
Locality and Polyadicity in Asynchronous

Name-Passing Calculi

Massimo Merro?

INRIA Sophia-Antipolis, France

Abstract. We give a divergence-free encoding of polyadic Local π into
its monadic variant. Local π is a sub-calculus of asynchronous π-calculus
where the recipients of a channel are local to the process that has created
the channel. We prove the encoding fully-abstract with respect to barbed
congruence. This implies that in Local π (i) polyadicity does not add
extra expressive power, and (ii) when studying the theory of polyadic
Local π we can focus on the simpler monadic variant. Then, we show
how the idea of our encoding can be adapted to name-passing calculi
with non-binding input prefix, such as Chi , Fusion and πF calculi .

1 Introduction

Local π, in short Lπ, is a variant of the asynchronous π-calculus [11, 5] where
the recipients of a channel are local to the process that has created the channel.
More precisely, in a process (νa) P all possible inputs at a appear – and are
syntactically visible – in P ; no further inputs may be created, inside or outside
P . The locality property of channels is achieved by imposing that only the out-
put capability of names may be transmitted, i.e., the recipient of a name may
only use it in output actions. Lπ is a very expressive fragment of asynchronous
π-calculus, and its theory has been studied in [15]; similar calculi are discussed,
or at least mentioned, in [12, 4, 1, 30]. Lπ borrows ideas from some experimental
programming languages (or proposals of programming languages), most notably
Pict [20], Join [8], and Blue [6], and can be regarded as a basis for them (the
restriction on output capabilities is not explicit in Pict, but, as we understand
from the Pict users, most Pict programs obey it). The locality property makes
Lπ particularly suitable for giving the semantics to, and reasoning about, con-
current or distributed object-oriented languages [14]. For instance, the locality
property can guarantee unique identity of objects – a fundamental feature of
objects.

As for most name-passing calculi, the theoretical developments on Lπ have
been conducted on a monadic calculus, that is, a calculus in which only single
names can be transmitted. On the other hand, most applications in name-passing
calculi use polyadic communications, i.e., communications involving tuples of
names. So, an interesting issue is to investigate whether monadic and polyadic
name-passing calculi have the same expressive power. In this paper we show that,
? Funded by the European Union, under the Marie Curie TMR programme.

J. Tiuryn (Ed.): FOSSACS 2000, LNCS 1784, pp. 238–251, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Locality and Polyadicity in Asynchronous Name-Passing Calculi 239

under the locality hypothesis on channels, monadic and polyadic π-calculi have
the same expressive power. More precisely, we give an encoding 〈[[·]]〉 of polyadic
Lπ into monadic Lπ, and we prove it fully-abstract with respect to barbed congru-
ence [18]. Our encoding is divergence-free, that is, it does not introduce infinite
internal computations. Furthermore, we show how the idea of our encoding can
be easily adapted to name-passing calculi with non-binding input prefix , such
as Chi calculus [9], Fusion calculus [19] and πF-calculus [10], and we propose a
simple encoding of polyadicity for these calculi.

The first attempt of encoding polyadicity in name-passing calculi is by Robin
Milner [16]. Milner gives a simple encoding of polyadic into monadic synchronous
π-calculus. Milner’s encoding is not fully-abstract. In order to recover the full
abstraction Yoshida [29], and Quaglia and Walker [21], have introduced two
different type systems for monadic processes which model the communication
protocol underlying Milner’s encoding. A different approach has been followed
by Gonthier and Fournet in the Join-calculus [8], an “extended subset” of the
asynchronous π-calculus. In [8], among other results, a direct, although complex,
fully-abstract encoding of polyadic processes into monadic ones is proposed. All
these approaches will be discussed at the end of the paper.

In this extended abstract proofs are just sketched; complete proofs can be
found in [13].

Outline The paper is structured as follows. In Section 2 we describe the polyadic
Lπ calculus giving some properties of it; in Section 3 we recall a few correctness
criteria for encodings; in Section 4 we present the encoding of polyadic Lπ into
monadic Lπ; in Section 5 we prove the full abstraction of the encoding; in Sec-
tion 6 we investigate other possible encodings of polyadicity in Lπ; in Section 7
we show how the idea of our encoding can be adapted in name-passing cal-
culi with non-binding input prefix; in Section 8 we conclude and discuss related
works.

2 The Polyadic Lπ

Polyadic Lπ, in short Lπ̃, is an asynchronous fragment of Milner’s polyadic
π-calculus [16]. We use small letters a, b, c, . . . , x, y for names ; capital letters
P, Q, R for processes ; and ã to denote a tuple of names a1, . . . , an. Lπ̃ has op-
erators of inaction, input prefix, asynchronous output, parallel composition, re-
striction and replicated input:

P ::= 0 | a(x̃). P | a〈̃b〉 | P | P | (νa) P | !a(x̃). P

where in input processes a(x̃). P names in x̃ are all distinct and may not occur
free in P in input position. This syntactic constraint ensures that only the output
capability of names may be transmitted.

We use σ for substitutions; Pσ is the result of applying σ to P , with the
usual renaming convention to avoid captures; {eb/ea} is the simultaneous substi-
tution of names ã with names b̃. Parallel composition has the lowest precedence

240 Massimo Merro

among the operators, and
∏

n Pn is an abbreviation for the process P1 | . . . | Pn.
We write (νã) P for (νa1) . . . (νan) P and ab for a〈b〉. The labeled transition
system is the usual one (in the late style [17]). Structural congruence, written ≡
and defined as usual (see [16]), allows us to ignore certain structural differences
between processes. Transitions are of the form P

µ−→ P ′, where action µ can
be: τ (interaction); a(̃b) (input); (ν c̃) a〈̃b〉 (output) where c̃ ⊆ b̃ and a(̃b) is an
abbreviation for (ν b̃) a〈̃b〉. In these actions, a is the subject and b̃ the object . We

write
µ̂−→ to mean P

µ−→Q, if µ 6= τ , and either P = Q or P
τ−→Q, if µ = τ .

Relation =⇒ is the reflexive and transitive closure of τ−→; moreover,
µ

=⇒ stands
for =⇒ µ−→=⇒, and

µ̂
=⇒ for

µ
=⇒ if µ 6= τ , and for =⇒ if µ = τ . Free and bound

names (fn, bn) of actions and processes are defined as usual.
We assume Milner’s sorting system, under which all processes are well-

sorted [16]. Names are partitioned into a collection of sorts. A sorting function
is defined which maps sorts onto sequences of sorts. If a sort S is mapped onto
a sequence of sorts T̃ this means that channels in S can only carry tuples in T̃.
A sorting system is necessary to prevent arity mismatching in communications,
like in a〈b, c〉 | a(x). P . Substitutions must map names onto names of the same
sort.

The behavioral equivalence we are interested in is barbed congruence [18]. It is
well-known that barbed congruence represents a uniform mechanism for defining
a behavioral equivalence in any process calculus possessing (i) an interaction
relation (the τ -steps in π-calculus), modeling the evolution of the system, and
(ii) an observability predicate ↓a for each name a which indicates the possibility
for a process of accepting a communication at a with the environment. P ↓a

holds if there is a derivative P ′, and an action µ, with subject a, such that
P

µ−→P ′. We also write P ⇓a if there is a derivative P ′ such that P =⇒ P ′ ↓a.
We recall that a context C[·] is a process with exactly one hole, written [·], where
a process may be plugged in.

Definition 1 (barbed bisimilarity, congruence).Barbed bisimilarity, writ-
ten ≈· , is the largest symmetric relation on π-calculus processes such that
P ≈· Q implies:
1. If P

τ−→P ′ then there exists Q′ such that Q =⇒ Q′ and P ′ ≈· Q′.
2. If P ↓a then Q ⇓a.

Let L be a set of processes in πa, and P, Q ∈ L. Two processes P and Q are
barbed congruent in L, written P ∼=L Q, if for each context C[·] in L it holds
that C[P] ≈· C[Q].

The main inconvenience of barbed congruence is that it uses quantification over
contexts in the definition, and this can make proofs of process equalities heavy.
Simpler proof techniques are based on labeled characterizations without context
quantification.

Definition 2 (ground bisimilarity). Ground bisimilarity, written ≈, is the
largest symmetric relation on processes such that if P ≈ Q, P

µ−→P ′, bn(µ) ∩
fn(Q) = ∅, then there exists Q′ such that Q

bµ
=⇒Q′ and P ′ ≈ Q′.

Locality and Polyadicity in Asynchronous Name-Passing Calculi 241

We recall that in the asynchronous calculi without matching, like Lπ̃, ground
bisimilarity coincides with early, late, and open bisimilarities [23]. All these re-
lations are congruences and imply barbed congruence.

In the technical part of this paper we shall need a means to count the number
of silent moves performed by a process in order to use up-to techniques [27, 24].
The expansion relation [3], written ., is an asymmetric variant of ≈ such that
P . Q holds if P ≈ Q, and Q has at least as many τ -moves as P .

Definition 3 (expansion). . is the largest relation on processes such that
P . Q implies:

1. whenever P
µ−→P ′, and bn(µ)∩fn(Q) = ∅, there exists Q′ such that Q

µ
=⇒Q′

and P ′ . Q′;
2. whenever Q

µ−→Q′, and bn(µ)∩ fn(P) = ∅, there exists P ′ such that P
µ̂−→P ′

and P ′ . Q′.

In both monadic and polyadic Lπ, barbed congruence is a relation strictly
larger than ground bisimilarity. For instance, in Lπ, if P = ab and Q = (νc) (ac |
!c(x). bx) then P ∼=Lπ Q (see [15]) but P 6≈ Q. In [15], Merro and Sangiorgi give
two labeled characterizations of barbed congruence for monadic Lπ. One of them
is based on an encoding of Lπ into πI, a calculus where all names emitted are
private [25]. The (polyadic version of the) encoding (essentially Boreale’s [4]) is
an homomorphism on all operators except output, for which we have:

[[a〈̃b〉]] def= (ν c̃) (a〈c̃〉 | c̃ → b̃)

where b̃ = (b1, . . . , bn), c̃ = (c1, . . . , cn); names bi and ci have the same sort for
all i; c̃ ∩ ({a} ∪ b̃) = ∅; c̃ → b̃

def=
∏n

j=1 !cj(x̃). [[bj〈x̃〉]] with x̃ = (x1, . . . , xmj).

Remark 1. Being recursively defined, the process c̃ → b̃ is not in Lπ̃, but it is
ground bisimilar to a process of Lπ̃ (using replication instead of recursion).

Given two tuples of names b̃ = (b1, . . . , bn) and c̃ = (c1, . . . , cn) where
names bi and ci have the same sort for all i, we denote with c̃ . b̃ the process∏n

j=1!cj(x̃). bj〈x̃〉. Note that [[c̃ . b̃]] = c̃ → b̃.
Below, we report a simple adaption to the polyadic case of a few results on [[·]]

that have already appeared in the literature: Theorem 1 provides an adequacy
result w.r.t. barbed bisimilarity; Theorem 2 gives a characterization of barbed
congruence in Lπ̃ for image-finite processes. We recall that the class of image-
finite processes (to which most of the processes one would like to write belong)
is the largest subset I of π-calculus process which is derivation closed and such
that P ∈ I implies that, for all µ, the set {P ′ : P

µ
=⇒ P ′}, quotiented by

alpha conversion, is finite.

Theorem 1 (Boreale [4]). Let P and Q be two Lπ̃-processes then

P ≈· Q iff [[P]] ≈· [[Q]].

242 Massimo Merro

Theorem 2 (Merro and Sangiorgi [15]). Let P and Q be two Lπ̃-processes.
Then

1. P ∼=Leπ Q implies [[P]] ≈ [[Q]], for P and Q image-finite processes;
2. [[P]] ≈ [[Q]] implies P ∼=Leπ Q.

Remark 2. Theorem 2 has been proved in [15] with respect to asynchronous
barbed congruence (where only output barbs are taken into account) and an
asynchronous variant of ≈. The adaptation to the synchronous case is straight-
forward.

3 Correctness Criteria for Encodings

When studying an encoding between two languages it is necessary to have some
correctness criteria in order to assess the encoding. The most common cor-
rectness criteria for an encoding between two process calculi are based on the
notions of operational correspondence and full abstraction. The former relates
the execution steps as defined by an operational semantics of the source and
target calculi. The latter relates the source and the target calculi at the level
of behavioral equivalences. More formally, let us denote with (S,�s,−→s) and
(T ,�t,−→t) two process calculi equipped with behavioral equivalences �s and
�t, and transition relations −→s and −→t, respectively. Let [[·]] : S 7−→ T be an
encoding from S to T . A formal definition of operational correspondence is the
following:

Definition 4 (operational correspondence). Given two process calculi
(S,�s,−→s) and (T ,�t,−→t), an encoding [[·]] : S 7→ T enjoys a (strong) oper-
ational correspondence if for each S ∈ S the following two properties holds:

1. If S −→s S′ then [[S]] −→t�t [[S′]].
2. If [[S]] −→t T then there is S′ such that S −→s S′ and T �t [[S′]].

Requirements 1 and 2 assert that all possible executions of S may be simulated,
up to behavioral equivalence, by its translation, and vice-versa. A notion of weak
operational correspondence can be easily derived from Definition 4 by simply
replacing −→s and −→t with their reflexive transitive closure, in requirements
1 and 2.

Full abstraction has two parts: soundness, which says that the equivalence
between the translations of two source terms implies that of the source terms
themselves; and completeness, which says the converse. While soundness is a
necessary property and can be usually derived from the operational correspon-
dence, completeness is in general hard to achieve because it implies a strong
relationship between source and target calculi.

Definition 5 (soundness, completeness, and full abstraction).
Let (S,�s,−→s) and (T ,�t−→t) be two process calculi. An encoding
[[·]] : S 7−→ T is sound if [[S1]] �t [[S2]] implies S1 �s S2 for each S1, S2 ∈ S;
it is complete if S1 �s S2 implies [[S1]] �t [[S2]] for each S1, S2 ∈ S; it is
fully-abstract if it is sound and complete.

Locality and Polyadicity in Asynchronous Name-Passing Calculi 243

Full abstraction will represent our correctness criterion for the encoding of
polyadicity that we are going to present in the next section.

4 Encoding Polyadicity

In this section we give an encoding of polyadic Lπ into monadic Lπ. We present
our encoding by comparison with Milner’s encoding of polyadic synchronous π-
calculus into monadic synchronous π-calculus [16]. Milner’s idea is quite simple:
One can emulate sending a tuple b̃ by sending a fresh channel w along which all
names bi are transmitted sequentially. More precisely, Milner gives an encoding
{| · |} from polyadic processes to monadic ones which is an homomorphism on all
operators except input and output for which we have:

– {|a(x1, . . . , xn). P |} def= a(w). INP〈w, x1, . . . , xn〉. {|P |}
– {|a〈b1, . . . , bn〉. Q |} def= (νw) (aw. OUT〈w, b1, . . . , bn〉. {|Q |})

where

– INP〈w, x1, . . . , xn〉 def= w(x1). w(x2) . . . w(xn)
– OUT〈w, b1, . . . , bn〉 def= wb1. wb2 . . . wbn

and w is a fresh name, i.e., it is not free in the translated processes. Intuitively,
INP〈w, x̃〉 and OUT〈w, b̃〉 model a protocol which takes care of instantiating
each variable xi with the correspondent name bi by using a fresh channel w.
Since w is private to INP〈w, x̃〉 and OUT〈w, b̃〉 no interferences are possible. It
is easy to show that there is an operational correspondence between a polyadic
process P and its translation {| P |}: (i) if P

τ−→P ′ then {| P |} τ−→ & {| P ′ |}
and (ii) if {|P |} τ−→P1 then there exists P ′ such that P

τ−→P ′ and P1 & {|P ′ |}
where . is the expansion relation (see Definition 3). From the operational cor-
respondence one can derive the soundness of the encoding when considering
barbed congruence as the behavioral equivalence in both source and target lan-
guages. Unfortunately, as it is well-known, Milner’s encoding is not complete and
therefore it is not fully-abstract. As a counterexample take R = a(x̃). a(ỹ).0 and
S = a(x̃).0 | a(ỹ).0; then R and S are barbed congruent but their encodings are
not: {|S |} may perform two consecutive inputs along a while in {|R |} the input
protocol INP〈w, x̃〉 blocks the second input along a. In synchronous π-calculus,
a similar counterexample can be given by using outputs instead of inputs. These
counterexamples essentially say that Milner’s encoding is not fully-abstract be-
cause the protocols INP〈w, x̃〉 and OUT〈w, b̃〉 prevent the continuations {| P |}
and {|Q |} from evolving. Thus, one might think of adapting, somehow, Milner’s
encoding so that the protocols INP〈w, x̃〉 and OUT〈w, b̃〉 (or a variant of them)
are in parallel with the continuations and not in sequence. In (full) π-calculus,
such an adaptation is not possible because of the binding nature of the input
prefix. This problem can be avoided in Lπ by relying on Lemma 1 which gives,
under certain hypotheses, an interesting encoding for the substitution operator.
Recall the definition of ã . b̃ from Section 2.

244 Massimo Merro

Lemma 1 (Merro and Sangiorgi [15]). Let ã and b̃ be two tuples with the
same arity and such that ã ∩ b̃ = ∅, and let P be an Lπ̃-process such that all
names ai ∈ ã do not appear free in input position in P . It holds that (νã) (ã . b̃ |
P) ∼=Leπ P{eb/ea}.

In the following we show how Lemma 1 can be used to define an encoding
〈| · |〉 of polyadic Lπ-processes into monadic ones. For simplicity, we restrict
ourselves to processes transmitting pairs of names. The general case, when tuples
of arbitrary size are transmitted, can be derived straightforwardly. The encoding
〈| · |〉 is an homomorphism on all operators except input and output, for which
we have:

– 〈|a(x̃). P |〉 def= a(w). (νx̃) (INP〈w, x̃〉 | 〈|P |〉)
– 〈|a〈̃b〉 |〉 def= (νw) (aw | OUT〈w, b̃〉)

where w 6∈ fn(〈|P |〉), and supposing x̃ = (x1, x2), ỹ = (y1, y2), b̃ = (b1, b2), and
x̃ . ỹ = !x1(z). y1z | !x2(z). y2z we define

– INP〈w, x̃〉 def= (νc1c3) (wc1 | c1(c2). (c2c3 | c3(y1). c1(y2). x̃ . ỹ))
– OUT〈w, b̃〉 def= w(c1). (νc2) (c1c2 | c2(c3). (c3b1 | c1b2)).

Like Milner’s encoding, 〈| · |〉 is based on the send of a private channel w used by
INP〈w, x̃〉 and OUT〈w, b̃〉 for transmitting names bi. Unlike Milner’s encoding,
in 〈| · |〉 the send of names bi produces n forwarders xi . bi in parallel. More
precisely, by Lemma 1, it holds that:

〈|a〈̃b〉 | a(x̃). P |〉 τ−→ & (νx̃) (x̃ . b̃ | 〈|P |〉) ∼=Lπ 〈|P |〉{eb/ex} ≡ 〈|P{eb/ex}|〉.

The encoding 〈| · |〉 is sound with respect to barbed congruence. Unfor-
tunately, in this form, the encoding is not yet fully-abstract because it
is not complete. As a counterexample take the processes R = a〈̃b〉 and
S = (νd̃) (a〈d̃〉 | d̃ . b̃), with b̃ = (b1, b2) and d̃ = (d1, d2); then R ∼=Leπ S
(see [15]) but 〈| R |〉 6 ∼=Lπ 〈| S |〉, indeed let C[·] = [·] | T in which
T = a(w). (νc1c3h) (wc1 | c1(c2). (c2c3 | c3(y1). c1(y2). (y1h | h(x). m))),
then C[〈| R |〉] 6⇓m while C[〈| S |〉] ⇓m. Notice that we may not find a simi-
lar counterexample by using two ground bisimilar processes R and S. This
information allows us to give an amended variant of 〈| · |〉. By Theorem 2 we
know that the encoding [[·]] of Section 2 maps barbed congruent processes into
ground bisimilar processes; that is, it holds that P ∼=Leπ Q iff [[P]] ≈ [[Q]] (on
image-finite processes). So, we can refine the encoding 〈| · |〉 by simply combining
〈| · |〉 with [[·]]. More precisely, we define an encoding 〈[[·]]〉 of Lπ̃ into Lπ as the
composition of [[·]] and 〈| · |〉, thus if P is an Lπ̃-process

〈[[P]]〉 def= 〈| [[P]] |〉.

Notice that both encodings [[·]] and 〈| · |〉 are divergence-free, that is, they do
not introduce infinite internal computations, so also the encoding 〈[[·]]〉 does not
introduce divergence.

Locality and Polyadicity in Asynchronous Name-Passing Calculi 245

5 Proving the Full Abstraction of 〈[[·]]〉
In this section we shall prove that, on image-finite and well-sorted processes,
〈[[·]]〉 is fully abstract with respect to barbed congruence. To this end we study
the encoding [[〈| · |〉]] obtained by inverting the order of the application of the
encodings [[·]] and 〈| · |〉. We first prove an operational correspondence, up to
expansion, between processes P and [[〈| P |〉]]. This will allows us to prove the
soundness of 〈[[·]]〉. Then we derive the completeness of 〈[[·]]〉 from a completeness
result for [[〈| · |〉]].

Lemma 2 will allow us to prove the operational correspondence between
processes P and [[〈|P |〉]].

Lemma 2 (Boreale [4]).

1. Let ã, b̃, c̃ be tuples of names of the same size such that (ã∪ c̃)∩ b̃ = ∅. Then
(ν b̃) (ã → b̃ | b̃ → c̃) & ã → c̃.

2. Let P be an Lπ̃ process and ã and b̃ two tuples of names such that the names
in ã do not occur free in P in input-subject position and ã ∩ b̃ = ∅. Then
(νã) (ã → b̃ | [[P]]) & [[P]]{eb/ea}.

Remark 3. Lemma 2(2) can be seen as a variant of Lemma 1 up to [[·]]. Actually,
Lemma 1 follows directly from Lemma 2(2) and Theorem 2(2).

Lemma 3. Let P be a well-sorted process in Lπ̃ then:

1. Suppose that P
α−→P ′. Then we have:

(a) if α = a(x̃) then [[〈|P |〉]] a(w)−→ & (νx̃) ([[INP〈w, x̃〉]] | [[〈|P ′ |〉]]);
(b) if α = (ν c̃) a〈̃b〉, with c̃ eventually empty, then

[[〈|P |〉]] a(p)−→ & (ν c̃) ((νw) (p → w | [[OUT〈w, b̃〉]]) | [[〈|P ′ |〉]]),
with p 6∈ fn(P ′);

(c) if α = τ then [[〈|P |〉]] τ−→ & [[〈|P ′ |〉]].
2. Suppose that [[〈|P |〉]] α−→P1. Then there exists P ′ ∈ Lπ̃ such that:

(a) if α = a(w) then P
a(ex)−→P ′, for some x̃, with

P1 & (νx̃) ([[INP〈w, x̃〉]] | [[〈|P ′ |〉]]);

(b) if α = a(p) then P
(�ec) a〈eb〉
−−−−→P ′, with c̃ eventually empty, p 6∈ fn(P ′) and

P1 & (ν c̃) ((νw) (p → w | [[OUT〈w, b̃〉]]) | [[〈|P ′ |〉]]);
(c) if α = τ then P

τ−→P ′ with P1 & [[〈|P ′ |〉]].

Proof. By transition induction. The only subtle points arise in parts 1(c) and
2(c) where also Lemma 2 is used. Details can be found in [13].

Remark 4. Note that the lemma above is not true when considering ill-sorted
processes. For instance, if P = a〈b, c〉 | a(x). Q then [[〈|P |〉]] τ−→ while P 6 τ−→.

246 Massimo Merro

From Lemma 3 we can derive a weak operational correspondence.

Lemma 4.

1. If P =⇒ P ′ then [[〈|P |〉]] =⇒& [[〈|P ′ |〉]];
2. If [[〈|P |〉]] =⇒ P1 then there is P ′ s.t. P =⇒ P ′ and P1 & [[〈|P ′ |〉]];
3. P ⇓a iff [[〈|P |〉]] ⇓a.

Proof. Parts 1 and 2 are proven by induction on the number of τ -moves by
exploiting Lemma 3. Part 3 follows from parts 1 and 2, and Lemma 3.

Lemmas 3 and 4 allow us to prove the following two lemmas which will be useful
for proving the soundness of 〈[[·]]〉.

Lemma 5. Let P and Q be two Lπ̃-processes. Then

[[〈|P |〉]] ≈· [[〈|Q |〉]] implies P ≈· Q.

Proof. We use Lemmas 3 and 4 and the fact that . ≈· & ⊂ ≈· to prove that the
relation R = {(P, Q) : [[〈|P |〉]] ≈· [[〈|Q |〉]]} is a barbed bisimulation.

Lemma 6. Let P and Q be two Lπ̃-processes. Then

〈[[P]]〉 ≈· 〈[[Q]]〉 implies P ≈· Q.

Proof. Since 〈[[·]]〉 def= 〈| [[·]] |〉, by Theorem 1, we have [[〈| [[P]] |〉]] ≈· [[〈| [[Q]] |〉]]. By
Lemma 5 we have [[P]] ≈· [[Q]]. By Theorem 1 we have P ≈· Q.

The following lemma will allow us to prove the completeness of 〈[[·]]〉.

Lemma 7. Let P and Q be two Lπ̃-processes. Then

P ≈ Q implies [[〈|P |〉]] ≈ [[〈|Q |〉]].

Proof. We prove that S = {([[〈|P |〉]], [[〈|Q |〉]]) : P ≈ Q} is a ground bisimulation
up to context and up to & [24]. Details can be found in [13].

Finally we prove that, on image-finite and well-sorted processes, the encoding
〈[[·]]〉 is fully-abstract with respect to barbed congruence.

Theorem 3 (full abstraction of 〈[[·]]〉). Let P and Q be two image-finite and
well-sorted processes in Lπ̃, then

P ∼=Leπ Q iff 〈[[P]]〉 ∼=Lπ 〈[[Q]]〉.

Proof. The soundness follows from the compositionality of [[·]] and 〈| · |〉, and
Lemma 6. As for completeness, by Theorem 2(1) we have [[P]] ≈ [[Q]]. By
Lemma 7 we have [[〈| [[P]] |〉]] ≈ [[〈| [[Q]] |〉]]. By the monadic variant of Theorem 2(2)
we have 〈| [[P]] |〉 ∼=Lπ 〈| [[Q]] |〉, i.e., 〈[[P]]〉 ∼=Lπ 〈[[Q]]〉.

Locality and Polyadicity in Asynchronous Name-Passing Calculi 247

6 What about 〈| · |〉 and [[〈| · |〉]] ?
We have proved that the encoding 〈[[·]]〉 is fully-abstract w.r.t. barbed congru-
ence. Other possible candidates for a fully-abstract encoding of polyadic Lπ into
monadic Lπ are: 〈| · |〉 and [[〈| · |〉]]. Unfortunately, none of them is fully-abstract
w.r.t. barbed congruence or ground bisimilarity.

In Section 4 we already showed that 〈| · |〉 is not fully-abstract w.r.t. barbed
congruence. The encoding 〈| · |〉 is not fully-abstract w.r.t. ground bisimilarity
either. As a counterexample take P = (νa) (a〈̃b〉 | a(x̃). c〈x̃〉) and Q = c〈̃b〉; then
P ≈ Q, but 〈| P |〉 ≈ (νx̃) (x̃ . b̃ | 〈| c〈x̃〉 |〉), and 〈|Q |〉 = 〈| c〈̃b〉 |〉, and therefore
〈|P |〉 6≈ 〈|Q |〉.

By Lemma 7 the encoding [[〈| · |〉]] is complete w.r.t. ground bisimilarity.
Since the encoding [[〈| · |〉]] enjoys an operational correspondence up to expansion
(Lemma 3), one may hope that [[〈| · |〉]] is sound w.r.t. ground bisimilarity and
therefore fully-abstract. Unfortunately, [[〈| · |〉]] is not sound w.r.t. ground bisimi-
larity. As a counterexample take P = (ν c̃) a〈c̃〉 and Q = (ν c̃) (a〈c̃〉 | c1〈b〉), with
c̃ = (c1, c2); then P ∼=Leπ Q (see [15]) and also 〈| P |〉 ∼=Lπ 〈|Q |〉, by Theorem 2
[[〈| P |〉]] ≈ [[〈|Q |〉]], but P 6≈ Q. The encoding [[〈| · |〉]] is not fully-abstract w.r.t.
barbed congruence either. As a counterexample take the processes P = a〈̃b〉 and
Q = (νd̃) (a〈d̃〉 | d̃ . b̃), with b̃ = (b1, b2) and d̃ = (d1, d2); then, as already shown
in Section 4, P ∼=Leπ Q and 〈|P |〉 6∼=Lπ 〈|Q |〉; since the encoding [[·]] is sound w.r.t.
barbed congruence (which follows by Theorem 1 and the compositionality of [[·]])
we have that [[〈|P |〉]] 6∼=Lπ [[〈|Q |〉]].

7 An Encoding of Polyadicity in Calculi with Non-binding
Input Prefix

In Section 4, we said that Milner’s encoding is not fully-abstract because the
protocols INP〈w, x̃〉 and OUT〈w, b̃〉 prevent the continuations {|P |} and {|Q |}
to evolve. Actually, the real problem is the binding nature of the input prefix.
Indeed, we can easily change the encoding of a〈̃b〉. P by putting the protocol
OUT〈w, b̃〉 in parallel with the continuation but we cannot do the same with the
encoding of input prefixes.

On the contrary, in calculi where the input prefix is non-binding, such as Chi
calculus [9], Fusion calculus [19] and πF-calculus [10], we can adapt Milner’s
encoding by simply putting the protocol INP〈w, x̃〉 in parallel with the contin-
uation. We conjecture that, in these calculi, such a variant of Milner’s encoding
is fully-abstract.

Let us consider, for instance, the Fusion calculus. 1 For our purposes it suf-
fices to consider a finite fragment. The extension of our encoding when infinite
processes are allowed is straightforward. The grammar of finite Fusion calcu-
lus has operators of inaction, non-binding input prefix, output prefixing, parallel
composition, and restriction:
1 Actually, it might be easier to work with the πF-calculus. We consider the Fusion

calculus and not πF only because the theory of Fusion is more stable.

248 Massimo Merro

P ::= 0 | a〈x̃〉. P | a〈̃b〉. P | P | P | (a)P

Conventions about names are as in π-calculus, except for the non-binding input
prefix for which we have:

fn(a〈x̃〉. P) def= {a} ∪ {x1, . . . , xn} ∪ fn(P) and bn(a〈x̃〉. P) def= bn(P).

We write (x̃)P for (x1) . . . (xn)P . Conventions about processes and substitutions
are as in π-calculus. The reduction semantics is defined by means of a notion of
structural congruence (essentially the same as in π-calculus) and a reduction re-
lation. For simplicity, we give the basic reduction rules for the monadic calculus,
the generalization to the polyadic case is slightly more complex:

(comm1): (x)(P |a〈x〉. Q |a〈y〉. R) −→ (x)((P |Q |R){y/x})

(comm2): (y)(P |a〈x〉. Q |a〈y〉. R) −→ (y)((P |Q |R){x/y})

Notice that the restrictions (x) and (y) in the derivatives make sense only when
x = y, otherwise, up to structural congruence, they disappear. The definitions
of observability, barbed bisimilarity, and barbed congruence are essentially the
same as in π-calculus. Finally, an important derived process, called fusion, can
be defined as follows: {x̃ = ỹ} def= (u)(u〈x̃〉.0 | u〈ỹ〉.0).

In Fusion calculus, communications can arise only in the presence of a scoping
construct delimiting their effects (see reduction rules (comm1) and (comm2)).
So, to observe all potential communications (and their effects) it makes sense to
consider a notion of barbed congruence obtained by closing barbed bisimulation
under contexts that bind all free names of the tested processes. Similar closing
contexts have been used in typed calculi [26]. As in the definition of testing
equivalences [7], these contexts signal success by emitting along names that do
not appear in the tested processes.

Definition 6 (closed barbed congruence). Two processes P and Q are
closed barbed congruent, written ∼=c, if for each context C[·] such that fn(P) ∩
fn(C[P]) = fn(Q) ∩ fn(C[Q]) = ∅, it holds that C[P] ≈· C[Q].

It is immediate to adapt this definition to other calculi, such as π-calculus. Ac-
tually, in π-calculus and CCS, closed barbed congruence coincides with barbed
congruence: One can prove that closed barbed congruence coincides with the clo-
sure under substitutions of early bisimulation, by adapting the proofs in [22, 2];
since the closure under substitutions of early bisimulation is known to coincide
with barbed congruence, the two definitions of barbed congruence coincide. Un-
fortunately, standard and closed barbed congruence do not coincide in Fusion.

Milner’s encoding can be rewritten in Fusion calculus so that the instantiation
of names does not block the continuations:

Locality and Polyadicity in Asynchronous Name-Passing Calculi 249

(|a〈x1, . . . , xn〉. P |) def= (w)aw. (wx1 . wx2. . . . wxn | (|P |))

(|a〈b1, . . . , bn〉. Q |) def= (w)aw. (wb1. wb2. . . . wbn | (|Q |))

Note that the continuations (|P |) and (|Q |) may evolve without waiting for the n
communications along the private channel w. This encoding is not sound w.r.t.
standard barbed congruence and not even w.r.t. hyperequivalence [19], because,
in some sense, the encoding breaks the preemptive power of fusions. More pre-
cisely, if we take R = {a = b} | {c = d} and S = {a = b}. {c = d}2, then R and
S are not equivalent while their translations are. Nevertheless, we believe that
the encoding (| · |) is fully abstract with respect to closed barbed congruence. Our
conjecture is due to the fact that closed barbed congruence is insensitive to fusion
prefixing, that is, it handles fusion actions as silent moves. As a consequence, the
counterexample above is not valid anymore because processes {a = b} | {c = d}
and {a = b}. {c = d} are closed barbed congruent. Unfortunately, we cannot
prove the full abstraction of (| · |) by using the same proof techniques of Sec-
tion 5 because we do not know yet a labeled characterization of closed barbed
congruence in Fusion.

8 Conclusions and Related Works

We have presented a divergence-free encoding 〈[[·]]〉 of polyadic Lπ into monadic
Lπ inspired by Milner’s encoding. The encoding exploits a property of Lπ saying
that, under certain hypotheses, substitution can be encoded in terms of links,
restriction, and parallel composition. This property allows us to define an en-
coding of polyadicity where the machinery emulating the transmission of tuples
does not block continuations.

We have proved that, on image-finite and well-sorted processes, 〈[[·]]〉 is fully-
abstract with respect to barbed congruence. This shows that in Lπ (i) polyadic-
ity does not add extra expressive power, and (ii) when studying the theory of
polyadic Lπ we can focus on the simpler monadic variant. Finally, we have pro-
posed an encoding of polyadicity in name-passing calculi with non-binding input
prefix, such as Chi , Fusion and πF calculi [9, 19, 10], which is based on the same
idea of 〈[[·]]〉.

Of course, our encodings (as the Milner’s one) do not preserve well-sortedness.
This is a minor point because in monadic calculi there cannot be arity mismatch-
ing.

Note that we have used synchronous barbed congruence where both input and
output actions are observed. Sometimes, in asynchronous calculi, only output
barbs are taken into account validating the law a(x̃). a〈x̃〉 = 0. This law may be
questioned because it introduces divergences. For instance, from a(x̃). a〈x̃〉 = 0
we can derive the equality !a(x̃). a〈x̃〉 | ab = ab between a divergent and a
non-divergent process. Our encoding is not complete w.r.t. asynchronous barbed
2 A formal definition for S is (uz)(ua. zc | ub. zd)

250 Massimo Merro

congruence precisely because 〈[[a(x̃). a〈x̃〉]]〉 and 〈[[0]]〉 are not asynchronous barbed
congruent. However, we believe that 〈[[·]]〉 is fully-abstract w.r.t. a variant of
asynchronous barbed congruence which is sensitive to divergence, along the lines
of [28].

The works which are most closely related to ours are [29, 21] where type
systems for monadic π-processes are introduced in order to capture the commu-
nication protocol underlying Milner’s encoding. More precisely, in [29] a notion
of graph type is introduced and studied. Nodes of a graph type represent atomic
actions, and edges an activation ordering between them. The approach in [21] is
similar but the type system is simpler. Both papers show a full abstraction result
with respect to typed contextual equivalences that reject all contexts which do
not respect the protocol imposed by the encoding. While [29, 21] work on the
full π-calculus our result only applies in Lπ. This is because Lemmas 1 and 2
only work on Lπ-processes. On the other hand, we prove a sharper result because
we get the completeness of the encoding with respect to all monadic contexts
without rejecting “hostile” contexts.
In [8], Fournet and Gonthier provide, among other results, a fully-abstract en-
coding of polyadic into monadic Join Calculus. Apart from the differences among
the two process calculi, the encoding in [8] is technically quite different from ours;
for instance, as the authors themselves say, their translation encodes and then
subsequently decodes tuples twice.

Acknowledgments A series of discussions with Davide Sangiorgi has inspired
the work reported in the paper. I thank Paola Quaglia, David Walker and Björn
Victor for insightful discussions on the encoding of polyadicity in π and Fusion
calculi. I thank Ilaria Castellani, Silvano Dal-Zilio, Christine Röckl, and the
anonymous referees for useful comments on the paper.

References

[1] R. Amadio. An asynchronous model of locality, failure, and process mobility. In
Proc. Coordination’97, LNCS 1282, Springer Verlag, 1997.

[2] R. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asynchronous
π-calculus. Theoretical Computer Science, 195:291–324, 1998.

[3] S. Arun-Kumar and M. Hennessy. An efficiency preorder for processes. Acta
Informatica, 29:737–760, 1992.

[4] M. Boreale. On the expressiveness of internal mobility in name-passing calculi.
Theoretical Computer Science, 195:205–226, 1998.

[5] G. Boudol. Asynchrony and the π-calculus. Technical Report RR-1702, INRIA-
Sophia Antipolis, 1992.

[6] G. Boudol. The pi-calculus in direct style. In Proc. 24th POPL. ACM Press, 1997.
[7] R. De Nicola and R. Hennessy. Testing equivalences for processes. Theoretical

Computer Science, 34:83–133, 1984.
[8] C. Fournet and G. Gonthier. The Reflexive Chemical Abstract Machine and the

Join calculus. In Proc. 23th POPL. ACM Press, 1996.
[9] Y. Fu. A proof theoretical approach to communication. In 24th ICALP, volume

1256 of Lecture Notes in Computer Science. Springer Verlag, 1997.

Locality and Polyadicity in Asynchronous Name-Passing Calculi 251

[10] P. Gardner and L. Wischik. The πF-calculus: a π-calculus with fusions. Personal
Communication, 1999.

[11] K. Honda and M. Tokoro. An Object Calculus for Asynchronous Communication.
In Proc. ECOOP’91, LNCS 512, Springer Verlag, 1991.

[12] K. Honda and M. Tokoro. A Small Calculus for Concurrent Objects. In OOPS
Messanger, Association for Computing Machinery. 2(2):50-54, 1991.

[13] M. Merro. Locality and polyadicity in asynchronous name-passing calculi. Avail-
able at http://www-sop.inria.fr/meije/personnel/Massimo.Merro.html., 1999.

[14] M. Merro, H. Hüttel, J. Kleist, and U. Nestmann. Migrating Objects as Mobile
Processes. To appear as a INRIA/BRICS Technical Report, 1999.

[15] M. Merro and D. Sangiorgi. On asynchrony in name-passing calculi. In 25th
ICALP, volume 1443 of Lecture Notes in Computer Science. Springer Verlag, 1998.
The full-paper will appear as an INRIA Technical report.

[16] R. Milner. The polyadic π-calculus: a tutorial. Technical Report ECS–LFCS–91–
180, LFCS, Dept. of Comp. Sci., Edinburgh Univ., October 1991.

[17] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, (Parts I and
II). Information and Computation, 100:1–77, 1992.

[18] R. Milner and D. Sangiorgi. Barbed bisimulation. In W. Kuich, editor, 19th
ICALP, LNCS 623, Springer Verlag, 1992.

[19] J. Parrow and B. Victor. The fusion calculus: Expressiveness and symmetry in
mobile processes. In Proc. LICS’98, IEEE Computer Society Press., 1998.

[20] B. C. Pierce and D. N. Turner. Pict: A programming language based on the
pi-calculus. To appear in Proof, Language and Interaction: Essays in Honour of
Robin Milner, MIT Press.

[21] P. Quaglia and Walker D.. On encoding pπ in mπ. In Proc. FST & TCS, volume
1530 of Lecture Notes in Computer Science, pages 42–53. Springer Verlag, 1998.

[22] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms. PhD thesis CST–99–93, University of Edinburgh, 1992.

[23] D. Sangiorgi. Lazy functions and mobile processes. Technical Report RR-2515,
INRIA-Sophia Antipolis, 1995.

[24] D. Sangiorgi. Locality and non-interleaving semantics in calculi for mobile pro-
cesses. Theoretical Computer Science, 155:39–83, 1996.

[25] D. Sangiorgi. π-calculus, internal mobility and agent-passing calculi. Theoretical
Computer Science, 167(2):235–274, 1996.

[26] D. Sangiorgi. The name discipline of receptiveness. In 24th ICALP, volume 1256
of Lecture Notes in Computer Science. Springer Verlag, 1997. To appear in TCS.

[27] D. Sangiorgi and R. Milner. The problem of “Weak Bisimulation up to”. In Proc.
CONCUR ’92, LNS 630, Springer Verlag, 1992.

[28] D. Walker. Bisimulation and divergence. Information and Computation,
85(2):202–241, 1990.

[29] N. Yoshida. Graph types for monadic mobile processes. In Proc. FST & TCS,
LCNS 1180, Springer Verlag, 1996.

[30] N. Yoshida. Minimality and Separation Results on Asynchronous Mobile Pro-
cesses: representability theorem by concurrent combinators. In 9th CONCUR,
LNCS 1466, Springer Verlag, 1998.

	Introduction
	The Polyadic ${rm L}pi $
	Correctness Criteria for Encodings
	Encoding Polyadicity
	Proving the Full Abstraction of $ delimiter "426830A tmspace -thinmuskip {.1667em} [tmspace -thinmuskip {.1667em} [cdot] tmspace -thinmuskip {.1667em}] tmspace -thinmuskip {.1667em} delimiter "526930B $
	What about ...?
	An Encoding of Polyadicity in Calculi with Non-binding Input Prefix
	Conclusions and Related Works

