ∈ V(ΣG1;G2), qj ∈ Q1×Q2, πj ∈ V(L1∪L2∪Ω1∪Ω2), and τj ∈ V(T1∪T2).
We construct the states s′j as follows:

s′j = (ij, (ϕj ⊕ πj)|Σ1 , (φj ⊕ π′(j))|Σ1 , p1(qj), πj |L1∪Ω1 , τj |T1)

with π′(j) = πmax{k∈N0|k≤j,ik=1}

It is simple to verify that ((s′j , v
′
j , tj)j∈N0) is a run of T (G1) with the property

β(µT (G1;G2)(sj)) = β({obs =val(obs) | obs ∈ ΣG1;G2 ∪ LG1;G2 ∪ΩG1;G2})
= {obs =val (obs) | obs ∈ ΣG1 ∪ LG1 ∪ΩG1}
= µT (G1)(s′j)

Theorem 1 (Normal form). Each system that is composed by sequential com-
position, renaming, and hiding is equivalent to a system of the form

((f1 :G1); . . . ; (fn :Gn)) \H

with appropriate GPLC-Automata G1, . . . ,Gn, renaming functions f1, . . . , fn and
H.

Proof. First note that (10), (11), (12), (13), (15), and (16), are all of the form
Gleft ≡ Gright with Σleft = Σright , Lleft = Lright , Tleft = Tright , and Ωleft =
Ωright . Therefore, the requirements of the monotonicity laws (3)–(6) are fulfilled.
Hence, the above formulas are applicable to arbitrary subsystems of a composed
system. To reach the normal form we first shift all hidings to the outermost
position. To achieve this we can apply (12), (13), and (15) as long as possible.
Then apply (11) to summarise all hidings in one operation. Then use (16) to
shift the renamings to the innermost positions. Equivalence (10) can be applied
to reach the normal form we desire.

Theorem 2 (Decomposition of timers). Let G be a GPLC-Automaton
with G = (Q, Σ, L, T, Ω, −−−−→ , g0, ε, Ξ, Θ) and t ∈ T . Then holds G ≡

A Process Algebra for Real-Time Programs 77

(Timer εG
t ;G−t) \ {act , runs} where act and runs are fresh variables of Boolean

type. The GPLC-Automaton G−t is defined as follows:

G−t
df= (Q, Σ ∪ {runs}, L, T \ {t}, Ω ∪ {act}, −−−−→ ′, g′0, ε, Ξ|T\{t}, Θ|T\{t})

with

g′0
df= {(q, π)|(q, π|L∪Ω) ∈ g0, π(act) ⇐⇒ q ∈ Ξ(t)}

−−−−→ ′(q, π, σ, τ) df= {(q′, π′)|π′(act) ⇐⇒ q′ ∈ Ξ(t),

(q, π|L∪Ω) σ|Σ ,(τ⊕(t7→σ(t)))}−−−−−−−−−−−−→ (q′, π′|L∪Ω).

The automaton Timer εG
t is given in Fig. 4.

�

�

�

�
ε = εG

act : In B

runs : Out B Init: true
t1 : Tmr (Θ(t) s) In: {a}
t2 : Tmr (Θ(t) s) In: {b}

a

t2

b

t1

run:=t1
act

run:=t2
act

not act

not act

Fig. 4. Automaton Timer εG
t .

The idea of this decomposition is to replace a timer t of an automaton G
by a Boolean input (runs) that is triggered by another automaton (Timer εG

t).
The latter gets the information whether the reduced G is in the activation region
of t by the Boolean channel act . Since Timer εG

t is executed before the reduced
automaton G−t is executed, Timer εG

t has to anticipate that G−t changes into
the activation region the in current cycle. Hence, Timer εG

t starts in each cycle a
timer with the same time as t as long as G−t is not in the activation region of t.

6 Application Example

In this section we apply the process algebra to the gas burner GPLC-Automaton
GB given in Fig. 2. In order to control the gas valve we assume that another
automaton (“gas”) computes the signal for the valve depending on the output of
GB . This automaton is given in Fig. 5. Analogously we assume that a controller
(“ign”) is given to control the ignition of the flame (cf. Fig. 5).

If we consider an alternative implementation where the variables ignition and
gas are manipulated directly like the way as given in Fig. 6, the question arises
whether both ways are equivalent. The answer is positive, ie. in symbols:

(GB ; ign ; gas) \ {out} ≡ GB ′ ≡ (GB ; gas ; ign) \ {out}.
By the decomposition theorem it is also possible to extract a controller which
does not use timers:

GB ′ ≡ (Timer0.2
t1 ;Timer0.2

t2︸ ︷︷ ︸
timed

; (GB ′
−t1)−t2︸ ︷︷ ︸

untimed

) \ {act t1, act t2, runst1, runst2}

78 Henning Dierks

�

�

�

�
ε = 0.2s

out : In {id , pg , ig, bn}
gas : Out B Init: false

a

gas:= (out==ig or out==bn)
true

�

�

�

�
ε = 0.2s

out : In {id , pg , ig , bn}
ignition : Out B Init: false

a

ignition:= out==ig
true

Fig. 5. Controller gas (LHS) and ign (RHS).

7 Conclusion

We introduced several composition operators for GPLC-Automata which are
implemented on the same PLC. These definitions were motivated by the observ-
able behaviour of the real machine executing the source code produced from
the GPLC-Automata. Due to the equivalences that are proved in this paper we
are allowed to transform a system into a normal form and/or into timed and
untimed parts.

In the future we plan to exploit these results to improve the model-checking
of PLC-Automata. In Moby/PLC [8, 18], a tool suite for PLC-Automata, it
is possible to translate a system of PLC-Automata into its Timed Automaton
semantics in the syntax of the model-checkers Uppaal [12] and Kronos [19].
With the help of the process algebra given in this paper we expect to improve
this translation such that the system become smaller and hence faster to check.
The reason is that the current translation of GPLC-Automata systems does not
exploit the information whether two automata are in sequential composition.
Hence, it introduces for each automaton the clocks x and z. If it would exploit
the information it could save two clocks per sequential composition.
Acknowledgements: The author thanks E.-R. Olderog, J. Hoenicke, and other
members of the “semantics group” in Oldenburg for detailed comments and
various discussions on the subject of this paper. Furthermore, he likes to thank
the anonymous referees for the valuable hints to improve the paper.

�

�

�

�
ε = 0.2s

hr : In B

fl : In B

t1 : Tmr (30 s) In: {purge}
t2 : Tmr (1 s) In: {ignite}

gas : Out B Init: false
ignition : Out B Init: false

not t1

t1

purge

t2

ignite

t1

t2

gas:=true;
ignition:=true;

not t2
ignition:=false

not hr

burn

idle

fl and hr

gas:=false
hr

gas:=false
fl

hr

Fig. 6. An alternative controller GB ′ for the gas burner.

A Process Algebra for Real-Time Programs 79

References

[1] R. Alur, C. Courcoubetis, and D. Dill. Model-Checking for Real-Time Systems.
In Fifth Annual IEEE Symp. on Logic in Computer Science, pages 414–425. IEEE
Press, 1990.

[2] R. Alur and D.L. Dill. A theory of timed automata. TCS, 126:183–235, 1994.

[3] J.W. Davies and S.A. Schneider. A Brief History of Timed CSP. TCS, 138, 1995.

[4] H. Dierks. PLC-Automata: A New Class of Implementable Real-Time Automata.
In M. Bertran and T. Rus, editors, ARTS’97, volume 1231 of LNCS, pages 111–
125, Mallorca, Spain, May 1997. Springer.

[5] H. Dierks. Specification and Verification of Polling Real-Time Systems. PhD
thesis, University of Oldenburg, July 1999.

[6] H. Dierks. Synthesizing Controllers from Real-Time Specifications. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, 18(1):33–43,
1999.

[7] H. Dierks, A. Fehnker, A. Mader, and F.W. Vaandrager. Operational and Logical
Semantics for Polling Real-Time Systems. In Ravn and Rischel [16], pages 29–40.

[8] H. Dierks and J. Tapken. Tool-Supported Hierarchical Design of Distributed
Real-Time Systems. In Proceedings of the 10th EuroMicro Workshop on Real
Time Systems, pages 222–229. IEEE Computer Society, June 1998.

[9] M.R. Hansen and Zhou Chaochen. Duration Calculus: Logical Foundations. For-
mal Aspects of Computing, 9:283–330, 1997.

[10] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic Model Checking for
Real-Time Systems. Information and Computation, 111:193–244, 1994.

[11] B. Krieg-Brückner, J. Peleska, E.-R. Olderog, D. Balzer, and A. Baer. UniForM
— Universal Formal Methods Workbench. In U. Grote and G. Wolf, editors, Sta-
tusseminar des BMBF Softwaretechnologie, pages 357–378. BMBF, Berlin, March
1996.

[12] K.G. Larsen, P. Petterson, and Wang Yi. Uppaal in a nutshell. Software Tools
for Technology Transfer, 1(1+2):134–152, December 1997.

[13] O. Maler and A. Pnueli. Timing Analysis of Asynchronous Circuits using Timed
Automata. In Proc. CHARME’95, volume 987 of LNCS, pages 189–205. Springer,
1995.

[14] O. Maler and S. Yovine. Hardware Timing Verification using Kronos. In Proc. 7th
Conf. on Computer-based Systems and Software Engineering. IEEE Press, 1996.

[15] X. Nicollin, J. Sifakis, and S. Yovine. Compiling Real-Time Specifications into
Extended Automata. IEEE Transactions on Software Engineering, 18(9):794–804,
September 1992.

[16] A.P. Ravn and H. Rischel, editors. Formal Techniques in Real-Time and Fault-
Tolerant Systems, volume 1486 of LNCS, Lyngby, Denmark, September 1998.
Springer.

[17] S.A. Schneider. An Operational Semantics for Timed CSP. Information and
Computation, 116:193–213, 1995.

[18] J. Tapken and H. Dierks. MOBY/PLC – Graphical Development of PLC-
Automata. In Ravn and Rischel [16], pages 311–314.

[19] S. Yovine. Kronos: a verification tool for real-time systems. Software Tools for
Technology Transfer, 1(1+2):123–133, December 1997.

[20] Zhou Chaochen, C.A.R. Hoare, and A.P. Ravn. A Calculus of Durations. IPL,
40/5:269–276, 1991.

80 Henning Dierks

A Timed Automata

Timed automata are an automaton-based mathematical model for real-time sys-
tems. Although the basic concepts are very similar, various definitions of syntax
and semantics can be found in the literature [1, 15, 2, 10, 13, 14]. Here we use a
variant of timed automata that is defined in [14]:
Definition 7 (Timed Automaton). A timed automaton T is a structure
(S,X ,L, E , IV ,P , µ, S0) where:
– S is a finite set of locations,
– X is a finite set of real-valued variables called clocks whose values increase

uniformly with time,
– L is a finite set of labels.
– E is a finite set of edges of the form e = (s, L, φ, ρ, s′), or alternatively

written as s L,φ,ρ−−−−→ s′, where s, s′ ∈ S, L ∈ L, φ is a clock constraint,
generated by the grammar φ ::= x + c ≤ d | c ≤ x + d | x + c ≤ y +
d | ¬φ | φ1 ∧ φ2 with x, y ∈ X and c, d ∈ R, and ρ ⊆ X is the set of clocks
which are to be reset to 0 by the transition,

– IV assigns to each location a clock constraint that serves as an invariant
within the location,

– P is a finite set of atomic propositions,
– µ is a labelling of the locations with a set of atomic propositions over P,
– S0 ⊆ S is the set of initial locations.

Usually only natural numbers are allowed as constants in the clock constraints,
but in order to associate a timed automaton to each PLC-Automaton our def-
inition allows for real-valued constants. The price we have to pay is that we
cannot model-check this kind of timed automata. However, as long as the PLC-
Automaton uses only discrete delays and a discrete cycle time, the corresponding
timed automaton semantics uses only discrete time constants, too.
Definition 8 (Run of a timed automaton). A run of T is an infinite se-
quence r = ((si, vi, ti))i∈N0 where, for each i ∈ N0 , si ∈ S is a location,
vi ∈ X −→ R≥0 is a valuation of the clocks, ti ∈ R≥0 is a time stamp, and
r satisfies the following properties:
– the initial location is contained in S0: s0 ∈ S0, initially all the clocks have

value 0: ∀x ∈ X : v0(x) = 0, time starts at 0: t0 = 0,
– the sequence of time stamps is monotonic and diverging: ti ≤ ti+1, for all

i ∈ N0 , and limi−→∞ ti = ∞,
– for all i ∈ N0 the invariant IV(si) is fulfilled during [ti, ti+1]: ∀0 ≤ t ≤

ti+1 − ti : IV(si)(vi + t) with (vi + t)(x) df= vi(x) + t for all x ∈ X and
IV(s)(v) denoting the evaluation of the constraint IV(s) at valuation v,

– for all i ∈ N0 there is an edge e = (si, L, φ, ρ, si+1) such that
• clock constraint φ holds at time ti+1: φ(vi + ti+1 − ti), and
• valuation vi+1 is updated according to ρ: ∀x ∈ X : vi+1(x) = 0 if x ∈ ρ

and vi(x) + ti+1 − ti if x /∈ ρ

By R(T) we denote the set of runs of a timed automaton T .

A Process Algebra for Real-Time Programs 81

Definition 9 (Simulation, bisimulation). Let Ti be Timed Automata with
Ti = (Si,Xi,L, Ei, IV i,Pi, µi, S0,i) for i = 1, 2 and let β be a function of type
µ1(S1) −→ µ2(S2). We say that T2 is a simulation of T1 with respect to β (in
symbols: T1 .β T2) iff holds:

∀((s1
j , v

1
j , tj)j∈N0) ∈ R(T1) :

∃((s2
j , v

2
j , tj)j∈N0) ∈ R(T2) : ∀j ∈ N0 : β(µ1(s1

j)) = µ2(s2
j)

We say that T1 is a bisimulation of T2 with respect to β (in symbols: T1 tβ T2)
iff β is a bijection, T1 .β T2 and T2 .β−1 T1.

	Introduction
	Programmable Logic Controllers
	The Definition of GPLC-Audiscretionary {-}{}{}tomdiscretionary {-}{}{}adiscretionary {-}{}{}ta
	The Timed Automaton Semantics of GPLC-Audiscretionary {-}{}{}tomdiscretionary {-}{}{}adiscretionary {-}{}{}ta
	A Process Algebra for GPLC-Audiscretionary {-}{}{}tomdiscretionary {-}{}{}adiscretionary {-}{}{}ta
	Application Example
	Conclusion
	Timed Automata

