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Abstract

In this paper we present a tool for the simulation of fluid models of high-speed telecom-
munication networks. The aim of such a simulator is to evaluate measures which can not
be obtained through standard tools in reasonable time or through analytical approaches.
We follow an event-driven approach in which events are associated with rate changes in
fluid flows. We show that, under some loose restrictions on the sources, this suffices to ef-
ficiently simulate the evolution in time of fairly complex models. Some examples illustrate
the utilization of this approach and the gain that can be observed over standard simulation
tools.
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1 Introduction

Computer networks continue to evolve, increasing in size and complexity. When
we have to analyze some aspect of the behavior of an existing network or to de-
sign a new one, the most widely used tool is simulation, both because of its power
in representing virtually every possible mechanism and system, and because of its
flexibility. The main price to pay is in programming and computation costs: simula-
tion programs are usually difficult to develop; besides, they may need large amounts
of resources in time and sometimes also in space. The best alternative to simula-
tion is to use analytical techniques. In general, they offer the advantages of being
several orders of magnitude less expensive to apply and, moreover, of frequently
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leading to a deeper insight into the properties of the analyzed system. The draw-
back of analytical methods is that they require conditions on the models that are
often hard to satisfy. A third possibility is to use numerical techniques, which usu-
ally range between simulation and analytical methods, in terms of cost and required
assumptions.

In this paper we are interested in the analysis by simulation of high-speed commu-
nication networks, in order to quantify important aspects of their behavior. These
aspects include performance, dependability and quality of service properties. Com-
munication networks are examples of very complex systems, where simulation
is the only tool able to analyze in some detail the associated mechanisms. More
specifically, we are interested in the behavior of communication networks where
information is sent in discrete units, with complex scheduling mechanisms and in-
teractions between different components of the system, and using realistic models
of sources. Our references are ATM networks transportingcells and IP networks
where the information travels inpackets(see, for instance, [25]). The classical ap-
proach to simulate such a system is to follow the event-driven approach where
each message (cell, packet) is represented in the model, together with its evolution
through the different nodes [7]. If we consider now a high-speed network, we easily
see the problem that may arise when millions or billions of units must be generated
and moved through the simulated model. For instance, to validate a design in the
ATM area, where the engineer must check that the loss probability of a flow arriv-
ing at a specific switch is of the order of 10�9, at least hundreds of billions of cells
should be sent to the switch in order to obtain a minimal accuracy on the result.

To deal with this problem, a possible approach is to try more sophisticated simula-
tion techniques that can lead to the same precision with less computational effort
(importance sampling, splitting, etc.; see for instance [6], or a more general refer-
ence like [4]). The drawback here is similar to that of analytical methods, though
less restrictive: the applicability conditions can be too hard to fit. For instance, some
techniques of this kind only concern Markov models, whereas others work only for
single queues of some particular class.

The approach chosen in this paper is the simulation of continuous-state models
(fluid models), where the flow of discrete units traveling through the links, and
stored in the buffers, is replaced by fluids going from one container to another.
This can lead to a significant reduction in the computational effort. Indeed, when
a long burst of cells or packets is sent through a link (which happens quite often),
instead of handling each individual unit as with a classical simulator, it suffices
here to manage only two events: the beginning of the burst and its end4 . Our paper
describes a tool designed to simulate such a fluid model and to take advantage of
this potential computational effort gain.

4 In fact, this is strictly true only for the sources; nevertheless, it illustrates the key phe-
nomenon.
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It must be observed that the use of continuous-state models as approximations of
discrete time ones is not new: this has been already done in queuing theory for many
years. Think simply of the diffusion processes used as approximations of standard
queues or of queuing networks in heavy-traffic conditions [13]. Fluid models rep-
resenting high-speed communication networks draw from the classical paper by
Anick et al., which in turn derives from the work of Kosten and others (see [1]
and references therein). Such models are commonly used nowadays, specially in
the ATM area, but mainly for analytical purposes. It must be underlined that just a
few models can be analyzed this way: mainly single node systems with very simple
scheduling mechanisms and strong assumptions on the behavior of the sources. To
the best of our knowledge, there are almost no results on multiclass models and/or
on models with more than one node.

It appears that just a few published works report on simulators built on the flu-
id framework. For instance, in [18,19] the authors describe a cell-rate based tool,
LINKSIM, useful mainly to assess the fluid simulation method. The goal here is to
evaluate the mean cell loss rate in a single ATM buffer. In [12], a simulator is pre-
sented, again in the ATM context, used to study the interest of the fluid paradigm in
the case of specific sources, switches and scheduling mechanisms. Some results on
the comparison between the fluid approach and a discrete-event, “cell-level” sim-
ulator are also discussed. In [15], the authors report on a simulator dedicated to
evaluate an original resource management algorithm for a multiport, single shared
buffer switching node.

Another simulation program is described in [27]. It proposes a time-based simu-
lator, limited to work-conserving feed-forward networks. The metric of interest is
the backlogged workload at the servers. The authors show that, for the particular
case of single-class fluids, the error introduced by using a discrete-time variable is
proportional to the sampling interval. An interesting point here is that their method
is easy to parallelize. In [17], the authors present a comparative study of the simu-
lation of fluid models. To this end, they built a set of fluid-based and packet-based
models of some components of communication systems within a common simula-
tion framework, the Scalable Simulation Framework. Their goal was to compare in
a fair way the accuracy and performance of the fluid paradigm by sharing as much
common code as possible between the fluid-based and the packet-based modules.
The study focuses on Markov Modulated Process sources with Leaky Bucket shap-
ing and single node topologies and hypercubes of degree 2 to 8.

In this paper, we introduce FluidSim, a discrete-event simulation tool based on
fluid models of computer network objects. The aim of this simulator is to evaluate
measures which cannot be obtained through standard tools in reasonable time or
through analytical approaches. We show that, under some loose restrictions on the
sources, this suffices to efficiently simulate the evolution in time of fairly complex
models.
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The structure of the paper is as follows. Section 2 gives a short description of the
dynamics of fluid models, specializing the general relationships to the specific fam-
ily of sources we are interested in. Section 3 introduces the class of fluid models
under consideration. Section 4 discusses some issues related to the simulation of
such a system following an event-driven approach. In Section 5, the current state
of our tool, FluidSim, is presented and Section 6 illustrates its use by means of
three examples. Some conclusions and current research directions close the paper
in Section 7.

2 Dynamics of a Fluid Model

Let us consider first a single fluid buffer or “reservoir” of capacityB� ∞, with
a constant output ratec � �0�∞�, and a work-conserving FIFO service discipline.
Let Λ�t� � �0�∞� be the total rate of fluid being fed into the buffer at timet � 0.
We are interested only in arrival processes in which every sample pathΛ�t� is a
(right-continuous) stepwise function. This condition is not very restrictive since
many fluid traffic models satisfy it. Some examples are: on/off rate processes, ei-
ther Markovian [1] or non-Markovian [20]; Markov-modulated rate processes, for
which Λ�t� � ζ�Z�t��, whereZ�t� is the state of a Markov chain at timet andζ��
is a given function [20]; renewal rate processesΛ�t� � ∑∞

n�0Xn��t � �Sn�1�Sn��,
where theXi ’s form a sequence of i.i.d. random variables and theSn�Sn�1 form a
renewal process independent of theXi ’s [10,20]. The volume of fluid arriving in the
interval�0� t� is given by:A�t� �

R t
0 Λ�u�duand is continuous and piecewise linear.

Let Q�t� be the volume (“level”) of fluid in the buffer at timet � 0. The evolution
of Q�t� is described by:

Q�t� � Q�0��
Z t

0
�Λ�s��c���s� Q �ds� t � 0� (1)

where, for an infinite-capacity buffer, the setQ is given by [20, Chapter 17]:

Q �
�

s� 0jΛ�s�� c or Q�s�� 0
�
�

and for a finite-capacity buffer,

Q �
�

t � 0j
�
Λ�t�� c or Q�t�� 0

�
and

�
Λ�t�� c or Q�t�� B

��

For right-continuous, stepwise input rate functions, this integral reduces to:

Q�Tn�1� � min
n

B�
�
Q�Tn���Λ�Tn��c��Tn�1�Tn�

��o
� (2)

whereTn denotes then-th transition epoch ofΛ�t�; we takeT0 � 0. The result-
ing sample pathsQ�t� are piecewise linear, with slopėQ�t� � �Λ�t��c���t � Q �.
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Slope changes occur either at the time instants where the buffer becomes full or
empty, or at the transition epochsTn of Λ�t�. If a finite buffer is full at times and
Λ�s�� c, someof the arriving fluid will be lost. Cumulative fluid losses in the in-
terval�0� t� may be computed byL�t� �

R t
0�Λ�s��c���s� O�ds, whereO is the set

of all overflow periods:

O �
�

s� 0jΛ�s�� c andQ�s� � B
�
�

For a givent, we denote byt0�t� the beginning of thenextempty period; likewise,
tB�t� denotes the beginning of thenextoverflow period.

Let R�t� be the output rate of the buffer att � 0. R�t� is defined by:

R�t� � c��Q�t�� 0 orΛ�t�� c��Λ�t���Q�t� � 0 andΛ�t�� c� � (3)

For the class of processesΛ considered in this work, we can deduce then thatR�t�
is also a right-continuous stepwise function. The volume of fluid flowing out of the
buffer in �0� t� is: D�t� �

R t
0 R�u�du.

The model described so far can be applied to the more general case where the
buffer is fed byN fluid flows. Let us denote byλ i�t� � �0�∞� the rate of thei-th
flow at timet. We denoteλλλ�t� �

�
λ1�t�� � � ��λN�t�

�
, and we call this theinput flow

vector. Thetotal input rate isΛ�t� � ∑λ i�t�. As before, we shall be interested only
in arrival processes such that, for every sample path,λ i�t� is a (right-continuous)
stepwise function. It results thatΛ�t� is also a (right-continuous) stepwise function.
In the same way,ri�t� is the output rate related to thei-th input fluid, at timet,
r�t� �

�
r1�t�� � � �� rN�t�

�
is the output flow vector, andR�t� � ∑ ri�t� is the total

output rate.

Let us denote byτn the n-th transition epoch of the input flow vectorλλλ�t�. Be-
cause of the FIFO service discipline, a change inλλλ�t� occurring att � τn will need
Q�τn��c� 0 time units to propagate to the buffer output (the time needed to flow
out theQ�τn�� 0 volume units already in the buffer). Then, at time

ωn � τn�Q�τn��c� (4)

the proportion of output components must be the same as the proportion of input
components; that is, ifΛ�τn�� 0, then for every flowi, ri�ωn��R�ωn�� λ i�τn��Λ�τn�.
Note also that a change inλλλ�t� may producetwo transitions inr�t� if Q�τn� � 0,
Λ�τn� � c and the buffer becomes empty before the next transition inλλλ�t�. The
evolution ofr�t� is fully described by:

r�ωn� �

��
�

R�ωn�

Λ�τn�
�λλλ�τn� if Λ�τn�� 0�

0 if Λ�τn� � 0 andQ�τn� � 0 (in this case,ωn � τn)�
(5)
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Fig. 1. Dynamics of a FIFO fluid buffer

and

r
�
t0�τn�

�
� λλλ�τn�� if t0�τn�� τn�1 andQ�τn�� 0� (6)

The dynamics of a fluid buffer is illustrated in Fig. 1. The buffer has an output
rate ofc � 1 units of fluid per unit of time and is initially empty. Atτ0 � 0, it is
fed by three flows such thatλλλ�0� � �0�8�0�8�0�4�. Λ�0� � c so the queue builds
up. The output flow components are in proportion to the input flow vector:r�0� �
�0�4�0�4�0�2�. At τ1 � 2, source 2 stops transmitting. By this time, the queue has
grown up toQ� 2, soω1 � τ1�Q�τ1��c� 2�2� 4, andr�4� � �0�66�0�0�33�,
proportional toλλλ�2�. The queue continues to build up at a lower rate. Atτ2 � 5,
source 1 changes its rate from 0�4 to 0�2. The output vector will change atω2 �
5�2�6 � 7�6. Since there is fluid backlogged and the buffer is work-conserving,
r�ω2� � �0�33�0�0�66� � λλλ�τ2� � �0�2�0�0�4�. The output rates will not change
until the buffer becomes empty, att0�τ2� � 11�5, where the output vector equals the
input vector as expected from equation 6. Finally, atτ3 � 14, the rest of the sources
stop transmitting. Since by this time no fluid is backlogged, the output rate goes
immediately to zero (ω3 � τ3).

We have already introduced the expressions governing the behavior of the basic
fluid components that conform a communication network: sources and buffers. The
preceding analysis may be applied as well to a network of fluid buffers. Consider
for example the case shown in Fig. 2: if all of theN�M sources are stepwise func-
tions, then the input flow vector of the second buffer is also composed of stepwise
functions; hence,Q1�t� and Q2�t� satisfy (2), whileR1�t� and R2�t� satisfy (3).
Consequently, all the equations presented above can be applied to more general
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... c1

c2

R1

R2

λ1

λN λN�1

λN�M

Source 1

SourceN
SourceN�1

SourceN�M

Fig. 2. Two buffers in tandem

topologies than single nodes. The basic mathematical framework of the dynamics
of fluid models can be found, for instance, in [1] or [14].

The previous model can be easily extended to deal with a right-continuous, stepwise
service rate functionc�t�. For space and simplicity reasons5 we do not explicitly
consider this case in the paper. Nonetheless, the current version of FluidSim does
include buffers with time-varying service rates (as a matter of fact, such buffers
are needed for implementing e.g. ABR capabilities in end stations and switches, or
Generalized Processor Sharing nodes; see [21] for more details).

3 Fluid Model of a Communication Network

Our tool considers fluid communication networks composed of the following basic
elements: fluid sources and sinks, multiplexers (with buffering capacity or buffer-
less), communication links and switching matrices. Built on these, we currently
have higher level objects such as different classes of switches, end-to-end connec-
tions, etc. Let us informally describe here these elements from a modeling point of
view. In the next two sections, we discuss how our tool implements them, and how
more complex objects can be built.

As stated before, we only considersourcesproducing stepwise, right-continuous
fluid rate functions.Sinksare destination nodes. Sources and/or sinks may perform
other functions such as complex control mechanisms, by means of dedicated al-
gorithms.Multiplexersare network nodes composed of one or more buffers with
capacities� 0. Their functions are to merge the incoming flows according to some
policy, possibly to store fluid and, as for sources and sinks, to run in some cases
algorithms implementing control protocols. Acommunication linkconnects two
network components. It is a unidirectional element that introduces a constant de-
lay d � 0 to every flow going through it. Aswitching matrixis simply a mapping
between two sets of elements. Its function is to separate the incoming aggregated
flow vectors (demultiplexing) and to create new flow vectors at its output(s) (multi-
plexing) according to a routing table.

5 Some additional event classes and event-handling procedures should be added to those
described in Section 4.
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With the previously described elements, we defineswitching nodes, composed of
input and/or output buffers (which are multiplexing elements) and a switching ma-
trix. We also defineunidirectional connections, formed by a source, a sink, a unique
static route and, possibly, an algorithm associated with some control protocol. Only
point-to-point permanent connections are taken into account, yet our models can be
trivially extended in order to represent the process of connection establishment and
cancellation, as well as the multicast case. Applications requiring a bi-directional
connection (e.g., ATM’s ABR and ABT or Internet’s TCP connections) can be rep-
resented as two unidirectional connections between the two communicating end
points, which are, for instance, a source and a sink with a controller (an algorithm)
implementing the corresponding protocol.

While a fluid model has been adopted for representing the network elements, a
key feature of this tool is the inclusion of discrete objects, namedfluid molecules,
that can be emitted by the sources. They have no volume, so the buffer level is
not changed by the arrival of a molecule. Fluid molecules can be used to compute
quality of service (QoS) parameters, like the end-to-end delay (see Section 6.3).
They can also represent the behavior of individual entities such as RM (Resource
Management) cells while simulating ABR and ABT ATM flows, or ACK messages
in the case of a window-based flow control protocol like TCP.

Example of a Fluid Network. Figure 3 shows the state of a section of a fluid
network at some instantt. It contains many of the components introduced above.
Connection 1, between sourceS1 and destinationD1, is represented in light gray
and traverses the first buffer and the switching matrix. SourceS2 belongs to a sec-
ond connection represented in dark gray. Its flow traverses both buffers and the
switching matrix and continues downstream. Connection 3, whose flow is repre-
sented in black, starts at sourceS3 and traverses the switching matrix where it is
routed towards the second buffer and continues downstream.

A change in the flow�r1� r2� leaving the first buffer, will occur at timet �Q�

1�c1.
The new flow will still have two components: the rate of the first connection will
be� r1, while the one belonging to connection 2 will be� r2. In a similar way,
the current flow�0� r3� leaving the second buffer will change at timet �Q�

2�c2,
producing a rate� 0 for connection 2 and� r3 for connection 3. Moleculem1,
which belongs to connection 1, will wait forQ1�c1 time units before it leaves the
first buffer.

8



S1 S2

m1
�λ1�λ2�

Q1 Q�

1
c1

�r1� r2�

D1 S3
�r1�

�λ3�

�r2�λ3�

Q�

2
c2

�0� r3�

Fig. 3. Example of a fluid network (state at timet)

4 Simulation of a Fluid Network

4.1 Design Principles

The variables defining the behavior of a fluid network (λ i, Qj , etc.) fed by stepwise
sourcesalwaysfollow piecewise linear sample paths. Therefore, in order to com-
pletely describe the evolution of such a network,we only need to know the state
of these variables for a denumerable set of time instants, that is, at the transition
epochs for the functionsλ i�t�, ri�t� and Q̇j�t�. This strongly hints at the use of
discrete-event simulationas a simulation technique: every state transition in every
variable will be related to an event handled by the scheduler.

In what follows, we describe the event types specific to the objects considered in
the model and show how they are handled in the simulation process.

4.2 Event Classes

Discrete events required for the simulation of our fluid network models may be
grouped into the following main classes according to the kind of object the event is
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Fig. 4. Example of a buffer in a network

addressed to:

(1) events related to the sources, e.g. “the rateλ i�t� of sourcei changes”;
(2) events related to the buffers: e.g. “the input flow vectorλλλ j�t� of buffer j

changes”, “the slope ofQj�t�, the backlog of bufferj, changes”, “the output
flow vectorr j�t� of buffer j changes”;

(3) events related to the switching matrices, e.g. “the input flow vectorλλλ j�t� of
matrix j changes”;

(4) events related to the communication links, e.g. “the input flow vectorλλλ j�t� of
link j changes”.

These four event classes will be described in the sequel.

4.3 Event Handling

In order to analyze the handling of events during the simulation of a complex net-
work, we shall concentrate on a single bufferS (see Fig. 4), fed byN sources,
whose flow rates are denoted byλ1� � � � �λN, andK upstream buffers, whose output
flow vectors are denoted byru

1� � � � �r
u
K. These buffers are globally fed byM�J� K

individual fluid flows, coming from other sources and/or buffers; from these, only
M flows (numberedN� 1� � � � �N�M) are fed intoS. The input flow vector ofS
is thenλλλ�t� �

�
λ1�t�� � � ��λN�t�� ru

N�1�t�� � � �� r
u
N�M�t�

�
, and its output flow vector is

r�t� �
�
r1�t�� � � �� rN�t�� rN�1�t�� � � �� rN�M�t�

�
. The total input and output rates are

respectively denoted byΛ�t� andR�t�. Without loss of generality, we shall consider
in this section that the links connecting sources and buffers introduce no delay.

4.4 Events Related to the Sources

Rate Changes. For thei-th source, a discontinuity in the sample pathλ i�t� hap-
pening att � τn implies a transition inλλλ�t�, so to guarantee the synchronization of
arrivals toS we should:

10



(1) Handle all simultaneous events related to network components located up-
stream with respect toS, i.e., execute all tasks “change the rateλ j�t� at t � τn”
and “change the vectorru

j �t� at t � τn” according to (5) and (6).
(2) Schedule the event “λλλ�t� changes att � τn”.
(3) Schedule the next rate-change event for this source.

Molecule Generation. An event “sourcei emits a molecule att � t �” produces
the following actions:

(1) Create an object “molecule belonging to flowi” and initialize its particular
fields if necessary (e.g. birth date for delay measurement molecules, see Sec-
tion 6.3).

(2) Schedule the task “a molecule from flowi arrives att � t �” for the (unique)
downstream neighbor.

(3) Possibly, schedule the next molecule-emission event for this source.

Notice that the molecule-generation epochs depend on the given application of fluid
molecules:

� If molecules are used to simulate a flow control algorithm, emission dates shall
be determined by the particular algorithm. For instance, in ATM’s ABR a RM-
cell molecule shall be sent whenever the source has produced a certain amount
of fluid, which is related to ABR source parameters such as the frequencyNRM

of RM-cell generation (for more details on ABR source behavior see e.g. [8]).
� On the other hand, molecules employed to estimate the end-to-end delay of a

single connection (associated to a traffic source) are produced following an al-
gorithm described in Section 6.3.

4.5 Events Related to the Buffers

Input Rate Transitions. An event “λλλ�t� changes att � τn” should trigger the
following actions:

(1) ComputeQ�τn� andωn according to relations (1) and (4) respectively.
(2) Calculatet0�τn�, tB�τn�, as defined in Section 2; then

(a) schedule the task “S begins to overflow att � tB�τn�”, if this has not been
done yet andtB�τn�� ∞, and

(b) schedule the task “S becomes empty att � t0�τn�”, if this has not been
done yet andt0�τn�� ∞.

(3) If ωn �� t0�τn�, schedule the task “changer�t� at t � ωn”.

However, computingt0�τn� and tB�τn� (and consequently taking the decision of
scheduling or not an event “S becomes empty” or “S overflows”) poses some prac-
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tical problems, because the evolution ofΛ�t�, and hence of every component of
λλλ�t�, from t � τn onwards must be knowna priori to do so. Nevertheless, there is a
simpler alternative based on the following definitions.

Definition 1 An input rate transition at time t� Tn is anoverloadingtransition if
Λ�Tn�� c. Thepredictedoverflow period will begin at:

t̂B�Tn� �

��
�

B�Q�Tn�

Λ�Tn��c
�Tn if Λ�Tn�� c�

∞ if Λ�Tn�� c�
(7)

Definition 2 An input rate transition at time t� Tn is anunderloadingtransition if
Λ�Tn�� c. Thepredictedempty period will begin at:

t̂0�Tn� �

���
��

Q�Tn�

c�Λ�Tn�
�Tn if Λ�Tn�� c and Q�Tn�� 0

∞ if Λ�Tn�� c or Q�Tn� � 0�

(8)

Moreover, note that neitherR�t� nor r�t� change because of an overflow; so, it is
not necessary—in principle—to schedule an event “S overflows”, because the lost
volume can be computeda posteriori. Therefore, steps 2b-3 above may be replaced
by the following three steps:

(2) If t̂B�τn�1� � τn thenS is overflowing, so take fluid loss measurements (for
details, see [23]).

(3) Calculatêt0�τn�, t̂B�τn�; then
(a) if there is already an event “S becomes empty att � t �” in the event list

(with t � �� t̂0�τn�), cancel it, and
(b) if t̂0�τn�� ∞, schedule the event “S becomes empty att � t̂0�τn�”.

(4) If ωn �� t̂0�τn�, schedule the task “changer�t� at t � ωn”.

Figure 5 shows a typical sample path forQ�t� and the associatedΛ�t�, as well as
predicted overflow and “underflow” times; the curves correspond to the parameter
values:c� 1, B� 1. Note that, in this case,t̂B�0� � tB�0� andt̂0�4�5� � t0�4�5� but
t̂B�4� �� tB�4� andt̂0�2� �� t0�2�, i.e., there is an event that gets scheduled and later
canceled.

Buffer Underflow. An event “S becomes empty att � t̂0�τn�” should:

(1) makeQ�t� � 0, and
(2) execute the event “changer�t� at t � t̂0�τn�”, that is, “now”.
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Output Rate Transitions. An event “r�t� changes att � ωn” should trigger the
following actions:

(1) Calculater�t�.
(2) Schedule an event “changeλλλ�t� at t � ωn” for the downstream neighbor.

The previous step should be synchronized with other similar actions, to guarantee
the generation of a single “input rate transition” event for every element affected
by this transition.

Molecule Arrivals. An event “a molecule arrives att � an”, with an� �τm�τm�1�,
should spawn the following actions:

(1) If t̂B�τm� � an thenS is overflowing, so the molecule will be destroyed with
probability

�
Λ�τm��c

�
�Λ�τm�.

(2) If the molecule is not destroyed, then:
(a) Calculate the waiting timeW�an�, as defined in Section 6.3.
(b) Schedule the task “a molecule arrives att � an�W�an�” for the down-

stream network element that should receive this molecule.

Of course, the arrival of special molecules (such as those representing RM cells to
buffers that implement ABT/ABR protocols) will activate the procedures specific
to them.
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4.6 Events Related to the Switching Matrices

Input Rate Transitions. Let us consider a switching matrix withNout output
ports and letλλλu�t� be the aggregate input fluid vector. An event “λλλu�t� changes at
t � τn” should trigger, for each output portm� 1� � � � �Nout, the following actions:

(1) Estimate the new input flow vectorλλλm�τn� for the port according to the ma-
trix’s routing table.

(2) Schedule the task “λλλm�t� changes att � τn” for the downstream neighbor
connected to portm.

Molecule Arrival. When an event “molecule arrives att � an” occurs, the output
port the molecule should be forwarded to, is obtained from the matrix’s routing
table and a similar event “molecule arrives att � an” is scheduled for the corre-
sponding downstream neighbor.

4.7 Events Related to the Communication Links

Given that the link model is simply that of a delay element, when any event arrives
to a link at t � t �, a similar event is scheduled for the downstream neighbor at
t � t ��d, whered� 0 is the link delay.

4.8 Efficiency of the Fluid Simulation Approach

The efficiency of the simulation based on fluid models comes from the reduction
in the number of events that have to be executed. In a conventional simulator the
number of events is proportional to the number of packets produced by the sources,
while it is proportional to the number of rate transitions in a fluid-based simulator.
Therefore, we expect significant gains if the sources produce large bursts of packets.
For instance, Pitts et al. [19] compare an ATM fluid simulator against a cell-based
one by computing the cell execution rate measured as the number of cells processed
by second. In one of the experiments shown in [19], the mean burst size of the
on/off sources was changed from 1,650 bytes to 162,500 bytes. As a consequence,
the computing gain grew from 8 to 1,096.

Nevertheless, the number of processed events cannot bethe solemeasure of effi-
ciency for comparing both approaches because the treatment of simulation events
in the fluid case is, in general, more complex than in the conventional approach.
Compare, for instance, the tasks associated to the event “λλλ�t� changes att � τn” ar-
riving to a fluid buffer, against the handling of a packet arrival to a discrete buffer.
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Fig. 6. Flow interaction in a buffer

As an example, Nicol et al. [17] show an extreme case where the simulation of their
fluid-based models was two times slower than the simulation of their packet-based
models when both executed roughly the same number of events. Notice that both
simulations used as much common code as possible.

Another issue that could affect the efficiency of the fluid simulation approach is
the so-calledripple effectthat results from the interaction between flows sharing
a buffer. Kesidis et al. [12] described for the first time this effect and show some
experimental evidence of the performance degradation that it may produce. Nicol
et al. [17] also provide some evidence of the ripple effect in more complex net-
work topologies. Liu et al. [16] use an analytical approach to characterize this phe-
nomenon for the particular case of a tandem of FIFO buffers in a parking-lot topol-
ogy fed by Markov Modulated on/off fluid sources. Ros [21] discusses this effect
in a more general context and emphasizes the difficulty in quantifying its impact in
a fluid simulator.

The ripple effect can be defined as follows: a change in the rate of a flowi that
arrives at a buffer, may induce a rate change inall the flows traversing that buffer.
This may produce an increment in the number of events to be executed by the
downstream neighbors.

We will illustrate this effect using the example shown in Fig. 6. Three sources that
feed the same FIFO fluid buffer produce traffic bursts with peak rateh. The service
rate of the buffer isc � h. At a certain moment, a burst from each source arrives
at the buffer after a small delay, as shown in Fig. 6. When the first burst arrives at
t � τ1

1, the whole bandwidth is assigned to it. No fluid is stored in the buffer. At
t � τ2

1 the second burst arrives and the output rate of the first flow is reduced such
that both flows have a fair share of the buffer’s service rate. The third burst arrives
at t � τ3

1, and all the output rates must be adjusted again att � ω3
1 to account for

the arriving flow. A rate change att � τ1
2 signaling the end of the first burst induces

again a rate change in all the individual flows att � ω1
2. Similarly, the termination

of the second burst att � τ2
2 produces a rate change in the second and third flows at

ω2
2.

It is worth observing that the number of rate changes experienced by the output
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flow vectorr�t� as a whole, is the same as the number of rate changes at the input
flow vectorλλλ�t�, six in the example. Hence, as long as these flows travel together
downstream, there will be no increment in the overall number of events processed.
What has changed, though, is the number of rate changes experienced by each
individual flow: it has doubled in this example. So, once the individual flows are
demultiplexed, the number of events processed by the downstream components will
increase.

It is very difficult to properly estimate how the ripple effect would alter the per-
formance of the fluid simulation approach, since its real impact depends on several
factors, such as:

� The interaction between flows and the particular topology. If, for example,τ1
1 �

τ2
1 � τ3

1 � τ3
2 � τ2

2 � τ1
2 in the system of Fig. 6, then the number of individual

transition rates would still double, but its distribution would have changed (e.g.,
the third flow would not increment its number of transitions whereas the first flow
would experience six rate changes) thus the total number of processed events
depends on the path taken by each individual flow throughout the network.

� The network load. As long asQ�t� � 0, r�t� � λλλ�t� so the ripple effect will not
appear.

� The queueing discipline used at the multiplexers. In models of networks provid-
ing different qualities of service by flow isolation using GPS-like schedulers (like
e.g. in the Internet’sDiffservarchitecture [26]), such flow isolation may reduce
the overall ripple effect.

5 Implementation of the Fluid Simulator

In this section we briefly describe the prototype of our fluid simulation tool, Fluid-
Sim. It consists of a modular library of network objects that follow the principles
described so far, a discrete-event simulation kernel and support libraries, and an
optional set of routines that permit the definition and parameterization of complex
fluid networks from a configuration file and/or a graphical interface. These routines
also provide the environment for executing various simulation runs of the same
network model in order to estimate confidence intervals.

The simulator follows the object-oriented paradigm, has been implemented inC++
[24] and benefits in an important manner from the recently standardizedStandard
Template Library[2]. The graphical interface has been coded using theJava pro-
gramming language.
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5.1 The Simulator Kernel

FluidSim is event-driven. Network objects communicate by exchanging messages
in which simulation events are encoded, either directly (if they are to be executed
immediately) or by means of the simulation kernel. An event has several fields;
among the most relevant are its type, its scheduled time (i.e., when the event should
occur), the recipient of the event and a payload, by means of which information
(fluid vectors, molecules) is transferred among the simulated network objects. The
simulator kernel stores future events in a time-ordered event list. The scheduler
works indefinitely by selecting from the list the next earliest event to execute, in-
voking the event handler of the concerned object and returning to select the next
event to execute. An event usually creates new events that are inserted in the event
list according to the simulation time at which they should be executed. This cycle
finishes when there are no more events to process or when a special event to stop
the simulation is found. In the current implementation, the event list is kept as a
doubly-linked list. The modular nature of the design accounts for a fairly transpar-
ent migration towards a more efficient data structure (e.g. heap or calendar queue)
if desired.

FluidSim’s kernel provides some specific facilities to efficiently support fluid mod-
els of network elements, such as event cancellation (Section 4.5) and handling of
“simultaneous” events happening at the same simulation epoch (Section 4.4). For
the former, network objects can store a reference to an event in the event list such
that the kernel’s cancellation method can directly annulate the event without hav-
ing to (linearly) search it. Concerning the simultaneous events, the kernel provides
methods for fetching the relevant events (i.e., events of the same type, for the same
destination and with the same simulation epoch). It also provides a two-priority
event scheme (a low priority event that occurs at the same simulation epoch than a
high priority one, will be scheduled after this one).

FluidSim provides a family of classes for generating random variates (exponential,
Pareto, etc.) from a multiplicative linear congruential random number generator, us-
ing the inverse transformation method [7]. Multiple generators may be instantiated
simultaneously, providing different streams.

The environment permits the collection of simulation traces in log data files for
further processing. The user may decide to use different log files for the different
variables being monitored, or he/she may gather them in a common (default) file.
Classes are also provided for collecting data and automatically computing statisti-
cal information such as arithmetic means and standard deviations, histograms and
integral approximations. The latter are used, for instance, for estimating on-line the
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mean level of fluid in a buffer,Q, according to the following recurrence relation:

Tn�1Q�Tn�1� �
Z Tn�1

0
Q�t�dt � TnQ�Tn��

Z Tn�1

Tn

Q�t�dt� (9)

where the value of the last integral depends on the buffer state in�Tn�Tn�1�:

Z Tn�1

Tn

Q�t�dt �

�����
����

Q�Tn�
2

�
t0�Tn��Tn

�
if t0�Tn�� Tn�1�

Q�Tn��B
2

�
tB�Tn��Tn

�
�B

�
Tn�1� tB�Tn�

�
if tB�Tn�� Tn�1�

Q�Tn��Q�Tn�1�
2 �Tn�1�Tn� otherwise�

(10)

Another class in FluidSim permits to automatically compute an approximation
of the cumulative distribution function of the buffer occupancy, Pr�Q � q��q �
f0�B�N�2B�N� � � � �Bg� as follows. For each interval��i�1��B� i�B�, Si will accu-
mulate the periods of time in which the buffer had fluid up to leveli. After an initial
warm-up period of lengthtss� 0, every time there is a change in the slope ofQ,
(i.e., when the buffer becomes empty, full or when there is a rate change in the
input flow vector), a new point (level, time) is recorded and the proportion of time
in which there was fluid below each intervali, is computed and accumulated. For
example, ifQ changed from level 5 to level 8 in 3 time units,S6 will aggregate one
time unit,S7 two andS8 and above will accumulate 3 time units. The cumulative
distribution function is approximated by: Pr�Q� i�� Si��tmax� tss�.

Confidence intervals forQ, Pr�Q� i� and other measures (e.g. related to the end-
to-end delay) are computed simply by the replication method.

5.2 Fluid Objects

The hierarchy of the principal fluid network components implemented at present is
shown in Fig. 7. All the network objects are derived from the abstract base class
ActiveSimObj, from which they inherit the ability to send and process simula-
tion events. Let us describe here some specific aspects of the implementation.

Traffic Sources. Our current implementation provides three kinds of fluid sources
that obey the stepwise property.

� On/off sources. They switch between an active state in which they transmit at
peak rate, and a silent state where no transmission takes place. Sojourn intervals
at each state are i.i.d. random variables with arbitrary distributions.

� Trace-based sources. The instantaneous transmission rate is calculated from files
containing traces of real traffic, for instance, sequences of MPEG-1 I/B/P frames.
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Fig. 7. Main hierarchy of FluidSim classes

The fluid model adopted for such sources assumes that the frequency of images,
fps, is constant and that the MPEG source generates a smooth flow of uniformly
spaced chunks of information.

� Closed-loop sources. At present, we are experimenting with three kinds of closed-
loop fluid sources: ABR and ABT sources that transmit RM-type molecules and
adapt their rate according to the molecules they receive following different algo-
rithms [21]. A fluid version of TCP’s window-based flow control is also under
study.

Multiplexers. Basically, two kinds of multiplexing nodes are currently imple-
mented:

� FIFO fluid buffers with capacityB� ∞. These are the elementary fluid buffers
we have discussed in this paper. The limiting case where the buffer capacity is
B� 0 permits to simulate abufferless multiplexing node.

� Nodes that implement the General Processor Sharing (GPS) service discipline. A
GPS node hasN buffersB1� � � � �BN (see Fig. 8). Each buffer is served according
to a FIFO discipline, but its service rate,Ri�t�� may fluctuate in order to satisfy
the GPS policy. The global output rate isR�t�� ∑N

i�1Ri�t� and the node’s service
rate isc. A more detailed presentation of these nodes can be found in [23]. A
variantGPS + Best Effort, as defined by Kesidis [11], is also provided: that is, a
�N�1�-th buffer is added to the architecture in Fig. 8, and this buffer is served
if and only if all the other buffers are empty.

Fluid Sinks. Fluid sinks are the end point of a connection where the arriving flow
is absorbed and some statistics concerning the individual connection are collected
if required. In addition to this basic fluid sink, the library provides objects that
complement our closed-loop experimental components: ABT, ABR and TCP sinks.

Links. Communication links implement the elementary delay component pre-
sented in Section 3.
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Switching Matrix. Non-blocking, zero-delay switching fabrics are usually found
as components of fluid switching nodes, although they are independent objects.
They implement the demultiplexing and multiplexing functions described in Sec-
tion 3.

Switching Nodes. The model adopted for a switching node is an output buffered
switch which consists of an arbitrary number,Nin, of input ports, a switching matrix
and an arbitrary number,Nout, of output ports (see Fig. 9). The output ports can be
simple FIFO buffers, GPS or GPS + Best Effort nodes, or just bufferless multiplex-
ing nodes. FluidSim also includes nodes that implement complex mechanisms for
ATM’s ABR and ABT service classes. For instance, a fluid version of the ERICA+
ABR control algorithm [9] has already been implemented [21].

Connections. As mentioned before, currently unidirectional unicast connections
are implemented. A connection always starts at an “end station” (fluid source or
fluid sink), follows a path composed of different network elements (links, multi-
plexers, switching matrices, switching nodes) and ends up at an end station.
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Fluid Vectors. At any point in the network traversed byN � 1 connections, the
fluid resulting from the aggregation of the individual flows is represented by the
composition vector of instantaneous ratesλλλ�t��

�
λ j1�t�� � � � �λ jN�t�

�
. This descrip-

tion of traffic as a vector of independent and distinguishable fluid flows, enables the
multiplexing and demultiplexing of those flows; moreover, it permits to gather end-
to-end measures and statistics for individual connections. For efficiency reasons,
when a transition inλλλ occurs, we consider only those components that actually
changed its rate.

Fluid Molecules. Fluid molecules are considered as being part of the flow pro-
duced by a connection’s source (and it is always possible to identify the connection
the molecule belongs to). Recall that if a molecule arrives to a buffer that is over-
flowing, it is lost with probability�Λ�t�� c��Λ�t�. Observe that this probability
corresponds to the instantaneous fluid loss rate during congestion.

5.3 Configuration Interface

Using FluidSim as a set ofC++ libraries is appropriate while developing new net-
work components or if one wants to integrate those libraries to existingC++ pro-
grams. However, when the goal is to simulate different network configurations (e.g.
what-if scenarios) using the objects already provided, a more flexible environment
is offered: the network topology, object parameterization and general simulation
data may be input via a graphical interface or through a configuration text file. In
this mode, the simulator runs as a stand-alone program. Asimulation driverreads
the configuration file, creates the necessary network objects, starts the simulation
and collects statistics. If required, it initiates different simulation runs with sepa-
rate random number sequences for estimating confidence intervals and resets the
network object’s states between runs.

The graphical interface provides the standard functions associated with this kind
of tool: through the aid of icons, menu bars and mouse displacements, the user
can create a network topology, define object parameters, copy and delete individual
objects or groups of objects (sub-networks), etc. Once the topology is defined, the
tool does some validations and creates the configuration file (see Fig. 10).
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The configuration file follows a simple syntax. Simulation objects are defined in
blocks. A block is composed of a type tag and a body in brackets where the ob-
ject’s parameters are defined. For space reasons we do not detail the whole syntax
specified for the configuration files. To illustrate it, let us consider a network com-
posed of two buffers (BufA, BufB) and two connections. Connection 1 flows from
sourceSrc1 to sinkSnk1 traversingBufA andBufB. Connection 2 flows from
sourceSrc2 to sinkSnk2 passing throughBufA only. The corresponding config-
uration file is presented here in two-column format:

# Simple network with 2 connections.

# 1st block. General parameters:
# - duration and warm up time (in

simulation time) per run
# - seeds for default RNG
# - output file for results
# - number of runs

SIMULATION f
DURATION 1000.0,
WARMUP_TIME 45.0,
SEEDS 9977581 234234,
OUT_FILE MyRun.out,
NUM_RUNS 30

g

# This block specifies 2 RNG.
# First one uses global seeds.
# Random streams will be associated

with random variates
RANDOM_GENERATOR f

rng1;
rng2 SEEDS 1234581 6688774; g

# Source block.
# First source ON/OFF with different
distributions for sojourn periods.

# Second source is trace-driven:
source rates and transition dates
read from specified file

SOURCE f
Src1 ON_OFF

PEAK_RATE 2048000.0,
SOJOURN_ON

DETERMINISTIC 0.4,
SOJOURN_OFF

PARETO 1.5 0.8 rng2;
Src2 TRACE_DRIVEN

FILE ATraceFile.dat; g

# Sink block.
# Stats collection for connection 2
SINK f
Snk1;
Snk2 STATS YES; g

# 1st buffer infinite capacity with
FIFO policy (by default).

# Rate in units of fluid per second.
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#
# 2nd buffer finite of size 512K units.
BUFFER f

BufA INFINITE
RATE 51200.25;

BufB FINITE
RATE 888812.2315,
POLICIY FIFO,
SIZE 512000;

g

# Connection block defines the path
CONNECTION f
First

PATH <Src1->BufA->
BufB->Snk1>;

Second
PATH <Src2->BufA->Snk2>;

g

6 Examples

In this section we briefly present some results obtained with FluidSim. The first
example (Section 6.1) was used for testing the fluid simulation tool. In particular,
it allows to check its accuracy by comparison with analytical results. The second
example (Section 6.2) was specifically designed to illustrate the gain in efficiency
with respect to standard tools; we focus there only on the event processing rate.
The last example (Section 6.3) shows how FluidSim can be used for performance
evaluation of computer networks.

6.1 Comparison with an Analytical Model

Let us consider a simple model composed of a single finite-capacity buffer fed
by ten homogeneous on/off sources, whose on and off periods are exponentially
distributed with mean 10 ms, and with a peak rate of 15 Mbps. The buffer has a
capacity of 1 Mb and an output rate of 100 Mbps. We are interested in the comple-
mentary distribution Pr�Q� q� of the fluid levelQ. This is an interesting topology
for validation purposes, because it is simple enough so thatvery long simulation
runs can be performed in a reasonable amount of time and, most importantly, the
exactexpression of Pr�Q� q� is known, see e.g. [14].

We performed 30 independent simulations. Each simulation run corresponded to a
simulated interval of 2� 105 s (� 55�5 hours) and took about one hour of com-
puting time on a Sun UltraSPARC workstation shared between several users. The
number of events processed in each run was� 2� 108. Note that the equivalent
number of events that should have been processed by a conventional simulator, if
the discrete units were for instance ATM cells, would be� 3�5�1010. Figure 11
shows the fluid level distribution, with 95% confidence intervals (shown as small
crosses); note the excellent agreement between theoretical and experimental values.

23



Simulation
Exact

1

1

0

0.1

0.01

0.001

0.0001

0.2 0.4 0.6 0.8

10�5

10�6

q (Mb)
P

r�

Q

�

q�

Fig. 11. Example 1: complementary distribution of fluid levelQ

Sink

Sink

... �1

�2

�3

B1

B2

B3

B4

B5

S1

SN

Fig. 12. Example 2: network topology

6.2 Comparison with a Cell-Level Simulation Tool

The following example highlights the efficiency of the fluid simulation paradigm, in
comparison to a traditional discrete-event simulation approach. The network under
study is shown in Fig. 12; remark that this topology is vulnerable to the “ripple
effect” (see Section 4.8).

For comparison purposes, we have selected the well-known NIST simulator [5]
which is a cell-level, ATM-oriented tool. We performed 30 one-second simulation
runs in order to obtain mean values. The parameters used are as follows:

� 10 homogeneous on/off sources, with peak rate� 18 Mbps and exponentially-
distributed on and off periods with mean 10 ms. The mean burst size is then
22.5 KB� 424 ATM cells. All buffers are identical, with a capacity of 1 Mb.

� Link �1 has a transmission rate of 100 Mbps;�2 and�3 operate at 50 Mbps.
� Connections of traffic sourcesS1� � � � �S5 follow the routeB1 	 �1 	 switch	

B2 	 �2 	 B4, whereas the remaining connections follow the routeB1 	 �1 	
switch	 B3 	 �3 	 B5.

Simulations of the fluid model showed that Pr�Q1 � 0�� 0�66, i.e., bufferB1 holds
fluid about 66% of the time; hence, about 66% of the transitions in each source will
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affect the output rate ofall flows going out ofB1, and so the influence of the ripple
effect should be non-negligible.

Table 1 presents some results regarding the computational cost of cell-level and
fluid-level simulations. Both the NIST simulator and FluidSim were compiled using
the same development tools and run on the same architecture (a PowerPC-based
computer); moreover, the NIST simulator was executed in non-interactive mode,
so as to optimize its performance.

Table 1
Example 2: results on simulation efficiency

Simulator Mean execution time
(s)

Mean number of
processed events

Event processing rate
(events/s)

NIST 18.11 2�502�106 1�382�105

FluidSim 0.166 1�374�104 8�277�104

We can see that, even though the treatment of fluid-level events is� 1�67 times
more expensive than the processing of cell-level events, the fluid-model paradigm
allows for a reduction in the number of events that far outweighs the increased
computational cost; remark that this is so in spite of the ripple effect. The speedup
factor is 18�11�0�166� 109�1.

6.3 End-to-End Delay Estimation

The notion of end-to-end delay for asingle connectionin a fluid model is not as
obvious as in a discrete model. Following [3], let us define the waiting time of
a molecule arriving at a buffer at timet, and being accepted (i.e. not being lost
because of congestion), as:

W�t� � inf
�

s� 0jcs� Q�t�
�
� Q�t��c (11)

Let us examine now what happens when the fluid belonging to a given connection
must flow from source to destination through a tandem ofK buffers, connected by
K � 1 links having non-zero propagation delays, as in Fig. 13. LetQi�t�, ci and
Wi�t� be the level, the maximal output rate and the waiting time, respectively, for
the i-th buffer. The dateai�t� at which a molecule produced by the source at timet
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Fig. 14. Waiting time functions for two buffers in tandem.

arrives at bufferBi (i � 1� � � � �K) is given by:

a1�t� � t �d1

ai�1�t� � ai�t��Wi
�
ai�t�

�
�di�1 � i � 1� � � � �K

(12)

wheredi is the delay introduced by linki (i � 1� � � � �K �1), andaK�1�t� denotes
the arrival date at the destination. Remark thatWi depends onWi�1� � � � �W1.

So, the end-to-end delay for the connection can be defined as:

∆�t� � aK�1�t�� t �
K�1

∑
i�1

di �
K

∑
i�1

Wi
�
ai�t�

�
(13)

Clearly, the function∆�t� is definedonly for those values oft such thatλ�t� � 0
(that is, when fluid is produced by the source).

Figure 14 shows an example of the evolution of the waiting time functions for
buffersB1 andB2, over a time interval such that the source of interest sends fluid
only during�τ1�τ2�; remark how a molecule-emission epoch (marked ast0) results
in the departure epocht �0�Q2�t �0��c2.

Let us point out here that we are interested not only in estimating mean delay val-
ues, but also in higher order moments, as well as in the empirical delay distribution
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Pr�∆ � δ�. This is so because in communication networks, parameters such as the
delay variation or “jitter” are as important as the mean end-to-end delay.

In principle, it would be possible to estimate Pr�∆ � δ� from the traces ofλ�t� and
Q1�t�� � � ��QK�t�, by evaluating the waiting time functions

Wi�ai�t�� � Qi�ai�t���ci

in equation (13), only for those values oft such thatλ�t�� 0; then, Pr�∆� δ� would
be computed from the trajectory of∆�t�, as done for the level distribution function
in section 5.1. However, this raises some efficiency concerns6 . Off-line computa-
tion involves saving (potentially) huge amounts of data. On the other hand, on-line
operations require either predicting all level-slope transitions at every source tran-
sition epoch, or temporally storing such transitions and performing calculations at
the end of the source activity interval.

In order to simplify the estimation procedure, the following heuristic method was
proposed in [22] (see Fig. 15): Letfνig be the sequence of instants such thatR νi

νi�1
λ�t�dt � V for i � 1�2� � � � , with V a real positive constant andν0 � 0. Then

evaluate∆�t� on average once “everyV volume units sent by the source”, that is to
say, at timest � si such that

R si
νi�1

λ�t�dt�V�ui andsi � �νi�1�νi�, for i � 1�2� � � � ;
where theui ’s form a sequence of i.i.d. random variables, following a uniform law
in �0�umax�, with V � umax� 0.

In the simulator, sampling of waiting time values is perfomed by timestampedfluid
molecule objects. These objects are produced by the source at timessi , then travel
through the network, being treated by buffers, switches, etc. as described in sec-
tion 4; when (and if) they arrive to the destination, end-to-end delay is computed
using (13) as:aK�1�si��si.

The parameterV controls the periodicity of the sampling process. Random fluctu-
ations (controlled by the parameterumax) are introduced in this process in order to

6 Complexity increases if one or more buffers have non-constant service ratesc�t�.
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avoid some undesired bias in the estimation, which may occur if the source rate
process is periodical. For a simulation of lengthTsim and a source with mean rate
λ̄, the method yields aboutn∆ � λ̄�Tsim�V delay samples, i.e. approx.n∆ delay-
measuring molecules are generated.

6.3.1 Numerical Example.

Next we present an example of delay estimation using the above method. This
example, though simple, represents a case of interest for the performance evaluation
of existing networks. We are interested in the end-to-end delay per connection of
the network shown in Fig. 16.

The parameters chosen for this simulation are:

� K1 � 20 class-1 on/off sources (of whichK �

1 � 10 flow through both buffers),
with peak rate = 15 Mbit/s, mean rate = 7 Mbit/s and exponentially distributed
on and off periods with mean on period = 0.01 s.

� K2 � 10 class-2 on/off sources, with peak rate = 15 Mbit/s, mean rate = 6 Mbit/s.
on and off periods are exponentially distributed and the mean on period is 0.01 s.

� Two identical buffers, withc� 149�76 Mbit/s andB� ∞.

We performed 30 independent simulations. Each run represented a simulated inter-
val of 103 s. Table 2 shows the results concerning the mean delay per class and the
mean buffer level. For the first simulation run, the values ofV andumax were 0.6
and 0.1 (in Mbits), respectively, giving� 104 delay samples. To obtain confidence
intervals for the statistics, we first computed the autocorrelationr�k� of the sam-
ple sequence produced by the first simulation run, then we kept only one sample
out of n such thatr�n� � 0. Moreover, we used the first run to tuneV such that
r�k�� 0�k� 1�2� � � � for the following runs.

Each simulation run involvedO�2�7�106� events, and took around 15 minutes on
a Sun Sparcstation shared between several users. Note that the equivalent number
of events that should have been processed by a cell-level simulator isO�4�7�108�.
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Table 2
Example 3: mean delay and mean buffer level.

Class Mean delay (ms) 95% confidence interval

1 3�488 �3�448�3�528�

2 0�780 �0�760�0�799�

Buffer Mean level (kbit) 95% confidence interval

1 393�9 �390�5�397�3�

2 96�41 �95�73�97�10�

7 Conclusions

The simulation tool we have introduced in this paper is particularly well suited to
study high-speed telecommunication networks with arbitrary bursty sources. We
give some results comparing FluidSim to a well-known simulator, illustrating the
gain that can be obtained. From the efficiency point of view, the so-called ripple
effect may indeed limit the scalability of the fluid simulation approach, yet this
technique offers very attractive performance gains for studying rather complex net-
work topologies.

This tool is devoted to obtaining values of measures that we cannot get by means
of analytical approaches, either because we work on the entire network or because
we look for sophisticated metrics, or just because the model is not a simple one.
Moreover, the flexibility offered by FluidSim and the inclusion of molecule objects
in the fluid model make this tool powerful and general enough to evaluate complex
protocol mechanisms in an efficient manner.

The tool is written inC++, which allows in particular to easily extend it to deal
with new architectures. We are currently working on some extensions, namely to
deal with TCP’s flow control algorithm.
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