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Abstract. We consider action-labelled systems with non-deterministic
and probabilistic choice. Using the concept of norm functions [17], we
introduce two types of bisimulations (called (strict) normed bisimulation
equivalence) that allow for delays when simulating a transition and are
strictly between strong and weak bisimulation equivalence à la [26,36,37].
Using a suitable modification of the prominent splitter/partitioning tech-
nique [25,30], we present polynomial-time algorithms that constructs the
quotient space of the (strict) normed bisimulation equivalence classes.

1 Introduction

Probabilistic aspects play a crucial role for a quantitative analysis of various
types of parallel systems, such as systems that are designed on the basis of a
randomized algorithms or computer systems with unreliable components. In the
former case, probabilities can be used to specify the frequencies of the possible
outcomes of an explicit probabilistic choice (“tossing a fair coin”); in the latter
case, probabilities might express failure rates. Besides the probabilistic choices,
the (transition) systems we consider allow for nondeterministic choices. These
can be used for modelling probabilistic systems with asynchronous parallelism
[41,19,18,34,5] where the non-determinism is used to describe the interleaving
of the subprocesses. Moreover, as observed by several authors [21,23,34], the
non-determinism can also be used to represent underspecification or incomplete
information about the environment. Due to the combination of non-determinism
and probability, the design and analysis of such systems (with both types of
choices) can be hard.

Like for any kind of computer systems, the use of implementation relations
(which compare two systems; thus yielding a formal definition of when a pro-
gram P implements correctly another one P ′) have turned out to be useful for
the design and the system analysis. In this paper, we restrict to the equivalences
that yield a notion of process equality. There are several highly desirable condi-
tions that any reasonable process equivalence ≈ should fulfill, including e.g. the
soundness for establishing quantitative linear time properties and congruence
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properties w.r.t. certain composition operators of a process calculus (such as
parallel composition). A further crucial aspect is the development of methods
that support the proof of the equivalence of two processes (i.e. deductive or al-
gorithmic techniques to show P ≈ P ′). The algorithmic methods are of great
importance for automatic verification tools that take as their input a system P
and its specification P ′ and decides whether P correctly implements P ′. More-
over, algorithms for computing the quotient space yield an abstraction technique
which is highly relevant for the system analysis. For this, one replaces the states
by their equivalence classes and then establishes the desired properties for the
quotient space S/ ≈ rather than the original state space S. Especially when
we deal with weak equivalences (that abstract from internal computations) the
switch from the original system S to the quotient space S/ ≈ might lead to
a much smaller equivalent system; and hence can be viewed as a technique to
combat the state explosion problem.

Several (strong and weak) equivalences for various types of probabilistic sys-
tems have been proposed in the literature. They range over the full linear and
branching time spectrum and are extensions of the corresponding relations on
LTSs. While in the fully probabilistic setting, the equivalences are studied under
several aspects (compositionality, axiomatization, decidability, logical charac-
terizations, etc.), see e.g. [24,10,22,20,27,9,4], the treatment of equivalences for
probabilistic systems with non-determinism is less well-understood. Most of the
standard relations that have proven to be useful in the non-probabilistic setting
have been extended for the probabilistic case; see e.g. [35] for a trace-based rela-
tion, [42,23] for testing equivalences and [26,19,18,36,43,37,35,38,39] for several
types of (bi-)simulations. However, due to the combination of non-determinism
and probability, the definitions are more complicated than the corresponding
notions for non-probabilistic or fully probabilistic systems. Even though some
important issues (like compositionality and axiomatization) have been addressed
in the above mentioned literature, research on algorithmic methods to decide
the equivalence of two systems or to compute the quotient space are rare. For
strong bisimulation [26] and strong simulation [36], polynomial-time algorithms
have been presented in [3]. To the best of our knowledge, the forthcoming work
[32] is the first attempt to formulate an algorithmic method that deals with a
weak equivalence for probabilistic processes with non-determinism. We are not
aware of any complexity (or even decidability) result for weak bisimulation à la
[36,37] or any linear time relation on probabilistic systems with non-determinism,
e.g. trace distribution equivalence [35].1

Our contribution: We deal with probabilistic systems with non-determinism
and action labels modelled by a probabilistic extension of LTSs where the (action-
labelled) transitions are augmented with probabilities for the possible target
states. Our model essentially agrees with the simple probabilistic automata of

1 As (non-probabilistic) LTSs are special instances of probabilistic systems with non-
determinism and the trace distribution preorder à la Segala is a conservative exten-
sion of usual trace containment, the PSPACE-completeness for LTSs [25] yields the
PSPACE-hardness for the trace distribution relation à la [35].
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[36,34]). Our main contribution is the presentation of novel notions of bisimu-
lation equivalence which (in some sense) are insensitive with respect to internal
transitions. More precisely, our equivalences are conservative extensions of delay
bisimulation equivalence [40,14] which relies on the assumption that the sim-
ulation of a step of a process P by another process P ′ might happen with a
certain delay (i.e. after a sequence of internal transitions). The formal defini-
tion of our equivalences is provided by a probabilistic variant of norm functions
in the style of [17]. Intuitively, the norm functions specify bounds for the de-
lays (i.e. the number of internal transitions that might be performed before a
“proper” transition of a process P is simulated by a corresponding transition of
an equivalent process P ′). In the probabilistic setting where the combination of
internal transitions leads to a tree rather than a linear chain, the norm func-
tions yield conditions on the length of the paths in the trees corresponding to a
“delayed transition”. Using a modification of the traditional splitter/partioning
technique [25,30], we present polynomial time algorithms for computing the quo-
tient spaces. Moreover, we briefly discuss some other aspects (compositionality
w.r.t. parallel composition and preservation of linear time properties).
Organization of the paper: Section 2 introduces our model for probabilistic la-
belled transition systems. The definitions of norm functions and normed bisim-
ulations are presented in Section 3. In Section 4, we present our algorithm for
computing the bisimulation equivalence classes. Section 5 concludes the paper.

Because of space restrictions, we present our main results without proofs. We
refer the interested reader to [6] where the proofs and other details (including
results about various types of bisimulations and simulations) can be found.

2 Probabilistic Labelled Transition Systems

In (ordinary) LTSs, the transitions s
a−→t specify the possibility that the system

in state s moves via the action a to state t. In this paper, we deal with a prob-
abilistic variant of LTSs where any transition is augmented with a probabilistic
choice for the possible target states (rather than a unique target state t as it is
the case in LTSs). That is, in the probabilistic setting, the transitions are of the
form s

a−→µ where s is the starting state, a an action label and µ a distribution
on the state space which specifies the probabilities µ(t) for any possible successor
state t. Non-determinism is present in our model since we allow several (possibly
equally action-labelled) outgoing transitions of a state s.

Notation 1 Let S be a finite set. A distribution on S is a function µ : S → [0, 1]
such that

∑
s∈S µ(s) = 1. Let Supp(µ) = {s ∈ S : µ(s) > 0} denote the support

of µ; µ[A] =
∑

s∈A µ(s) for ∅ 6= A ⊆ S and µ[∅] = 0. For s ∈ S, µ1
s denotes the

unique distribution on S with µ1
s(s) = 1. Distr(S) denotes the collection of all

distributions on S. If R is an equivalence relation on S then S/R to denotes the
quotient space of S with respect to R. The induced equivalence ≡R on Distr(S)
is given by µ ≡R µ′ iff µ[A] = µ′[A] for all A ∈ S/R. We write [µ]R for the
equivalence class {µ′ : µ ≡R µ} of µ with respect to ≡R.
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Definition 1. A probabilistic labelled transition system (PLTS for short) is a
tuple (S,Act ,−→) where S is a finite set of states, Act a finite set of actions
(containing a special symbol τ)2 and −→ ⊆ S × Act × Distr(S) a transition
relation such that for all s ∈ S and a ∈ Act , Stepsa(s) = {µ : s

a−→µ} is finite.3

A probabilistic program is a tuple P = (S,Act ,−→, sinit ) consisting of a PLTS
(S,Act ,−→) and an initial state sinit ∈ S.

Example 1. We consider a simple communication protocol consisting of a sender
(that produces certain messages and tries to submit the messages along an unreli-
able medium) and a receiver (that acknowledges the receipt and consumes the re-
ceived messages). For simplicity, we assume that both the sender and the receiver
work with mailing boxes that cannot hold more than one message at any time.
The failure rate of the medium is 1%; i.e.,
with probability 1/100 the medium looses the
messages and the sender retries to submit
the message. In state sinit , the sender pro-
duces a message and passes the message to the
medium which leads to the state sdel (where
the medium tries to deliver the message via
an internal action). When the message is deliv-
ered correctly, the state sok is reached. In state
sok , the sender and the receiver can work in
parallel (modelled by interleaving): the sender
may produce the next message while the re-
ceiver may consume the last message.

sinit

sdel

sok

sack
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The executions of a PLTS are given by the paths in the underlying directed
graph. They arise through the resolution of both the non-deterministic and
probabilistic choices.4 Typically, one assumes that the resolution of the non-
deterministic choices are not under the control of the system itself. The entity
that resolves the non-determinism (the “environment”) can be formalized by a
scheduler [41] (also called adversary [34] or policy in the theory of MDPs [33]).
Given a scheduler A, the system behaviour under A can be described by a
Markov chain which yields a Borel field and probability measure on the paths
that can be obtained by A. The details are not of importance for this paper and
are omitted here. They can be found e.g. in the above mentioned references.

3 Normed Bisimulation

In ordinary LTSs, the several types of bisimulations (e.g. strong, weak branching
or delay bisimulation [28,31,29,16,40,14]) establish a correspondence between the
2 We refer to τ as the internal action. All other actions are called visible.
3 Any finite LTS (S,Act ,−→) (where −→ ⊆ S ×Act × S) can be viewed as a PLTS.

For this, we identify any transition s
a−→t with its probabilistic counterpart s

a−→µ1
t .

4 Formally, a path is a “sequence” s0
a1,µ1−→ s1

a2,µ2−→ s2
a2,µ2−→ . . . where si−1

ai−→ µi,
si ∈ Supp(µi).
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states and their stepwise behaviour. Intuitively, they identify those states s and s′

where any outgoing transition from s can be simulated by s′ and vice versa. Most
types of bisimulation equivalences on a LTS (S,Act ,−→) can be characterized
as the coarsest equivalence R on the state space S such that

(Bis) If (s, s′) ∈ R, C ∈ S/R and s
a−→C then s′ ∈ Pre∗(a, C).

Here, we write s
a−→C if s

a−→t for some t ∈ C. Pre∗(a, C) denotes a certain pre-
decessor predicate. Intuitively, s′ ∈ Pre∗(a, C) asserts that s′ can “simulate” the
transition s

a−→C. The formal definition of Pre∗(a, C) depends on the concrete
type of equivalence. E.g., strong bisimulation is obtained by using the predicate
Presbis(a, C) = {s′ : s′ a−→C} while delay bisimulation equivalence [40,14] fo-
cuses on the idea that the simulation of a transition s

a−→t might happen with a
certain delay (i.e. after a finite number of internal moves) and uses the predicates
Predel(·) which are given by the following three conditions.5

(D0) C ⊆ Predel(τ, C)
(D1) If s

a−→C then s ∈ Predel(a, C).
(D2) If s

τ−→t and t ∈ Predel(a, C) then s ∈ Predel(a, C).
[26] presented an elegant reformulation of strong bisimulation for a variant of
PLTSs which takes the probabilistic effect of the transitions into account. For-
mally, strong bisimulation equivalence ≈sbis in a PLTSs is the coarsest equiva-
lence R on the state space S such that for all (s, s′) ∈ R and transitions s

a−→µ

there is a transition s′ a−→µ′ where µ and µ′ return the same probabilities for
all equivalence classes under R (i.e. µ ≡R µ′, cf. Notation 1). [36,37] presented
notions of weak and branching bisimulations for PLTSs. All these notions of
bisimulation equivalences on a PLTS (S,Act ,−→) can be characterized as the
coarsest equivalence R on S such that

(PBis) If (s, s′) ∈ R, M ∈ Distr(S)/ ≡R and s
a−→M then s′ ∈ Pre∗(a, M).

Here, s
a−→M iff s

a−→µ for some µ ∈ M . E.g., strong bisimulation equivalence is
given by (PBis) using the predecessor predicate Presbis(a, M) = {s′ : s′ a−→M}.

We now propose novel notions of bisimulation equivalence for PLTSs which
are conservative extensions of delay bisimulation equivalence [40,14]. Intuitively,
two states s, s′ are identified iff any transition s

a−→µ can be simulated by s′

by first performing finitely many internal moves and then performing an a-
labelled transition for which the outcome of the associated probabilistic choice
agrees with µ.6 Thus, we aim at an appropriate definition of the predecessor
predicate Predel(a, M) where (for a 6= τ or µ1

s′ /∈ M) s′ ∈ Predel(a, M) states
the possibility for s′ to perform the action a (possibly with a certain delay)
such that the associated distribution µ′ of the a-labelled transition belongs to
M = [µ]R. Conditions (D0) and (D1) for Predel(a, C) can easily be lifted to the
probabilistic case (see conditions (BD0) and (BD1) below).

5 Thus, Predel(a, C) = {s′ : s′
τ∗a−→ C} for a 6= τ and Predel(τ, C) = {s′ : s′

τ∗−→ C}.
6 This informal explanation assumes that s

a−→µ is a “proper” transition, i.e. either
a 6= τ or µ1

s /∈ M . Transitions of the form s
τ−→µ where all possible target states

t ∈ Supp(µ) are equivalent to s can be viewed as “silent moves” and are not taken
account when dealing with equivalences that abstract from internal computations.
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(BD0) If µ1
s ∈ M then s ∈ Predel(τ, M).

(BD1) If s
a−→M then s ∈ Predel (a, M).

To adapt condition (D2) for the probabilistic setting, we have two possibilities
depending on whether or not we allow for unbounded delays. For the simpler
case, we require bounded delays which leads to condition (BD2).

(BD2) If s
τ−→ ν and Supp(ν) ⊆ Predel(a, M) then s ∈ Predel(a, M).

The resulting bisimulation equivalence only abstracts from the combination of
finitely many internal moves (corresponding to a bounded delay) but cannot
involve the effect of infinite τ -paths (unbounded delays). In the communication
protocol of Example 1, one might argue that the states sdel and sok have the
same observable behaviour as sdel moves via τ -transitions to sok with probability
1. To formalize the effect of infinite τ -loops, we use the concept of norm functions
which was introduced in [17] to reason about simulation-like relations in non-
probabilistic systems. We slightly depart from the notations of [17] and define
norm functions in LTSs as partial functions with three arguments (a state s, an
action label a and a set C of target states) and whose range are the natural
numbers. If the value n(s, a, C) is defined then s ∈ Predel(a, C) in which case
there is a τ∗-labelled path of length ≤ n(s, a, C) from s to a state t where either
t

a−→C or a = τ and t ∈ C. If s /∈ Predel (a, C) then n(s, a, C) is undefined
(denoted n(s, a, C) = ⊥). The formal definition of norm functions in LTSs arises
by “refining” the above mentioned three conditions for Predel(a, C) in the sense
that we involve the length of a delayed transition. Formally, norm functions in
LTSs are partial functions satisfying the following three conditions.
(N0) n(s, a, C) = 0 implies a = τ and s ∈ C

(N1) n(s, a, C) = 1 implies s
a−→C

(N2) If n(s, a, C) ≥ 2 then there is a transition s
τ−→t where n(t, a, C) <

n(s, a, C).
To adapt these three conditions to the probabilistic setting, we deal with a set
M ⊆ Distr(S) as the third argument of a norm function. The modifications of
(N0) and (N1) are straightforward. In (N2) we require that n(s, a, M) ≥ 2 implies
the existence of a transition s

τ−→ν satisfying a certain condition. When we aim
at bounded delays then we deal with the constraint n(t, a, M) < n(s, a, M) for
all t ∈ Supp(ν). For unbounded delays, we require that n(t, a, M) is defined for
all t ∈ Supp(ν) and n(t, a, M) < n(s, a, M) for some t ∈ Supp(ν).7

Definition 2. A norm function for a PLTS (S,Act ,−→) is a partial function
n : S ×Act × 2Distr(S) → IN which satisfies the following conditions.
(PN0) n(s, a, M) = 0 implies a = τ and µ1

s ∈ M .
(PN1) n(s, a, M) = 1 implies s

a−→M (i.e. s
a−→µ for some µ ∈ M).

7 These two conditions about Supp(ν) guarantee the existence of a scheduler where,
for any state s for which n(s, a, M) is defined, almost all paths starting in s lead via
τ ’s to a state t where n(t, a, M) ∈ {0, 1}. Thus, in this scheduler, with probability 1,

s performs finitely many τ ’s followed by a transitions t
a−→µ′ where µ′ ∈ M . However,

for this scheduler, there might be no upper bound for the number of τ ’s that will be
performed before the action a.
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(PN2) If n(s, a, M) ≥ 2 then there is a transition s
τ−→ν where

(i) n(t, a, M) 6= ⊥ for all t ∈ Supp(ν)
(ii) n(t, a, M) < n(s, a, M) for some t ∈ Supp(ν)

n is strict iff, in (ii), n(t, a, M) < n(s, a, M) for all t ∈ Supp(ν).

Example 2. Consider the system on the right.
Let M be the set of distributions µ that re-
turn probability 1 for the x-states (i.e. M =
{µ : µ(x1) + µ(x2) = 1}). Then, µ1

x1
, µ1

x2
∈

M and s1
a−→M , s2

a−→M . Thus, the partial
function n with n(s0, a, M) = 2, n(s1, a, M)
= n(s2, a, M) = 1 and n(·) = ⊥ in all other
cases is a strict norm function.
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Definition 3. Let (S,Act ,−→) be a PLTS and R an equivalence on S. R is
called a (strict) normed bisimulation iff there exists a (strict) norm function n
such that for all a ∈ Act and M ∈ Distr(S)/ ≡R: if (s, s′) ∈ R and s

a−→M
then n(s′, a, M) 6= ⊥. Two states s and s′ are called (strictly) normed bisimilar
(denoted s ≈n s′ resp. s ≈sn s′) iff there exists a (strict) normed bisimulation R
such that (s, s′) ∈ R. The equivalences ≈n and ≈sn are adapted for probabilistic
programs in the obvious way.8

Example 3. It is easy to see that the states s0,
s1 and s2 in Example 7 are strictly normed
bisimilar. For the simple communication proto-
col of Example 1 and the smallest equivalence
relation R that identifies sdel and sok , there is
a norm function with n (sok , τ, [ν]R, ) = 0 and
n (sdel , cons , [sinit ]R) = 2 but no strict norm
function. Thus, sok ≈n sdel but sok 6≈sn sdel . The
quotient system that we get when we identify the
states by their normed bisimulation equivalence
classes can be viewed as a failure-free specifica-
tion (see the picture on the right).
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≈n and ≈sn can be characterized by condition (PBis) with suitable defined pre-
decessor predicates. The unbounded delay predecessor predicate Predel

ub (a, M)
is the set of states s where n(s, a, M) 6= ⊥ for some norm function n. The
bounded predecessor predicate Predel

b (a, M) is the set of states s such that
n(s, a, M) 6= ⊥ for some strict norm function n.9 Then, Predel

b (a, M) is the
least set satisfying the three conditions (BD0), (BD1), (BD2). In what follows,
8 Recall that a probabilistic program is a PLTS with an initial state (Def. 1). Let Pi be

probabilistic programs with initial states si, i = 1, 2. We define P1 ≈∗ P2 iff s1 ≈∗ s2

where s1, s2 are viewed as states in the composed system P1 ]P2 which arises from
the disjoint union of the state spaces of P1 and P2.

9 For a LTS, viewed as a PLTS, the unbounded and bounded predecessor predicates
coincide. More precisely, Predel(a, C) = Predel

ub (a, MC) = Predel
b (a, MC) for any set

C of states and MC = {µ1
t : t ∈ C}.
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we simply write Predel(a, M) to denote Predel
b (a, M) or Predel

ub (a, M) depend-
ing on whether we deal with strict normed bisimulation or normed bisimulation
equivalence. It is easy to see that (strict) normed bisimulation equivalence meets
the general characterization of bisimulation equivalences in PLTSs via condition
(PBis). More precisely, (strict) normed bisimulation equivalence is the coarsest
equivalence R on S such that (s, s′) ∈ R, M ∈ Distr(S)/ ≡R and s

a−→M implies
s′ ∈ Predel(a, M). (Strict) normed bisimulation equivalence lies strictly between
strong (≈sbis ) and weak (≈wbis) bisimulation equivalence à la [26,36,37], i.e.
≈sbis ⊂ ≈sn ⊂ ≈n ⊂ ≈wbis . The communication protocol and its failure free
specification are examples that demonstrate the difference between ≈sn and ≈n .

A crucial property of a simulation equivalence is soundness w.r.t. parallel
composition, since this allows for compositional analysis. Another very impor-
tant property is soundess w.r.t. a specification logic. For divergent-free processes
(processes without τ -loops), our equivalences are sound for quantitive linear time
properties. These express that, independent how the nondeterminism is resolved,
the probability on a certain set of traces is larger than some number p.

Proposition 1. If P1 and P2 are divergence free and P1 ≈n P2, then P1 and
P2 satisfy exactly the same quantative lineair time properties.

Proposition 2. P1 ≈n P2 implies P1‖Q ≈n P2‖Q and similarly for ≈sn .

4 Decidability

In this section, we present an algorithm that computes the (strict) normed
bisimulation equivalence classes in polynomial time and space. The main idea of
our algorithm is a modification of the prominent splitter/partitioning technique
[25,30] (which is sketched in Figure 1) that was proposed for computing the
strong bisimulation equivalence classes in a non-probabilistic transition system.
The basic idea is to start with the trivial partition χ = {S} of the state space
S and then successively refine χ by splitting the blocks B of χ into subblocks
according to a refinement operator Ref (χ, a, C) that depends on a splitter, i.e. an
action/block pair 〈a, C〉. More precisely, Ref (χ, a, C) divides each block B ∈ χ
into the subblocks B ∩Prestr (a, C) and its complement B \Prestr (a, C). 10 Us-
ing an appropriate organization of the splitters (resp. splitter candidates), this
method can be implemented in time O(m log n) where n is the number of states
and m the number of transitions (i.e. the size of −→) [30]. The above sketched
technique can easily be modified to compute several other types of bisimulation
equivalence classes, such as the strong [20] or weak [4] bisimulation equivalence
classes in fully probabilistic systems, but fails for strong (and hence for normed)
bisimulation in PLTSs when action/block pairs are used as splitters [3].

10 Ref (χ, a, C) yields the partition
⋃

B∈χ
Ref (B, a, C) where Ref (B, a,C) = {B ∩

Prestr (a,C), B \ Prestr (a,C)} \ {∅}.
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χ := {S};
While χ can be refined do

choose some splitter 〈a, C〉 of χ and put χ := Ref (χ, a, C);

Return χ.

Fig. 1. Schema for computing the bisimulation equivalence classes in LTSs

In the remainder of this section, we explain how the splitter/partitioning
technique can be modified to get a polynomial-time algorithm for computing
the (strict) normed bisimulation equivalence classes in a PLTS.

Notation 2 We fix a PLTS (S,Act ,−→). Let Ma =
⋃

s∈S Stepsa(s). For Z
to be a finite set, we write |Z| to denote the number of elements in Z. Let
n = |S| the number of states, m = | −→ | the total number of transitions and
mτ =

∑
s∈S |Stepsτ (s)| the number of τ -transitions. We assume that Act does

not contain redundant actions, i.e. we require that Ma 6= ∅ for all actions a.

We use similar ideas as suggested in [3] where an algorithm for computing the
strong bisimulation equivalence classes of a PLTS in time O(mn(log m + log n))
is presented. The key idea is to refine the current state partition has be according
to splitters of the form 〈a, M〉 where a is an action and M a subset of Ma. That
is, we successively replace the current state partition χ by

Ref (χ, a, M) =
⋃

B∈χ Ref (B, a, M)

where Ref (B, a, M) = {B ∩ Predel(a, M), B \ Predel(a, M)} \ {∅}.

Notation 3 A step partition is a set M consisting of pairs 〈a, M〉 where M ⊆
Ma and such that, for any action a, {M : 〈a, M〉 ∈ M} is a partition of Ma. We
refer to the pairs 〈a, M〉 as step classes. Given a state partition χ, the induced
step partition Mχ consists of the step classes 〈a, M〉 where M ∈ Ma/ ≡χ and
µ ≡χ µ′ iff µ[C] = µ′[C] for all C ∈ χ.

χ := {S};
While χ can be refined do

choose some step class 〈a,M〉 of Mχ and put χ := Ref (χ, a,M);

Return χ.

Fig. 2. Schema for computing the bisimulation equivalence classes in PLTSs

The rough ideas behind our algorithm are sketched in Figure 2. To keep book
about the splitter candidates 〈a, M〉 we use a step partition M (that agrees
with Mχ after any iteration) and a set SplCnd (e.g. organized as a queue)
which contains the step classes that will serve as splitter candidates. Initially,
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SplCnd consists of the “trivial” step classes 〈a, Ma〉. In each iteration, we first
refine the state partition χ according to a step class 〈a, M〉 ∈ SplCnd which
yields the new state partition χnew = Ref (χ, a, M). Then, we adjust M to
χnew , i.e. calculate Mnew = Mχnew . All new step classes 〈b, N ′〉 ∈ Mnew \M
are viewed as splitter candidates and are inserted into SplCnd . To derive Mnew

from M we have to replace any step class 〈b, N〉 in M by the step classes 〈b, N ′〉
where N ′ ∈ N/ ≡χ. At the beginning of any iteration we have M = Mχ.
Thus, for 〈b, N〉 ∈ M and ν, ν′ ∈ N we have ν[B] = ν′[B] for all B ∈ χ.
Let B ∈ χ and B′ = B ∩ Predel(a, M), B′′ = B \ B′ and C′ ∈ {B′, B′′},
〈b, N〉 ∈ M and ν, ν′ ∈ N . Then, ν[C′] = ν′[C′] iff ν[B′] = ν′[B′] and ν[B′′] =
ν′[B′′]. These observations motivate the use of a set NewBl which contains only
those blocks C′ ∈ χnew that are relevant for the computation of Mnew . More
precisely, for any block B ∈ χ where |Ref (B, a, M)| = 2, we choose a block
C ′

B ∈ Ref (B, a, M) such that |C ′
B| ≤ |B|/2 and define NewBl = {C ′

B : B ∈
χ, |Ref (B, a, M)| = 2}. Then, Mnew can be derived from M by replacing any
〈b, N〉 in M by the step classes in Split(〈b, N〉,NewBl ) which we compute as
follows. We start with N = {〈b, N〉}; Then, for all C ′ ∈ NewBl we replace any
〈b, N ′〉 in N by Split(〈b, N ′〉, C′) where the operator Split(〈b, N ′〉, C′) divides
〈b, N ′〉 into the step classes 〈b, N ′

1〉, . . . , 〈b, N ′
r〉 where N ′

1, . . . , N
′
r is the splitting

of N ′ according to the probabilities for C ′.11 These ideas lead to the algorithm
sketched in Figure 3.

Theorem 1. The (strict) normed bisimulation equivalence classes can be com-
puted in time O(mn(log m + log n) + mτn2) and space O(mn).

The remainder of this section is concerned with the proof of Theorem 1. It follows
from Prop. 3 and Prop. 4 We put χ0 = {S} and write χi to denote the state
partition χ after the i-th iteration. Similarly, we use the notations Mi, SplCnd i

and NewBl i with the obvious meaning. Let AllSplCnd =
⋃

i≥0 SplCnd i the set
of all step classes 〈a, M〉 that once serve as splitters for the state partition χ
and let AllNewBl =

⋃
i NewBl i the set of all blocks C′ that once are used in a

splitting operation Split(·, C ′). Using set-theoretic arguments, we get:
(i) |AllSplCnd | ≤ |M0 ∪M1 ∪ . . . | ≤ 2(m− 1)
(ii) |AllNewBl | ≤ |χ0 ∪ χ1 ∪ . . . | ≤ 2(n− 1)
(iii)

∑
C′∈AllNewBl |C′| ≤ n logn.

Proposition 3. The operations Ref (χ, a, M) in step (2) of the algorithm in
Fig. 3 can be implemented in time O(mτn2) (where we range over all iterations).

Proof. Clearly, given the predecessor predicate Predel(a, M) for a fixed step
class 〈a, M〉, Ref (χ, a, M) can be performed in time O(n) when appropriate
data structures are used. Combining (i) and the following Lemmatas 1 and 2 we
get the desired bound for the time complexity.

11 Split(〈b, N〉,NewBl) returns the set of step classes 〈b, N ′〉 where N ′ ∈ N/ ≡ and
ν ≡ ν′ iff ν[C′] = ν′[C′] for all C′ ∈ NewBl . As N ∈ Mb/ ≡χ yields that ≡ and
≡χnew coincide, we get Mχnew =

⋃
〈b,N〉∈M Split(〈b, N〉,NewBl).
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χ := {S}; M := {〈a, Ma〉 : a ∈ Act}; SplCnd := M;

While SplCnd 6= ∅ do

(1) choose some step class 〈a,M〉 of SplCnd and remove 〈a,M〉 from SplCnd ;

(2) (* Computation of χnew := Ref (χ, a, M) *)

P := Predel(a, M); χnew := ∅; NewBl := ∅
For all B ∈ χ do

B′ := B ∩ P ; B′′ := B \B′; χnew := χnew ∪ {B′, B′′} \ {∅};
If ∅ 6= B′ 6= B then

If |B′| ≤ |B′′| then C′ := B′ else C′ := B′′;

NewBl := NewBl ∪ {C′};
(3) (* Computation of Mnew := Mχnew *)

Mnew := ∅;
For all 〈b, N〉 ∈ M do

N := Split(〈b,N〉, NewBl); Mnew := Mnew ∪ N ;

If |N | ≥ 2 then SplCnd := SplCnd ∪N ;

(4) χ := χnew ; M := Mnew ;

Return χ.

Fig. 3. Algorithm for the (strict) normed bisimulation equivalence classes

Lemma 1. Predel
b (a, M) can be computed in time O(mτn).

Proof. Predel
b (a, M) is the least subset of S satisfying the conditions (BD0),

(BD1) and (BD2). The standard iterative method for computing the least fixed
point of a monotonic set-valued operator leads to the following method for com-
puting Predel

b (a, M). We consider the directed graph Gdel
b (a, M) = (V, E) with

the vertex set V = S ∪ Mτ and the edge set E = {(ν, s) ∈ Mτ × S : s
τ−→ν}

∪ {(s, ν) ∈ S ×Mτ : s ∈ Supp(ν)}. We assume a representation of Gdel
b (a, M)

by adjacency lists and write E(·) to denote the adjacency list of (·). We use the
algorithm shown in Fig. 4 to compute the set Predel

b (a, M). For any ν ∈ N ,
we use a counter c(ν) for the number of states t ∈ Supp(ν) where the con-
dition t ∈ Predel

b (a, M) is not yet verified. N0 collects all ν where c(ν) = 0,
i.e. Supp(ν) ⊆ Predel

b (a, M). Hence, if ν0 ∈ N0 and s
τ−→ν0 then we may insert s

into Predel
b (a, M). Clearly, this method can be implemented in time O(mτn).

Lemma 2. Predel
ub (a, M) can be computed in time O(mτn).

Proof. To compute Predel
ub (a, M) we suggest a graph-theoretical method which

is based on the following observation. Predel
ub (a, M) is the least subset of S which

contains Pre≤1(a, M) = Pre0(a, M) ∪ Pre1(a, M) (where Pre0(τ, M) = {s :
µ1

s ∈ M}, Pre0(a, M) = ∅ if a is visible and Pre1(a, M) = {s : s
a−→M}) and
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Compute the adjacency lists E(·) of the graph Gdel
b (a, M);

If a = τ then Predel
b (a, M) := {s : µ1

s ∈ M} else Predel
b (a, M) := ∅;

N0 := ∅ and c(ν) := |Supp(ν)| for all ν ∈ N ;

For all s ∈ S where s
a−→µ for some µ ∈ M do:

Predel
b (a, M) := Predel

b (a, M) ∪ {s};
For all ν ∈ E(s) do

c(ν) := c(ν)− 1;

If c(ν) = 0 then N0 := N0 ∪ {ν};
While N0 6= ∅ do

choose some ν0 ∈ N0 and put N0 := N0 \ {ν0};
For all s ∈ E(ν0) \ Predel

b (a,M) do

Predel
b (a,M) := Predel

b (a, M) ∪ {s};
For all ν ∈ E(s) \N0 do

c(ν) := c(ν)− 1;

If c(ν) = 0 then N0 := N0 ∪ {ν};
Return Predel

b (a, M).

Fig. 4. Algorithm for computing Predel
b (a, M)

satisfies the following condition. Whenever C ⊆ S such that for any s ∈ C there
is a finite path s = s0

τ,ν0−→ s1
τ,ν1−→ . . .

τ,νl−1−→ sl
τ,νl−→ t where s1, . . . , sl ∈ C, si

τ−→νi

with Supp(νi) ⊆ C∪Predel
ub (a, M), i = 0, 1, . . . , l, and t ∈ Predel

ub (a, M) then C ⊆
Predel

ub (a, M). On the basis of this characterization, we compute Predel
ub (a, M) as

follows. We start with Predel
ub (a, M) = Pre≤1(a, M) Then, we successively add

all states of a set C satisfying the above condition which can be reformulated
by means of the strongly connected components (SCCs) in a certain directed
graph. We consider the directed graph Gdel

ub (a, M) = (V, E) where the vertex set
V is given by V = {(s, ν) : ν ∈ Stepsτ (s), s /∈ Pre≤1(a, M)} ∪ Pre≤1(a, M)
and the edge set is E = {〈(s, ν), (s′, ν′)〉 : s ∈ Supp(ν′)} ∪ {〈u, (s′, ν′)〉 :
u ∈ Pre≤1(a, M) ∩ Supp(ν′)}. First we compute the SCCs of G = Gdel

ub (a, M)
and a topological sorting C1, . . . , Cr on them. The singleton sets {u} where
u ∈ Pre≤1(a, M) are bottom SCCs (BSCCs) in G. Thus, we may assume that
there is some h such that Pre≤1(a, M) = C1∪. . .∪Ch and Ci ⊆ V \Pre≤1(a, M),
i = h+1, . . . , r. We start with Predel

ub (a, M) = Pre≤1(a, M). For i = h+1, . . . , r,
if Ci is not a BSCC (i.e. {j : Cj →G Ci} 6= ∅) and all states of a predecessor SCC
Cj of Ci belong to Predel

ub (a, M) then we insert the states of Ci into Predel
ub (a, M).

Clearly, G = Gdel
ub (a, M) has O(mτ + n) vertices and O(mτn) edges. Hence, this

method can be implemented in time and space O(mτn).
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Proposition 4. Ranging over all iterations, the computation of the step parti-
tions Mnew in step (3) of Figure 3 takes O(mn(log m + log n)) time.

Proof. For calculating Split(〈b, N ′〉, C′) we may apply a technique (similar to the
one suggested in [3]) which generates an ordered balanced tree (e.g. AVL tree) by
successively inserting the values ν[C ′], ν ∈ N ′, possibly creating new nodes and
performing the necessary rebalancing steps. Any node v in this tree is labelled by
a key value v.key (which is one of the probabilities ν[C ′] for one or more ν ∈ N ′)
and a subset v.distr of N ′. Then, Split(〈b, N ′〉, C′) is the set of pairs 〈b, v.distr 〉
where v is a node in the final tree. The construction of the tree causes the cost
O(|N ′| log |N ′|) as for any ν ∈ N ′ we traverse a tree of height ≤ log |N ′|. For
fixed ν and C ′, the computation of the values ν[C ′] can be implemented in time
O(|C′|). Thus, for any call of the procedure Split(〈b, N ′〉, C′) the time spent for
computing the values ν[C ′] is O(|N ′| · |C′|) where we range over all ν ∈ N ′.
Summing up over all step classes 〈b, N〉 in the current step partition M, any
C ′ ∈ AllNewBl causes the cost O(m log m + m|C ′|). (ii) and (iii) yield the time
complexity O(mn(log m + log n)) for all Split(·) operations together.

5 Conclusion

We introduced two notions of bisimulation equivalence in probabilistic systems
(with non-determinism) that abstract from internal computations. We presented
polynomial-time algorithms that compute the quotient spaces and briefly dis-
cussed other important issues (soundness for establishing linear time properties
and compositionality). Thus, our notion of bisimulation equivalence yields an al-
ternative to the weak and branching bisimulations of [36,37]. Although the equiv-
alences à la [36,37] are the natural probabilistic counterpart to weak/branching
bisimulation equivalence in LTSs [28,31,16], their definitions are rather compli-
cated and the decidability is still an open problem. We argue that the definitions
of our equivalences – which rely on the rather intuitive concept of norm func-
tions à la [17] – are comparatively simple. Moreover, the use of norm functions in
the definition of our equivalences allows for a characterization of the equivalence
classes by means of graph-theoretical criteria which served as basis for our algo-
rithm that computes the equivalence classes. In particular, the characterization
of the delay predecessor predicates that we used in the proofs of Lemmatas 1
and 2 can easily be rewritten as terms of the relational mu-calculus. It would be
interesting if our ideas can be combined with the techniques of [8,12] for com-
puting the bisimulation equivalence in LTSs with a BDD-based model checking
algorithm for the relational mu-calculus seems to get a symbolic technique that
might combat the state explosion problem for PLTSs.

In this paper (where we mainly treated the issue of decidability) we restrict
our attention to finite systems. However, norm functions and the derived notions
of bisimulations can also be defined for infinite systems.12 We believe that, as in
12 For our purposes, it was sufficient to consider the natural numbers as range of the

norm functions. The framework of [17] also covers infinite, possibly uncountable,
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the non-probabilistic case, in many applications, it is quite simple to “guess” a
norm function and then to check (e.g. by hand) whether it fulfills the necessary
conditions. Further on, the concept of norm functions can also serve as basis for
simulation preorders that abstracts from internal moves and is computable in
finite systems. Further details about normed simulations can be found in [6] and
the forthcoming work [39].

Acknowledgements: The authors would like to thank Frits Vaandrager and
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