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Abstract. A problem of great interest in the control of hybrid systems
is the design of least restrictive controllers for reachability specifications.
Controller design typically uses game theoretic methods which compute
the region of the state space for which there exists a control such that for
all disturbances, an unsafe set is not reached. In general, the computation
of the controllers requires the steady state solution of a Hamilton-Jacobi-
Isaacs partial differential equation which is very difficult to compute, if
it exists. In this paper, we show that for classes of linear systems, the
controller synthesis problem is decidable: There exists a computational
algorithm which, after a finite number of steps, will exactly compute the
least restrictive controller. This result is achieved by a very interesting
interaction of results from mathematical logic and optimal control.

1 Introduction

Reachability specifications for hybrid systems require the trajectories of a hy-
brid system to avoid an undesirable region of the state space. One of the most
important problems in the control of hybrid systems is the design of least re-
strictive controllers which satisfy the reachability specifications. This problem
has been considered in the context of classical discrete automata [3,15], timed
automata [1], linear hybrid automata [18], and general hybrid systems [12]. The
framework presented in [12] has been applied to automated vehicles [11], and air
traffic management systems [16].

Designing least restrictive controllers for reachability specifications requires
computing the set of all initial states for which there exists a control such that
for all disturbances, the system will avoid the undesirable region. The least
restrictive controller is then a static feedback controller which allows any control
value outside this set of initial conditions while allowing all safe control values
on the boundary of this set.

The computation of the safe set of initial states for general hybrid systems
leads to game theoretic methods, and in particular to the steady state solution
to Hamilton-Jacobi-Isaacs equations [12]. In general, these partial differential
equations are very difficult to solve. In addition, steady state solutions, if they

N. Lynch and B. Krogh (Eds.): HSCC 2000, LNCS 1790, pp. 407–420, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



408 O. Shakernia, G.J. Pappas and Sh. Sastry

exist, may be discontinuous even if the initial problem data is continuous. This
is due to the appearance of shocks, and switchings in the optimal control policy.

The above difficulties in the computation of least restrictive controllers nat-
urally raise the following question : Can we find classes of systems where the
game theoretic approach does not require the solution of the Hamilton-Jacobi-
Isaacs equation? In this paper, we give a positive answer to the above question
for normal linear control systems where the system matrix is either nilpotent or
diagonalizable with purely real rational eigenvalues, and with reachability spec-
ifications defined by polynomial inequalities. The normality condition requires
controllability of the linear system with each input and disturbance. This con-
dition ensures that the optimal control and disturbance are well defined, and
unique. For the case of real eigenvalues, normality also ensures that the optimal
control and disturbance have a finite number of switchings [13].

Our framework first applies Pontryagin’s maximum principle to synthesize
the optimal control and worst disturbance. The switching behavior of the control
and the disturbance is then abstracted by a hybrid system, on which we per-
form reachability computations. By combining the recent decidability results of
[8,9], with the normality condition which guarantees finite number of switchings
[13], we show that the least restrictive controller can be decidably computed.
This interesting interplay of results from mathematical logic and optimal con-
trol presents us with the first decidable controller synthesis problem for classes
of linear systems.

2 Controller Synthesis Methodology

In this section, we briefly review the least restrictive controller synthesis method-
ology for dynamical systems as presented in [12]. Consider the dynamical system

ẋ = f(x, u, d) (1)

with state x ∈ Rn, controls u ∈ U ⊂ Rnu , disturbances d ∈ D ⊂ Rnd . Suppose
there is a target set G ⊂ Rn which specifies an undesirable region of the state
space. In the context of dynamic pursuit-evasion games [2,10], the goal of the
disturbance is to capture the state by driving it into the target set, while the
goal of the controller is to remain in the safe set Gc, the complement of G. The
target set is described by G = {x ∈ Rn | h(x) < 0}, for a smooth function
h : Rn → R.

Let U , D be the set of piecewise continuous functions from R into U and D
respectively. Given an initial condition x0 ∈ Rn, input u(·) ∈ U , and disturbance
d(·) ∈ D, the flow of the differential equation (1) is a mapΦ : Rn×U×D×R → Rn

given by

Φ(x0, u(·), d(·), t) = x0 +
∫ t

0

f(x(τ), u(τ), d(τ))dτ. (2)
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Clearly, the largest set of safe initial states for which the controller can avoid
being captured regardless of the disturbance is given by

W = {x0 ∈ Rn | ∃u(·) ∈ U ∀d(·) ∈ D ∀t ≥ 0 : Φ(x0, u(·), d(·), t) ∈ Gc} . (3)

The set W is called the maximal controlled invariant subset of the safe set
Gc. In the differential games literature, W is called the escape set, since there
exists a control policy such that the controller can avoid the target set, andW c is
called the capture set. While equation (3) conceptually describes the escape set, it
hardly affords a method of computing it. However, the capturability requirement
can be encoded by a value function J : Rn × U ×D × R− → R, which, given an
initial state x0 ∈ Rn, u(·) ∈ U , d(·) ∈ D and t ≤ 0, returns

J(x0, u(·), d(·), t) = h(x(0)).

Therefore, the value function is the cost of a trajectory that starts at initial state
x0 at time t ≤ 0 and evolves according to system equation (1) with input u(·),
disturbance d(·), and ends at final state x(0) at time t = 0. Since the control tries
to avoid G while the disturbance tries to steer the system to G, we naturally
arrive at the dynamic game

J∗(x0, t) = max
u∈U

min
d∈D

J(x0, u(·), d(·), t).

J∗ is called the optimal value function, since it is the value function correspond-
ing to the optimal controls and disturbances of the dynamic game. The maximal
controlled invariant subset of the safe set is described in terms of the optimal
value function by

W = {x ∈ Rn | min
t≤0

J∗(x, t) ≥ 0}. (4)

In order to compute J∗(x, t), we first introduce the Hamiltonian

H(x, p, u, d) = pT f(x, u, d), (5)

where p ∈ Rn is called the co-state. The optimal Hamiltonian is given by

H∗(x, p) = max
u∈U

min
d∈D

H(x, p, u, d). (6)

The computation of J∗(x, t) requires the solution of a modified Hamilton-Jacobi-
Isaacs partial differential equation [12]

J∗(x, 0) = h(x)

−∂J∗(x,t)
∂t = min{0, H∗(x, ∂J∗(x,t)

∂x )}. (7)

Assuming that (7) has a differentiable solution that converges to a function J∗
1 (x)

as t→ −∞, then the set

W = {x ∈ Rn | J∗
1 (x) ≥ 0} (8)
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is the maximal controlled invariant subset of the safe set Gc, and the controller
g : Rn → 2U defined by

g(x) =


{
u ∈ U | mind∈D

(
∂J∗

1 (x)
∂x

)T

f(x, u, d) ≥ 0
}

if x ∈ ∂W

U if x ∈W o ∪W c
(9)

is least restrictive controller which renders W invariant [12]. The controller (9)
is least restrictive in the sense that if g′ : Rn → 2U is any other controller that
renders W invariant, then ∀x ∈ Rn we have g′(x) ⊆ g(x).

The main difficulty in the above framework is the computation of W . In
general, solving the Hamilton-Jacobi-Isaacs equation (7) seems necessary for
exactly computing W . However, there are very difficult issues that must be
resolved in this case:

1. Existence and uniqueness of solutions,
2. Existence and uniqueness of steady state solutions,
3. Shocks: non-smooth solutions to smooth problems,
4. Convergence of numerical algorithms.

Given the above difficulties, a natural direction of research is to find classes of
systems for which some (or all) of these issues are resolved. In this paper, we
adopt this point of view and we will prove the following theorem.

Theorem 1 (Decidable Controller Synthesis). Consider the controller syn-
thesis problem for the dynamical system

ẋ = Ax+Bu+ Ed (10)

with controls u ∈ U ⊂ Rnu , disturbances d ∈ D ⊂ Rnd and target set G ⊂ Rn

given by

G = {x ∈ Rn | h(x) < 0}. (11)

Suppose the dynamical system and target set satisfy the following properties:

1. A ∈ Qn×n, B ∈ Qn×nu , E ∈ Qn×nd ,
2. For each column bi of B, the pair (A, bi) is completely controllable,
3. For each column ei of E, the pair (A, ei) is completely controllable,
4. The feasible sets of controls U and disturbances D are compact rectangles

with rational vertices, that is U =
∏nu

i=1[U i, U i] and D =
∏nd

i=1[Di, Di]
5. h ∈ Q[x1, x2, ..., xn] and ∂h

∂x (x) 6= 0 when h(x) = 0.

If A is nilpotent or diagonalizable with real rational eigenvalues, then the con-
troller synthesis problem is decidable.

Linear systems that are completely controllable by each component of the
input are called normal in the optimal control literature. It is well known that
time-optimal controllers of normal systems have no singular conditions: condi-
tions where the optimal input is undetermined for a finite time interval [6]. In
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fact, according to the Pontryagin’s Maximum Principle [13], for a normal linear
system, the time-optimal control exists, is unique, and is piecewise constant that
taking values on the vertices of the feasible input set. Moreover, the optimal con-
trol has a finite number of switchings if the dynamic matrix A has purely real
eigenvalues. These results will be crucial in establishing the well-posedness of
our models, and the termination of the following controller synthesis procedure.

Controller Synthesis Methodology

1. Apply Maximum Principle to obtain the saddle solution of optimal u∗, d∗.
2. Construct a hybrid system using the switching logic of optimal u∗, d∗.
3. Perform reachability computations on the constructed hybrid system.
4. Compute the least restrictive controller.

In the next sections, we describe in detail each step of the above procedure.

3 Differential Games and the Maximum Principle

In this section, we apply results from differential game theory [2,10] to formu-
late the optimal control problem for our controller synthesis methodology. The
Hamiltonian for the system (10), is given byH(x, p, u, d) = pTAx+pTBu+pTEd.
The Hamiltonian satisfies the state and co-state differential equations

ẋ =
∂H

∂p
, ṗ = −∂H

∂x

T

. (12)

Consider the target set G = {x ∈ Rn | h(x) < 0}. By setting p(x, 0) = ∂h
∂x (x),

then for every x ∈ ∂G, p(x, 0) is the outward pointing normal to ∂G at x. With
this initial condition, the co-state is completely specified by

p(x, 0) =
∂h

∂x
(x), ṗ(x, t) = −AT p(x, t). (13)

Since the goal of the controller is to avoid G, the controller tries to maximize the
Hamiltonian, while the disturbance tries to minimize it. In this case, the Isaacs
condition [2], namely

max
u∈U

min
d∈D

H(x, p, u, d) = min
d∈D

max
u∈U

H(x, p, u, d), (14)

is satisfied since the Hamiltonian is separable, i.e. H(x, p, u, d) = H1(x, p, u) +
H2(x, p, d). Satisfaction of the Isaacs condition implies that there exists a saddle
solution of optimal controls and disturbances (u∗, d∗) such that

H(x, p, u, d∗) ≤ H(x, p, u∗, d∗) ≤ H(x, p, u∗, d).

The saddle solution of optimal controls and disturbances u∗, d∗ satisfies the well-
known Maximum Principle [13]{

u∗(x0, t) ∈ arg maxu∈U p(x0, t)TBu

d∗(x0, t) ∈ argmind∈D p(x0, t)TEd.
(15)
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Equation (15) only constrains the optimal control and disturbance to lie in sets.
We will soon see that under the normality condition, these sets are singletons,
i.e. the optimal control and disturbance are unique. Starting from an initial
x0 ∈ ∂G, the input u∗(x0, ·) is the best the controller can do to avoid G regard-
less of the actions of the disturbance, while d∗(x0, ·) is the best the disturbance
can do to drive the state towards G. These controls and disturbances are gen-
erally open-loop (as opposed to feedback) policies and are so-called “bang-bang
controls” since they switch among the vertices of the set of admissible controls
and disturbances. Notice that due to the separability of the Hamiltonian, the
problem of computing a saddle solution to the dynamic game reduces to solving
two linear optimal control synthesis problems.

Propositions 1 and 2 are fundamental for establishing the well-posedness of
our controller synthesis methodology. The proofs are due to Pontryagin [13] and
can be found in many optimal control texts, such as [6].

Proposition 1 (Nonsingular Optimal Control and Disturbance). If the
linear system (10) is normal with respect to both the control and disturbance,
then for any x0 ∈ ∂G, the optimal control u∗(x0, ·) and disturbance d∗(x0, ·) are
unique and piece-wise constant taking values on the vertices of U,D.

Proposition 2 (Finite Switchings of Optimal Control). If the linear sys-
tem (10) is normal and A has purely real eigenvalues, then there is a uniform
upper bound, independent of x0 on the number of switchings of the optimal con-
trol u∗(x0, ·), and disturbance d∗(x0, ·).

4 Construction of Hybrid System

The switching policy of the optimal control and disturbance can be naturally
abstracted as a hybrid system.

Definition 1 (Hybrid Systems). A hybrid system is a tupleH=(X,F, Inv,R)
where

– X = XD × Rm is the state space with XD = {q0, . . . , qk−1},
– F : XD × Rm → Rm assigns to each discrete location q ∈ XD a differential

equation ẋ = F (q, x),
– Inv : XD → 2R

m

assigns to each discrete location an invariant set Inv(q) ⊆
Rm, and

– R ⊆ X ×X is a relation capturing the discrete transitions .

The elements of XD are the discrete states whereas x ∈ Rm is the continuous
state. Hybrid systems are typically represented as graphs with vertices XD, and
edges E defined by

E = {(q, q′) ∈ XD ×XD | (q, x, q′, x′) ∈ R for some x, x′ ∈ Rm}.
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With each edge e = (q, q′) ∈ E we associate a guard set defined as

Guard(e) = {x ∈ Inv(q) | (q, x, q′, x′) ∈ R for some x′ ∈ Rm}

and the set valued reset map

Reset(e, x) = {x′ ∈ Inv(q′) | (q, x, q′, x′) ∈ R}.

Due to switched nature of the optimal control and disturbance, in this paper,
it will suffice to assume that for all e ∈ E, Reset(e, x) = x. Therefore, all
reset maps will be the identity map. Furthermore, we do not require the explicit
specification of any initial states for our hybrid system.

The solution of the dynamic game played between the control and the dis-
turbance d can be naturally encoded by a hybrid system. The optimal controls
and disturbances always lie on the vertices of the admissible set of controls and
disturbances U and D which are nu and nd dimensional rectangles. Thus, there
are 2nu · 2nd possible vector fields associated with the optimal controls and dis-
turbances. We can therefore construct a hybrid system with 2nu · 2nd discrete
states, one for each possible control/disturbance pair.

We naturally encode the discrete states as a string of boolean numbers of
length nu + nd. The first nu elements encode the value that the i-th component
of the optimal control. Similarly the last nd components encode the value of the
optimal disturbance. We adopt the convention that 1 stands for the upper bound
(u∗i = U i or d∗i = Di), and 0 stands for the lower bound (u∗i = U i or d∗i = Di).
For example, in a system with two controls and one disturbance, the discrete
state (0, 0, 1) stands for the case where u∗1 = U1, u∗2 = U2, and d∗1 = D1. It is
therefore clear that the number of discrete states is 2nu+nd , sinceXD contains all
such boolean strings. According to which is notationally most convenient in the
context, we will refer to discrete state k as either qk or the boolean string that
represents k in binary. That is, for the example above we may refer to discrete
state 5 as either q5 or (1, 0, 1).

Since the optimal control depends on the co-state p, the continuous state
associated with the hybrid system is actually (x, p)T ∈ R2n. The vector field
with each discrete state qj then(

ẋ
ṗ

)
=

(
A 0
0 −AT

) (
x
p

)
+

(
B
0

)
uqj +

(
E
0

)
dqj , (16)

where uqj ∈ Rnu and dqj ∈ Rnd are the constant controls and disturbances
associated with discrete state qj .

Let (s1, . . . , snu , t1, . . . , tnd
) ∈ XD where all the si and ti are either zero or

one. Consider the formulas

Iu
i (s) =

{
pT (−A)βi(p)bi > 0 if s = 1
pT (−A)βi(p)bi < 0 if s = 0

(17)

Id
i (s) =

{
pT (−A)εi(p)ei < 0 if s = 1
pT (−A)εi(p)ei > 0 if s = 0,

(18)
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where bi and ei are the columns of B and E respectively, and βi(·), εi(·) are the
relative degrees that are now defined.

Definition 2 (Relative Degree). The relative degrees of the i-th input and
disturbance are functions βi, εi : Rn → Z defined by:

βi(p) =


0 if pT bi 6= 0
1 if pT bi = 0 ∧ pT (−A)bi 6= 0

...
j if

∧j−1
k=0 p

T (−A)kbi = 0 ∧ pT (−A)jbi 6= 0

(19)

εi(p) =


0 if pT ei 6= 0
1 if pT ei = 0 ∧ pT (−A)ei 6= 0

...
j if

∧j−1
k=0 p

T (−A)kei = 0 ∧ pT (−A)jei 6= 0.

(20)

The invariant set associated with discrete state (s1, . . . , snu , t1, . . . , tnd
) is simply

Inv((s1, . . . , snu , t1, . . . , tnd
)) =

nu∧
i=1

Iu
i (si) ∧

nd∧
j=1

Id
i (tj). (21)

In other words, the optimal control and disturbance remain the same as long as
the signs of all components of pTB and pTE do not change. Proposition 1 ensures
that components of pTB and pTE cannot be zero for nontrivial intervals of time,
and, furthermore, if some component of pTB or pTE is momentarily zero, the
optimal control and disturbance can be uniquely determined by looking at the
first nonzero Lie derivative.

Since, in general, the optimal policy can jump from any control/disturbance
pair to any other control/disturbance pair, the edge relation E is all of XD×XD.
Consider discrete states (s11, . . . , s

1
nu
, t11, . . . , t

1
nd

) and (s21, . . . , s
2
nu
, t21, . . . , t

2
nd

) and
let Ju be the set of indices i in {1, . . . , nu} such that s1i 6= s2i . Thus Ju contains
the indices of all control components that switch optimal policy. Similarly define
Jd. The guard that enables the transition e from (s11, . . . , s

1
nu
, t11, . . . , t

1
nd

) to
(s21, . . . , s2nu

, t21, . . . , t
2
nd

) is given by

Guard(e) =
∧

i∈Ju

Iu
i (si) ∧

∧
j∈Jd

Id
i (tj). (22)

where s denotes the boolean complement of s.
Notice that for each discrete state, the invariant and the guard depend only

on the co-state p. Therefore, there are formulas Invj : Rn → {true, false} for
j ∈ {0, . . . , 2nu+nd − 1} such that

Inv(qj) = {(x, p)T ∈ R2n | Invj(p)} (23)

The formulas Invj will be used for notational convenience in the reach set compu-
tation of the next section. This concludes the specification of the optimal control
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q0 = (0; 0)

_x = Ax+Buq0 + Edq0
_p = �ATp

(pT (�A)�(p)B < 0)
V

(pT (�A)"(p)E < 0)

q1 = (0; 1)

_x = Ax+Buq1 + Edq1
_p = �ATp

(pT (�A)�(p)B < 0)
V

(pT (�A)"(p)E > 0)

q2 = (1; 0)

_x = Ax+Buq2 + Edq2
_p = �ATp

(pT (�A)�(p)B > 0)
V

(pT (�A)"(p)E < 0)

q3 = (1; 1)

_x = Ax+Buq3 + Edq3
_p = �ATp

(pT (�A)�(p)B > 0)
V

(pT (�A)"(p)E > 0)

Fig. 1. Natural encoding of game solution as a hybrid system

policy as a hybrid system. Figure 1 shows a block diagram of a hybrid system
constructed out of a differential game between one control and one disturbance.

From Propositions 1 and 2 it is straightforward to show that the hybrid
system we construct is also well defined in the following sense.

Proposition 3 (Properties of Hybrid System). The hybrid system con-
structed above is nonblocking, deterministic, and non-Zeno.

The problem of computing the maximal controlled invariant set W has thus
been transformed to the problem of computing all states of the hybrid system
constructed above that the x component of the continuous state can reach G.
This reachability computation is the goal of the next section.

5 Reachability Computation

For the vector field associated with each discrete state qj , we define the pre-
decessor operator Prej : 2R

2n → 2R
2n

. Suppose a set K ⊂ R2n is defined by
K = {(x, p) ∈ R2n | P (x, p)}. Then Prej(K) is defined by

Prej(K) = {(x, p)T ∈ R2n | ∃y ∃q ∃t : P (y, q) ∧ t ≥ 0 ∧ q = e−tAT

p

∧ y = etAx+ (
∫ t

0 e
(t−s)Ads)(Buqj + Edqj )

∧ ∀s : 0 ≤ s ≤ t⇒ Invj(e−sAT

p)}.
(24)

An immediate corollary of the main theorem of [9], which is based on the
results in [7,8], is the following:

Proposition 4. Consider a semialgebraic set K ⊂ Rn and a dynamic system
ẋ = Ax+b where A ∈ Qn×n, b ∈ Qn. If A is nilpotent or diagonalizable with real
rational eigenvalues, then computing the states that can reach K is decidable.
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Proof. Suppose the K is defined by K = {x ∈ Rn | P (x)}. By defining

φ(x, t) = eAtx+
∫ t

0

eA(t−s)b ds,

we have that the set of states that can reach K is given by {x ∈ Rn | ∃y∃t :
P (y) ∧ t ≥ 0 ∧ y = φ(x, t)}. In order to prove the result, we must show that for
each condition on A above, φ(x, t) can be converted to an equivalent formula
in (R, <,+, ·, 0, 1), which is decidable. If A is nilpotent, then each entry of eAt

is polynomial in t. Therefore each entry of φ(x, t) is polynomial in t and hence
definable in (R, <,+, ·, 0, 1). If A is diagonalizable with real eigenvalues then each
entry of eAt is a linear combination of the functions eλit with λi an eigenvalue
of A. Since the entries of e−As are linear combinations of e−λis, after integration
the entries of φ(x, t) are linear combinations of eλit, e−λit. If λ ∈ Q, then by the
procedure outlined in [9], φ(x, t) may be converted into an equivalent formula in
(R, <,+, ·, 0, 1). 2

An immediate result of Proposition 4 is that the computation of Prej(K)
is decidable for each discrete state qj if K is a semialgebraic set, and A is
either nilpotent, or is diagonalizable with real eigenvalues. Notice that if K is
semialgebraic, then so is Prej(K).

Now, our goal is to compute all the states of the dynamical game (10) for
which the disturbance can drive the state into reach the target set G regardless
of the input. In fact, it is only necessary to compute the states that for which
the disturbance can drive the state to the “Usable Part” of G:

Definition 3 (Usable Part). The Usable Part (UP) of the target set G is the
subset of ∂G for which the disturbance can instantaneously drive the state into
G regardless of the control action. Thus UP for the dynamic game (10) and the
target set (11) is given by:

UP =
{
x ∈ ∂G | ∀u ∈ U ∃d ∈ D

(
∂h(x)

∂x

)T

(Ax+Bu+ Ed) < 0
}
. (25)

Since h(x) is a polynomial, then the defining formula (25) for UP is definable
in the theory of the reals (R, <,+, ·, 0, 1) which is known to admit quantifier
elimination and be decidable [14]. Therefore computing UP is decidable. Since
the hybrid system has the identity as its reset map, any trajectory that enters
G if and only if is passes through UP. Now, we need to convert our reachability
specification of the linear system (10) into a specification for our abstracted
hybrid system. To this end, we define the set

ŨP =
{
(x, p) ∈ R2n | x ∈ UP, p = ∂h(x)

∂x

T }
. (26)

Define Pre : 2R
2n → 2R

2n

such that for a given K ⊂ R2n, Pre(K) is the set of all
states of the hybrid system that can reach K. It is easily seen that

W c = {x ∈ Rn | ∃p : (x, p) ∈ Pre(ŨP) ∨ x ∈ G} (27)
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Therefore, the computation of W is decidable if and only if the computation of
Pre(ŨP) is decidable.

We now turn to computing Pre(ŨP). In general, different states on UP may
require different optimal control and disturbance values. We therefore partition
ŨP into a disjoint union of subsets according to the optimal controls and dis-
turbances. That is, we partition ŨP =

⋃
q∈Q Sq, where Q ⊆ XD and the set Sq

contains those state of ŨP for which the optimal control and disturbance of the
are represented by discrete state q of the hybrid system. Since there are only
2nu+nd possible optimal controls and disturbances, the partition is finite. Using
similar quantifier elimination arguments, it is straightforward to show that the
computation of this partition is decidable. Since we have that

Pre(ŨP) = Pre
(⋃

q∈Q Sq

)
=

⋃
q∈Q Pre(Sq), (28)

we can concentrate of computing Pre(Sq) for a given q ∈ Q. We know that the
initial optimal control and disturbance is equal for all initial conditions in Sq,
therefore Sq is contained within the same discrete state.

Theorem 2 (Computation of Maximal Controlled Invariant Set). Con-
sider a dynamic game ẋ = Ax+Bu+Ed with controls u ∈ U ⊂ Rnu , disturbances
d ∈ D ⊂ Rnd and target set G ⊂ Rn given by G = {x ∈ Rn | h(x) < 0}. Suppose
the system and target set satisfy the following properties:

1. A ∈ Qn×n, B ∈ Qn×nu , E ∈ Qn×nd ,
2. For each column bi of B, the pair (A, bi) is completely controllable,
3. For each column ei of E, the pair (A, ei) is completely controllable,
4. The feasible sets of controls U and disturbances D are compact rectangles

with rational vertices,
5. h ∈ Q[x1, x2, ..., xn] and ∂h

∂x (x) 6= 0 when h(x) = 0.

If A is nilpotent or diagonalizable with real rational eigenvalues, then the com-
putation of the maximal controlled invariant set W is decidable.

Proof. Due to our partition in equation (28), we have

W c = {x ∈ Rn | ∃p : (x, p) ∈ Pre(ŨP)} ∪G (29)

=
⋃
q∈Q

{x ∈ Rn | ∃p : (x, p) ∈ Pre(Sq)} ∪G (30)

where each of the above steps is decidable. Thus it suffices to show that for a
given q ∈ Q computing Pre(Sq) is decidable.

Due to Proposition 3, we need not worry about any pathologies in the Pre
computation. Since, in each discrete state, the optimal input and disturbance are
constant we apply Proposition 4 to decidably compute the set of states that can
reach Sq for that particular combination of control/disturbance pair. However,
the optimal control or disturbance may change and a discrete transition may be
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taken. The predecessor operator of the discrete jumps is trivial since the reset
map of our jumps is the identity map.

Now, if the matrix A has real eigenvalues, then due to Proposition 2 after a
finite number of switchings, uniformly in (x, p)T ∈ Sq, there are no more switches
and we can use Proposition 4 one last time. Therefore, the algorithm terminates
after a finite number of steps. 2

6 Least Restrictive Controller

Our goal in this section is to compute the least restrictive controller that renders
the maximum controlled invariant set W invariant. The result of the previous
section is that W is definable in (R, <,+, ·, 0, 1) which is decidable [14]. Since
(R, <,+, ·, 0, 1) admits quantifier elimination, we may compute a quantifier-free
formula ψ such that W = {x ∈ Rn | ψ(x)}. The quantifier elimination that is
required in this procedure can be done by the computer logic software systems
Redlog [5] or Qepcad [4]. The defining formula of the set W may be converted
to the so-called disjunctive normal form to yield:

W =
{
x ∈ Rn | ∨L

j=1

(∧Mj

k=1 fjk
(x) mjk

0
)}

(31)

where fjk
∈ Q[x1, . . . , xn] and mjk

∈ {<,≤, <,≥,=, 6=}.
Since the least restrictive controller specifies a control action only on the

boundary of W , our first task is to compute the boundary of W , ∂W . We will
need the following lemma from [17].

Lemma 1. If W ⊂ Rn is definable in a decidable theory, then so is the closure
W , the interior W o, and the boundary ∂W .

Proof. For a set W = {x ∈ Rn | ψ(x)}, the sets W and W o are given by

W = {x ∈ Rn | ∀(y1, . . . , yn)∀(z1, . . . , zn) : [∧n
i=1yi < xi < zi ⇒ (32)

∃(w1, . . . , wn) : ∧n
i=1yi < wi < zi ∧ ψ(w)]}

W o = {x ∈ Rn | ∃(y1, . . . , yn)∃(z1, . . . , zn) : [∧n
i=1yi < xi < zi ∧ (33)

∀(w1, . . . , wn) : ∧n
i=1yi < wi < zi ⇒ ψ(w)]}

where we use the shorthand notation (α⇒ β) ≡ (¬α∨ β). The expressions (32)
and (33) are simply the definitions of closure and interior in the usual topology
of Rn. Let the defining formulas for W,W o be ψ, ψo respectively. Then the
defining formula for ∂W is simply ∂ψ ≡ ψ ∧ (¬ψo). Clearly if ψ is defined in a
theory which admits quantifier elimination, then so are ψ, ψo, and ∂ψ. 2

From the Lemma 1 we have that ∂W may be defined by a quantifier-free
formula

∂W = {x ∈ Rn | ∂ψ(x)}. (34)
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Since the least restrictive controller only specifies a control action on ∂W , then
g : Rn → 2U must be of the form

g(x) = {u ∈ U | ∂ψ(x) ⇒ φ(x, u)} (35)

where φ(x, u) is a formula to be described below.
Denote W =

⋃L
j=1(

⋂Mj

k=1Wjk
), and consider the least restrictive controller

for a single polynomial constraint Wjk
= {x ∈ Rn | fjk

(x) mjk
0}. For this

polynomial constraint, we define the formula

φjk
(x, u) ≡

(
(fjk

(x) = 0) ⇒ ∀d ∈ D : ∂fjk
(x)

∂x

T
(Ax +Bu+ Ed) mjk

0
)
. (36)

Using equation (36), it is direct to see that the least restrictive controller that
renders Wjk

invariant is given by gjk
(x) = {u ∈ U | φjk

(x, u)}. This least re-
strictive controller is simply a re-writing of equation (9) in terms of a decidable
formula. Now, the least restrictive controller for W =

⋃L
j=1(

⋂Mj

k=1Wjk
) must be

satisfy each of the of the simpler constraints, and hence is given by the following.

Theorem 3 (Least Restrictive Controller). For the differential game ẋ =
Ax + Bu + Ed, the least restrictive controller g : Rn → 2U that renders the set
W = {x ∈ Rn | ∨L

j=1(
∧Mj

k=1 fjk
(x) mjk

0)} invariant is given by

g(x) =
{
u ∈ U | ∂ψ(x) ⇒ ∨L

j=1

(∧Mj

k=1 φjk
(x, u)

)}
, (37)

where ∂ψ is the defining formula of ∂W and φjk
(x, u) is given by equation (36).

If W is definable in a decidable theory, then so is g(x).

Therefore, Theorems 2 and 3 collectively result in Theorem 1.

7 Conclusions

In this paper we have shown that controller synthesis for classes of linear systems
with polynomial reachability specifications is decidable. In further research, we
will extend the target set G to a semialgebraic set, investigate conditions for
semi-decidability in the absence of the normality condition, and extend the con-
tinuous decidability results to semidecidability results for classes of linear hy-
brid systems. In the case of purely imaginary eigenvalues, the problem becomes
quickly undecidable unless one remains in a compact region of the state space.
The observation along with the results of this paper have a clear and natural
connection with o-minimal theories of the reals [7,17], which will explored in
future research.
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