Sequential and Concurrent
Abstract Machines for Interaction Nets

Jorge Sousa Pinto*

Laboratoire d’Informatique (LIX - CNRS UMR 7650)
Ecole Polytechnique
91128 Palaiseau Cedex, France
pinto@lix.polytechnique.fr

Abstract. This paper is a formal study of how to implement interac-
tion nets, filling an important gap in the work on this graphical rewriting
formalism, very promising for the implementation of languages based on
the A-calculus. We propose the first abstract machine for interaction
net reduction, based on a decomposition of interaction rules into more
atomic steps, which tackles all the implementation details hidden in the
graphical presentation. As a natural extension of this, we then give a con-
current shared-memory abstract machine, and show how to implement
it, resulting in the first parallel implementation of interaction nets.

1 Introduction

Interaction Nets (INs) are an extension of Proof-Nets for the multiplicative frag-
ment of Linear Logic [5], proposed by Yves Lafont [8 O] as a simple and in-
herently parallel graphical formalism for programming. By way of a number of
translations of the A-calculus, interaction nets have proved to be a useful new
paradigm for implementing functional languages, specifically when controlling
the sharing of terms is a priority. The research effort has however been directed
more at these translations than at the implementation of interaction net reduc-
tion — in particular, no parallel implementations exist. In this paper we study the
sequential and concurrent implementation of interaction nets, by means of ab-
stract machines in which interaction steps are decomposed into simple machine
operations.

The interest of interaction nets for functional programming is twofold: on
one hand they allow to control the amount of shared reductions performed. In
particular, they have been used for the implementation of Optimal Reduction
(as formalized in [12], and brought to practice in successive studies [10} [6] [1]),
but also other efficient strategies for the A-calculus have been proposed [13].

On the other hand, we have their potential (which has not yet been fully
explored) to be implemented in parallel: unlike general graph-rewriting systems,

* On leave from Universidade do Minho. Research partially supported by PRAXIS
XXI grant BD/11261/97.

J. Tiuryn (Ed.): FOSSACS 2000, LNCS 1784, pp. 267282, 2000.
© Springer-Verlag Berlin Heidelberg 2000

268 Jorge Sousa Pinto

interaction nets possess locality and confluence properties which allow for all the
active pairs in a given net to be reduced simultaneously, without interference.

Implementations of INs have to this point been quite ad-hoc, since the for-
malism, being a graphical representation, has always been assumed to be trivial,
and no formal studies of its implementation have been undertaken. However,
there is a considerable gap between this presentation and a running implemen-
tation, in the sense that each basic interaction rewriting step may require many
‘rewiring’ steps, implemented by non-trivial sequences of machine operations.

Additionally, a decomposition of interaction steps into sequences of basic,
close-to-machine operations is essential if parallel implementations are to be
studied. We may then investigate whether the benefits are limited to the poten-
tial parallelism contained in the nets (simultaneous redexes) or if there are other
opportunities for parallelizing, at the level of small-grain machine operations.

Abstract machines for the A-calculus such as the SECD machine [11] or Kriv-
ine’s machine [3] have been proposed as implementation devices encompassing
(and decomposing) both the g-reduction relation and the variable substitution
mechanism. A mechanism along these lines does not however exist for interaction
nets. In this paper we introduce such an abstract machine, providing a suitable
decomposition of interaction rewriting steps into fine grain operations.

From this machine we then obtain a concurrent (multi-threaded, shared mem-
ory) version as a simple generalization, where basic machine tasks are distributed
among threads. This may be implemented on any platform offering support for
multi-threaded computation, although some care is required to guarantee cor-
rectness. The result is the first parallel reducer for interaction nets.

Structure of the Paper. We start by briefly reviewing interaction nets and some
details of their implementation. In SectBlwe introduce notation and then define
machine configurations as appropriate tuples of data-structures, and show how
to obtain a configuration from a net, before giving the definition of the sequential
abstract machine. Sectiondlis devoted to the study of correctness of this machine.
We then present the concurrent machine in Sectfl In Sectlfl we mention some
implementation aspects, notably with respect to the parallel implementation of
the concurrent abstract machine, and finally conclude in Sect[7.

2 Background and Motivation

An interaction net is an undirected graph built from a set of cells or agents, each
of which contains a principal port, and a number (possibly zero) of auziliary
ports. Edges in this graph connect any two ports, but no more than one edge
may be connected to the same port. A free port in the net has a hanging edge
connected to it, i.e, an edge which is not connected to anything at the other
extremity. The observable interface of a net is the set of its free ports arranged
in a sequence. Computation (in the form of graph-rewriting) takes place only
at special edges of the net, those connecting two cells by their principal ports.
Such a pair of cells is called an active pair, and it may be rewritten using an

Sequential and Concurrent Abstract Machines for Interaction Nets 269

-9

Fig. 1. Example interaction rule and its representation using Lafont’s notation

am/—\bm amﬁ
AR A 7 S AN G/

Fig. 2. Example interaction net

appropriate interaction rule. An interaction system specifies a set of agents (from
which to build nets) and rules (with which to rewrite them).

An Ezample. The left-hand side of Fig[l] represents an interaction rule in a
system containing agents (0, S, and +) and rules for natural numbers arithmetic.
The cells are the following: 0 is a single-port agent, representing the constant 0.
S is a constructor with two ports, the principal port representing the successor
of the number in the auxiliary port. Finally, the 4+ agent has two auxiliary ports,
one of which is for the sum of the numbers in the principal port and in the other
auxiliary port. We define addition inductively on its first argument, so this must
be associated to a principal port, where interaction is possible.

The rule is to be applied as a graph-rewriting rule: in a net in which a sub-
net matching the left side of the rule occurs, this sub-net may be substituted
by the net on the right. The interface preservation property ensures that there
is a wire in the right-hand side net to connect to every wire left hanging when
the sub-net is removed from the initial net. Figure [is an example of how this
rule can be applied. We distinguish observable values (a and b) graphically using
small squares. In the figure, the two active pairs are reduced in parallel, using
the rule in Figlll The reader will have no difficulty in writing the interaction rule
(between the 0 and + agents) that would be needed for reduction to proceed.

The motivations for parallelism can be easily understood. Interaction always
happens locally, when two cells are connected via their principal ports. The
rewritable elements are always pairs of cells, so any cell can be involved in at
most one such element; no critical pairs exist. Any two active pairs in a net can
be rewritten in arbitrary order; strong local confluence holds, resulting in the

270 Jorge Sousa Pinto

fact that the sequences of rewriting steps used in the normalization of a net are
all permutations of the same set of individual rewrites.

Implementation Issues. This very simple example raises important questions:

1. What data-structures are used to represent interaction nets, and how can
the graphically trivial notion of rewiring be formalized and implemented?

2. How is the observable interface updated (this is a particular case of rewiring)?

3. Each application of an interaction rule involves producing a copy of its right-
hand side. How is this accounted for?

4. How are active pairs identified? For instance, in the right-hand side of Fig[2]
0 and + are connected by their principal ports, but + and S, even though
they are connected, do not form a new active pair.

5. What are the space and time resources required by each operation?

If the implementation is parallel, what model of concurrency is used?

7. What are the control mechanisms used for granting correct access to shared
resources by the different parallel processing elements?

&

An abstract machine, by decomposing interaction into atomic operations, should
provide answers to these questions, and should be directly implementable.

A Language for Interaction Nets. The language we use to describe nets was
originally given by Lafont [8] and developed in [4]. Agents are written as algebraic
constructors with arity equal to the number of auxiliary ports. Active pairs are
then equations, equalities between terms with variables. A wire linking two leaves
(two auxiliary ports) in two such terms (trees) is represented by two occurrences
of the same variable. Variables are allowed as members in equations, to allow for
modular descriptions. Each variable occurs exactly twice in the net.

A net may then be described as a pair (t | A), with t a sequence of terms
(its observable interface) and A a multiset of equations. With respect to rules,
each one may be represented succinctly as a net with one active pair (and empty
observable interface), by wiring together each free port occurring in the left-hand
side of the rule and the corresponding port in its right-hand side (see Fig. [I).

Semantics. We briefly review a calculus for interaction nets [4], inspired by the
Chemical Abstract Machine [2]. Let = be the smallest equivalence satisfying the
structural rules At = 4,0 = Au =t,0 and At = u,v = w,0 = Ajv =
w,t = u,0. N is the function giving the set of variables occurring in a term.
We give a set of conditional reduction rules for interaction nets. We assume no
variable occurs simultaneously in a rule and in the net.

Interaction: (a(t),...,t)),8(uy,...,ul,)) is an interaction rule =
] alty...ty) =0t ... um), ') —
Cltr=t,. . th =t u1 =ul, ..., um=u,,T).

Indirection: z € N(u) = (t |z=t,u=v,1) — (t|ult/z] =v,T).
Collect: z e N(t) = (t|z=u,A) — (tlu/z] | Q).
Multiset: © =* O/, (t1 | O') — (t2 | A"), A =* A = (t1]| O) — (t2 | A).

Sequential and Concurrent Abstract Machines for Interaction Nets 271

Properties. Some properties of this system, proved in [4], are strong local con-
fluence (diamond property) and uniqueness of normal forms. A standard result
of (abstract) rewrite systems also yields, as a consequence of strong confluence:

Lemma 1. Any normalizing interaction net is strongly normalizing.

Remarks. Each variable occurs exactly once in the term (or list) where it is
substituted, and no two rules may perform substitution of the same variable.
The above semantics defines a notion of canonical forms for interaction nets:
Pl Qiff P —* @ and @ /—. These canonical forms correspond to irreducible
nets (t | €) or (t | LC), with LC a list of cycles of the form = = ¢, with z € N (¢).

Structural Equivalence of Interaction Nets. Two interaction nets are a-converti-
ble, written A =, B, if they are the same up to renaming of variables. We define
structural equivalence (=) as satisfying A = (t | A) whenever A =, (t | ©) and
6 = A. This is clearly an equivalence relation that is preserved by reduction.

3 A Sequential Abstract Machine for Interaction Nets

Interaction Systems. An interaction system is a tuple (¥, R,V), where X is a
set of agents and R is a set of interaction rules. Greek letters «, f3,... range
over agents. n® is the arity of agent a. V is the set of variables in the system,
ranged over by x,y..., and which allows one to define the set Terms for this
system, which are either variables or agent terms of the form «(t1, ..., tpa), with
ti,...,the € Terms. We will sometimes write this as «a(t).

The function N : Terms — P (V) returns the set of variables in a term (it
can be trivially extended to pairs, sequences, and sequences of pairs of terms).
The ™ operator is applied to a rule to produce a copy of it in which all variable
names are fresh (w.r.t. a certain context — a machine configuration) and unique.

We then define 7 as the subset of Terms in which each variable occurs at
most once. This linearity condition may be generalized to lists of terms and lists
of pairs of terms, allowing substitution to be defined trivially as assignment, since
no erasing or copying of the substituted term will happen: ¢[u/x] = t[z := u].

Each rule r € R in the system is a tuple r = (1, t2, ¢,.) where t1,t2 € 7 but
ti,ta € V, N(t1) NN (t2) = 0, and ¢, : N(t1) UN(t2) — N(t1) UN(t2) is a
fixpoint-free involutive permutation (or involution) on variables, i.e, y = ¢, (x)
implies = ¢,(y), and ¢, (z) # x. We shall denote by ¢, [x < y] the permutation
which maps z to y, y to z, and any other variable z to ¢,(z). We require that
no two interaction rules exist in R for the same pair of agents, and also that R
is closed under symmetry so that the order of ¢; and to is irrelevant. To write
rules as given before in this framework, it suffices to give different names to the
two occurrences of each variable, and store the linking information in ¢,.

We finally define a set 7, of annotated terms. These are either variables, or
terms of the form {X }.t with ¢ € 7, and X a list of variables, possibly containing
the symbol O. We shall see in Sect Bl how these annotations will be used.

272 Jorge Sousa Pinto

Configurations. A machine configuration is a tuple (I' | S| ¢n | V | C), where
no variable occurs repeatedly in two different components of the tuple:

— I :V — T, is a Heap, a mapping such that € dom(I") implies x ¢
{N(I(y)) |y € dom(I')}, and z,y € dom(I") implies N (I"(z)) "N (I'(y)) =
(). We use the notation I'lx — {N}.t] to refer to the heap which maps z to
{N}.t and any other variable y to I'(y);

— S € (7, x7,)* is a sequence of Pairs of terms, representing equations;

— ¢n : N — N is a fixpoint-free Involution on variables, with N = N(S) U
NV)YUN(C)Udom(I') U{N(I'(z)) | z € dom(I")};

— V € (7,u{d})* is the Observable Interface of the net (a sequence of terms);

— C e ((VxT,)u{O})* is a sequence of Cycles.

Interaction Functions. We will use the usual [...] notation for lists, e for the
empty list, : for cons, @ for append. For an interaction system S, we define:

Ls(a(t), B(w)) = [(w(t1), v(tt1)) ;- (v (tne), v(ttna))
(v(u1), v(uur)) , - (v (uns), v(uugs)));

Ds (a(t)v ﬁ(u)) = Oor;

where r = (a(t'), B(u’), ¢r) € R, 7 = (a(tty,. .. tna), Bluug, ... ut,s), ddy) is a
fresh copy of r, and v annotates (agent) terms with a sequence of the variables
occurring in them: v(z) = z, v(a(t)) = {an(a(t)) : O : e} .a(t), with an defined
by an(x) = [z] | an (a(t1,...the)) = an(ty) Q-+ @Q an(t,«). We will denote by
° an auxiliary function on lists for removing the first occurrence of the O mark.

Loading the Abstract Machine. In order to obtain initial configurations X[t | A]
corresponding to an interaction net (t | A) we first need to obtain a net (t' | A")
by splitting variables and linking split pairs in an involution ¢x. Then X[t | 4]
is any configuration (0 | v, (seq(A’)) | ¢n | v(t') : O:e| O:¢e), where seq(A")
is a list obtained by arbitrarily ordering the set A’, and v, vy, generalize the
previously defined v for lists of terms and lists of pairs of terms, respectively.

The basic idea. We describe the machine succinctly: equation pairs are stored in
the list S. Each execution step pops a pair, and an appropriate rule is selected
(by pattern-matching) to handle that pair.

If it is an active pair («(t), 8(u)), an interaction will be performed, invoking
the interaction functions and pushing the newly generated pairs Zs(a(t), B(u))
onto the stack, and including in the involution the pairs given by @s(a(t), G(u)).

If it is a pair of variables (z,y) such that ¢n(z) = z and ¢n(y) = w, we
remove from ¢y the pairs z < 2z and y < w, and add to it the pair z < w.

For a pair (z,a(t)), we simply create a new entry x — «(t) in the heap.

The machine stops when S is empty. For now we consider that the sequence
of pairs is accessed using a LIFO strategy, thus as a stack. However it is not
important how we implement the multiset of equations as a linear data-structure;
by opting for a stack we simply increase the locality of the machine.

Sequential and Concurrent Abstract Machines for Interaction Nets 273

Fig. 3. Example of the rewiring involved in the application of an interaction rule

Rewiring is handled by the two last cases. Using proof-net terminology, a
cut between two axioms gives origin to a single axiom, whereas a cut between
an axiom and any other net results in this last net being stored in the heap.
For this reason, final configurations are totally contained in the heap, since the
information progressively stored in it has not been used anywhere. We thus
need a set of post-processing rules that will traverse the observable interface and
update every variable z; in it with the value stored in the heap for ¢ (z;). We
shall not worry about post-processing here.

An Ezxample. Let us see how this machine deals with a simplified version of
the example in SectPl First observe, on the right in Figlll the interaction
rule for the pair (4,.5) redrawn to reflect our notation for rules, giving r1 =
(S(+(x1,11)), +(72, S(Y2)), {71 < 22,91 < ya2}).

We show in Figl3 a net consisting of a single active pair, together with a
copy of the rule mentioned. The rewiring that needs to be done is shown in the
picture, and consists in wiring together all the corresponding arguments of each
agent in the active pair in the net and in the rule (and removing the active pair
from both). Formally, we start with an initial configuration

Yo = (0| [(S(0), +(az,b2))] | {a1 < ag,b1 <> ba} | [a1, b1, 0] | [O]),

The first step of the abstract machine produces a new configuration by popping
the pair from the stack and invoking the interaction functions:

IS(S(O)’ +(a27 b2)) = [(bQ’ S(y2))7 (a2ax2)’ (07 —|—($1,y1))},
Ds(S(0), +(az,b2)) = {z1 < 22,51 < Y2},

resulting in the configuration

21 = <® ‘ [(bg,S(yg)), (aanQ)a (0,+($1,y1))}
| {a1 < a2,b1 < ba,x1 < x2,y1 < Yo} | [a1,b1,0]).

The pair at the top is now made of a variable and an agent term, which will now
be associated to the variable, in the heap.

Yoy = ({b2 = S(y2)} | [(az, x2), (0, +(z1,91))]
| {a1 < a2,b1 <> b, w1 < x2,y1 < Y2} | [a1, b1, O)).

274 Jorge Sousa Pinto

The next pair to be popped has two variables, so we update the involution:

Yz = ({b2 = S(y2)} [[(0,+(z1,y1))] | {a1 < z1,b1 < ba,y1 < y2} | [a1,b1,0]).

We shall not proceed with the reduction. Instead we show the result of updating
the Observable Interface of X5 with the values stored in the heap:

5 = 010, (1, y)] [{ar < z1,91 < g} | [0, 01, S(g2)])-

A Machine with Substitutions. The above machine has some drawbacks that we
will eliminate by refining its definition. The first problem has to do with cycles:
in fact, not every pair (z,a(t)) should be moved to the heap, since it may
happen that ¢y (z) € N (¢). This is an example of a vicious circle, which may be
generated during reduction. Our machine would store z — a(...,¢n(z),...) in
the heap. Now since ¢ (x) occurs only in the term associated with z, its value
may never be substituted in the interface, thus this part of the net will be forever
lost in the heap. Configurations where this happens are called degenerate.

We must then include a special structure (C) in configurations, to store these
pairs, and the machine must specify how the test ¢ () € N () is performed.

A different kind of degenerate configuration exists, in which active pairs,
rather than cycles, are irrecoverably contained in the heap. Suppose for instance
the stack looks again like (z, a(t)) : (y, B(w)) : - -+, but we now have ¢ (z) = y.
After a first step of operation we get a heap I'[z — «(t)] and stack (y, B(u)) : - - -
A second machine step produces a heap I'[z — «(t),y — B(u)], and the active
pair is lost forever in it, since no substitution of z or y can be made.

It is easy to show other examples where degenerate configurations are cre-
ated, either with lost cycles or lost active pairs. We will solve this problem by
performing substitution of variables stored in the heap during the operation of
the machine. For every non-active pair at the top of the stack, we will exhaus-
tively substitute variables before actually popping it.

Looking again at the previous example, instead of performing the second step
given above, we would substitute the variable y with the term I'[¢n(y)], to get
the stack («(t),B(w)) : - -+, where the active pair has been recovered.

Implementing Substitutions on the Top of the Stack. In order to allow for the
exhaustive substitution of variables on the top of the stack to be handled effi-
ciently, we add to each term an annotation list containing all the variables in it.
These are included in the configurations when the machine is loaded, and kept
up-to-date (at a low cost) by every machine rule. Instead of traversing a whole
term (a tree) looking for variables with values in the heap, we simply traverse
circularly this annotation structure. The O mark is initially placed at the end of
every such annotation list so it can be detected when it has been fully traversed.

The Abstract Machine. We will now reformulate our configurations by including
explicitly a processing element or thread. Configurations will be of the form
(' S|¢n |V |C|t), with t a Thread, built from the following signature:

Sequential and Concurrent Abstract Machines for Interaction Nets 275

process : 7, x T, — Thread enlist : (7, x 7,)* — Thread
delist : Thread cycle: V x 7, — Thread

Each operator corresponds to a state of the machine, in which it performs one
specific action. When it is process(t, u), it processes the pair (¢,u) using the rules
previously outlined; when it is delist it will take a pair from the Pairs stack to
be processed; when it is enlist(l) it will add to the stack all the pairs in [; finally,
when it is cycle(z,t) it will add the cycle (z,t) to the Cycles structure. The
abstract machine is loaded with ¢ = delist, and stops with S = ¢ and t = delist.

We give in Table [the abstract machine rules, where the families of rules I
to III correspond to pair-processing as sketched before (including variable sub-
stitution), and Family IV manages the life-cycle of the thread.

As an example of the flexibility of this presentation of the machine, consider
what needs to be changed if we want to access the Pairs structure as a Queue:
rule T.2 simply has to give instead SQI[(¢,u)] in its right-hand side.

A final remark: observe that all the machine rules perform simple tasks such
as assignments and rotating lists one position, except for rule I, which depends
of course on the size of the right-hand side of the interaction rule applied.

Properties. It is immediate to verify the determinism of this set of rules. Most
of the proofs of properties stated here are left for the long version of this paper.

Definition 1 (Correct and Complete Annotations). We say a configura-

tion has correct annotations if for every annotated term {A}.a(t) occurring in
o

it we have set(A) C N(t). It has complete annotations if set(jl) D N(t).
Proposition 1. Let (t | A) be an interaction net. If X[t | A] —* X', then X’
has correct and complete annotations.

Proof. Straightforward induction on the reductions. X[t | A] has correct and

complete annotations, and every machine rule preserves the property. a

Definition 2 (Degeneracy). A configuration is degenerate if the heap con-
tains an active pair {x — a(t),y — B(u)} with ¢y (x) =y, or a cycle {z; —
ti},i=1...N, with o5 (z;) € N(tix1) fori=1...N—1, and pn(zn) € N(t1).
Proposition 2. If X[t | A] —* X/, (t | A) is an IN, then X’ is not degenerate.

We remark that if ¥ — X’ > may be degenerate even if X' is not.

4 Correctness of the Sequential Abstract Machine

Our first goal will now be to define the interpretation of a machine configuration
as an interaction net. We will then introduce some notation and give several
lemmas needed for the correctness proof.

276

Jorge Sousa Pinto

Table 1. Abstract machine rules

I Permut N on UDs (alt), B(u))
Thread|process ({l1}.a(t){l2}.6(u)) enlist (Zs (a(t), B(w)))
1I.1 Permut on[z — Y] dn[z < Y]
Thread process(z,y) cycle(z,y)
1.2 Heap I'z— {X}.o(v)] r
Permut on[z — 2] dN
Thread process(z,y) process ({X }.0(v),y)
11.3 Heap| I' [z — L, w — {Y}.7(u)] r
Permut N[z < 2,y — W] on[z < 2]
Thread process(z,y) process (z, {Y }.7(u))
4 Heap| I'|z— L,wr— 1] r
Permut N[z < 2,y — W] ON[z — w)
y # 2z, # w| Thread process(z,y) delist
II1.0 |Thread| process ({Y}.a(t),x) process (z,{Y }.a(t))
II1.1 Heap| I'[z — {X}.B(u)] T
Permut on[z < y] dN
Thread| process (z,{y: T}.a(t)) |process(z,{(X)QT}.a(t)[y:=0(u)])
II1.2 Heap Tz — 1] T
Permut on[z — Y] dn(z < y]
z#z |Thread| process(z,{y:T}.a(t)) process (z, {TQ[y]}.a(t))
III.3 |Permut on[z — Y] on[z < Y]
Thread| process (z,{y: T}.a(t)) cycle (z,{y : T}.a(t))
I11.4 Heap I'x — {X}.0(u)] r
Permut on[T < Z] dN
Thread| process(z,{0:T}.a(t)) | process ({X}.0(w),{0: T}.a(t))
IIL.5 Heap Iz — 1] I' [z — {TQ[O]}.(t)]
Permut oNn[z < 2] on[z < 2]
Thread| process (z,{0: T}.a(t)) delist
T.1 Pairs (t,u): S S
Thread delist process (¢, u)
T.2 Pairs S (t,u): S
Thread enlist((t,u) : T) enlist(7T)
T.3 Thread enlist(e) delist
T4 Cycles C (t,u): C
Thread cycle(t, u) delist

Sequential and Concurrent Abstract Machines for Interaction Nets 277

Definition 3 (Updating). Let ¥ = (I" | S| ¢n5 | V | C | t). The update of
X is the configuration U[X] that results from recursively substituting (updating
annotations) every variable x occurring in any component S, V, C, t of X with
the value stored for the variable ¢y (x) in the heap I', removing this entry from
the heap and the pair x < ¢n(z) from the permutation.

It is straightforward to expand the post-processing rules with others for up-
dating the stack and the thread. Together they implement the above notion of
updating.

Proposition 3. If X' is non-degenerate then U[X] has an empty heap.

Definition 4 (Collapsing). From an interaction net N = (t | A) and an
involution ¢ we obtain the collapse of N by ¢, a net denoted by Clp[N, @], by
substituting in t and A every pair of variables x,y such that ¢(x) = y with a
fresh variable, which we will by convention call kyy.

Auziliary Functions. We need a family of auxiliary functions defined as follows:
| Jo takes a term and removes its annotation, |z|o = = | [{N}.a(t)]o = a(t);
| |1 takes a list of terms and removes the O mark as well as all the annotations,
lejli=ce | |O:t]y = [t]1]| |h:tls = [h]o: [t]1; |]2 takes a list of pairs of
terms and returns the corresponding multiset of equations, |e|o =0 | [O:¢|o =
[t]2 | [(R1,he) : t]a = {|h1]o = [h2]o} U |t]2. Finally, ||; takes a thread and
returns a set containing the pair being processed by the thread, or the empty
set if the thread does not contain any pair, |process(t1,t2) |t = {|t1]o = [t2]o} |
|delist]; = 0 | |enlist(l)]: = [I]2 | |cycle(z,t)]: = {x = [t2]o}. We shall use the
notation || for any of |]o, |]1, []2, |J¢» whenever the distinction is clear from
context. We also need an auxiliary function rg to rotate a list until O is at the
end, easily defined as: ro(0:¢) =tQ(0 :¢) | ra(h:t) =ro(tQ(h : €)).

Definition 5 (Interpretation). The interpretation of a machine configuration
X is an interaction net [X] obtained as follows:

1. We compute U[X] = (I'VI>¥1| SUIMT | ¢J[<I[Z] | VUIRT | UIET | VIR,
2. We then build the net N*¥ = (|[ra(VUIF)] | [SUI¥] U [CVIFT | U [tVI¥T)).
3. [¥] = Clp[N~, ¢%[2]] concludes our construction.

Notice that the interpretation of a configuration is unique. It is immediate to see
that all the configurations X[t | A] have the same interpretation (t | A).

The interpretation of a degenerate configuration disregards all the active
pairs and cycles contained in the heap of a degenerate configuration. This is
appropriate in the sense that this is information that cannot be read back.

Lemma 2. If ¥ is an irreducible configuration, then [X] is in normal form.

Proof. Immediate. A* may be empty (if C¥ is), or contain cycles. O

278 Jorge Sousa Pinto

Notation. In what follows we do not distinguish notationally between the reduc-
tion — (or its transitive —* or refexive —= closures) of machine configu-
rations and of interaction nets, since the distinction can be made from context.
The same is true for structural equivalence (=).

Lemma 3. Let X be a configuration with correct annotations, X — X' using

any rule except I, I1.4, and IIL.5, and X, X' non-degenerate. Then [X] = [X].

Lemma 4. Let X — X', with X, X' non-degenerate and correctly-annotated.
Then [X] —= [2].

Lemma 5. The set of rules II.1 to I1.8, II1.0 to IIl.4, and T.1 to T.4 is nor-
malizing, with the same normal forms as the complete set of rules (i.e, they have

an empty S component and delist thread), together with all the configurations to
which one of the rules I, I1.4, or II1.5 can be applied.

Proposition 4 (Correctness). Let N = (t | A) be an interaction net. Then
NUN iff Sjt| 4 —* %,

with X an irreducible machine configuration, and [X] = N.

Observe that a result such as [X] — [2'] = X —* X’ does not hold, since
the semantics is non-deterministic and besides, it allows for variables in the
observable interface to be updated at any time.

5 A Concurrent Abstract Machine

The machine we have been considering is inherently sequential: it is always
deterministically decided which rule is applied at each stage. However, the way
the machine has been formulated makes it trivial to obtain a concurrent machine
from it, simply by including more processing threads within a configuration.

Definition 6 (Multi-thread Configuration). An n-thread configuration is:
(LIS Ton [V IC][t tal)

where [t1,...t,] is a list of threads and all other components are as before.

Definition 7 (Concurrent reduction). L, is the smallest relation verifying

~ ~

(I'|S|on|VI|C|t) —(T|S|on|VI|C|E)
Slon | VIC [t b ta])

Sequential and Concurrent Abstract Machines for Interaction Nets 279

This definition is intuitive: a pool of threads work on the shared data-structures,
each thread proceeding individually and deterministically, according to the se-
quential machine rules. Each <, step is a step of one of the individual threads.

Non-determinism is introduced because it may be the case that several threads
are willing to operate. For instance, when several threads are in the delist state
and the list is not empty, one of them will fetch the top pair and change state
to process, while the others will keep trying to access the list.

The resulting machine almost falls into the standard producers-consumers
synchronization model of shared-memory computation, with the synchronization
problem solved by implementing a shared queue of tasks (pairs to be processed).
The diference is that every thread is a consumer and may be a producer, of tasks.

Properties. The definition of the reduction of a multi-thread configuration as
individual reductions of any of its threads makes all the inductively proved prop-
erties of the sequential machine also valid for the concurrent one. Lemmas 2] B]
Bl and [, and Propositions[l and [3], all hold, with the interpretation of a multi-
thread configuration modified to include all the pairs being processed by threads,
and irreducible configurations having an empty Pairs list and all threads delist.
Unfortunately, Prop[@is no longer true, which destroys our correctness result.
This is due to a race condition when traversing an annotation list to perform
substitutions, which allows the generation of irrecoverable cycles in the heap.
As an example of such a situation, consider the following 2-thread configu-
ration (we omit the V and C' components), for a net containing a 2-cell cycle
which we show may get lost in the heap. Consider that w € N'(¢) and z € N'(u).

| (z,[w:0]t): (y,[z:00u) : S| dn[z < 2,y < w] | [delist, delist]).

ct

—>T1 | S| ¢on[x < 2,y < w] | [process(z, [w : O.t), process(y, [z : D]u)

|
—>[[[2 | S| ¢n[x < 2,y — w] | [process(z, [w : O].t), process(y,
|

_>III 5

(0

0]
0]
—>1112 <@\S|¢>N[9€<—>Z y < w
{z— [w:O)t} | S| dn[z & 2,y < w] | [delist, process(y, [O : z].u)
{z—

delist, delist

< rs [w: Oty [z:OLu} [S| on[r < 2,y < w]

(]

(v, [0]
[process(z, [0 : w].t), process(y, [0 : z]u)]

(w: []

[]
Recovering Correctness. First, we remark that this form of degenerate configu-
rations is not very harmful, since one could simply forbid nets containing cycles.
However, a simple way exists to recover lost cycles, by keeping in the config-
urations an additional component: a list of variables stored in the heap, kept
up-to-date by the rules. After post-processing, and according to Prop[3] (remem-
ber post-processing rules implement updating of configurations with empty lists
of Pairs), this list will be empty if the configuration is not degenerate. If it is
not empty, then the machine may be restarted with any pair (variable, term)
still stored in the heap. Once a pair in a cycle is recovered in this way, regular
machine operation will proceed to store the cycle in the appropriate structure.

280 Jorge Sousa Pinto
6 Implementing the Abstract Machine

Sequential Implementation. The abstract machine may be programmed sequen-
tially in a straightforward way. It suffices to choose appropriate data-structures
for configurations, and to map machine operations into these structures. The
‘motor’ that runs the machine is simply a loop that pops a pair of terms from
the stack and decides which machine operation to apply. We remark this decision
is not complex, as the number of operations might lead one to think: the form
of the pair being processed restricts the pattern-matching to a family of rules.

Optimizations. During operation of the machine the size of Pairs tends to grow
considerably. One possible optimization with respect to keeping the list reason-
ably small is to give priority to the execution of rules that remove pairs from it.
This is a straightforward modification: it suffices to add a second list of pairs to
the configurations (for active pairs), and to substitute rules T.1 to T3. by a new
set of rules that manages the two lists according to the desired priority scheme.

Concurrent Implementation. A well-suited technology exists for implementing
our concurrent abstract machine: POSIX Threads, which are lightweight pro-
cesses running in the address space of the same UNIX process, individually
scheduled. This technology has the advantage of producing implementations that
may be run (without modifications in the code) in machines with any number
of processors. If conveniently supported by the kernel of the operating system,
threads will run in true parallelism, assigned to different processors.

The way to implement our abstract machine using this technology is to launch
as many threads (running the same code, as specified by the machine rules) as
there are processors in the machine (this can be done automatically at run-time).

Now it is time to ask whether the correspondence between the resulting
implementation and the abstract machine is perfect. In a uniprocessor machine
this is indeed the case: a single thread is executed at any time, and this is
what the machine captures, even though in practice each machine operation
is decomposed into a sequence of program instructions, which means that time-
slicing between threads may occur in the middle of the execution of an operation.

In the case of multiprocessors, however, in order to obtain a correct imple-
mentation, one has to stipulate that a parallel reduction step is any sequence of
concurrent reduction steps in which every thread is involved at most once.

To illustrate this point, consider the situation of two threads in the delist
state. The outcome if both execute rule T.1 simultaneously is not predictable.
The correct behaviour is that two different configurations may result, corre-
sponding to the two orders in which the threads may take pairs from the list.

Now the parallel reducer must keep to this behaviour, protecting the access
to the Pairs and Cycles data-structures by means of some synchronization mech-
anism: the first thread to gain access to a shared structure will make the other
thread(s) block until the first one liberates the structure. Locks [7] are used to
implement a linearizable queue, and this is thus not a wait-free implementation.

Sequential and Concurrent Abstract Machines for Interaction Nets 281

We leave a detailed treatment of this matter for the long version of this
paper; there is another situation requiring locking, which concerns the case of
two adjacent pairs of variables (two axiom cuts) being processed simultaneously.

Other situations are critical with respect to race conditions in true paral-
lelism. Take for example the two threads process(z, {0 : T'}.t) and process(y, {O :
T'}.u), with ¢y (x) = y. Our abstract machine prevents this from generating a
lost active pair in the heap: once one of the threads executes rule II1.5, the other
will be unable to execute it (executing II1.4 instead). But in true parallelism the
threads may execute II1.5 simultaneously, giving a degenerate configuration. We
remark that the problem now is not in the access to the data structures.

One solution to this problem not requiring additional synchronization is the
mechanism explained in Sect 5] to recover entries in the heap back to Pairs. This
optimistic solution relies on the low probability of the race situations to occur.

7 Conclusions

We have presented an abstract machine which provides answers to the questions
raised in Sect2l Specifically, the machine proposes concrete data-structures, to-
gether with an algorithm for implementing interaction net reduction. We have
also specified how rules are represented and applied. Identification of active pairs
is automatic, and question 2 is answered by the post-processing operations. With
respect to 5, all the machine rules perform simple operations in constant time.

We have implemented this machine following Sectlfl and obtained a robust
reducer that performs well. The granularity of the machine operations is quite
small, while still keeping the operations sufficiently atomic: our tests show that
each interaction is decomposed in between 7 and 12 machine operations.

The concurrent machine additionally provides answers to questions 6 and
7, resulting in the first parallel implementation of interaction nets, with the
significant advantage of running on commonly available workstations. We remark
that this parallel implementation is not limited by the number of active pairs
in particular nets, since all rewiring operations are performed in parallel. Our
current research involves studying the performance of this implementation.

References

[1] Andrea Asperti, Cecilia Giovannetti, and Andrea Naletto. The bologna optimal
higher-order machine. Journal of Functional Programming, 6(6):763-810, Novem-
ber 1996.

[2] Gérard Berry and Gérard Boudol. The Chemical Abstract Machine. In Conference
Record of the Seventeenth Annual ACM Symposium on Principles of Programming
Languages, pages 81-94, 1990.

[3] P.-L. Curien. An abstract framework for environment machines. Theoretical
Computer Science, 82(2):389-402, May 1991.

[4] Maribel Fernndez and Ian Mackie. A calculus for interaction nets. In Gopalan Na-
dathur, editor, Principles and Practice of Declarative Programming’99 Conference

282

8]

[9]

[10]

Jorge Sousa Pinto

Proceedings, number 1702 in Lecture Notes in Computer Science. Springer-Verlag,
September/October 1999.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.
Georges Gonthier, Martn Abadi, and Jean-Jacques Lvy. The geometry of optimal
lambda reduction. In Proceedings of ACM Symposium Principles of Programming
Languages, pages 15-26, January 1992.

P. Jayanti. Wait-free computing. In Distributed Algorithms, 9th International
Workshop, WDAG 95, volume 972 of Lecture Notes in Computer Science, pages
19-50, 1995.

Yves Lafont. Interaction nets. In Seventeenth Annual Symposium on Principles
of Programming Languages, pages 95-108, San Francisco, California, 1990. ACM
Press.

Yves Lafont. From proof nets to interaction nets. In J.-Y. Girard, Y. Lafont,
and L. Regnier, editors, Advances in Linear Logic, pages 225-247. Cambridge
University Press, 1995. Proceedings of the Workshop on Linear Logic, Ithaca,
New York, June 1993.

John Lamping. An algorithm for optimal lambda-calculus reductions. In Pro-
ceedings of the Seventeenth ACM Symposium on Principles of Programming Lan-
guages, pages 16-30. ACM, ACM Press, January 1990.

Peter Landin. The mechanical evaluation of expressions. Computer Journal, 6(4),
1963.

Jean-Jacques Lévy. Réductions Correctes et Optimales dans le Lambda Calcul.
These de Doctorat d’Etat, University of Paris VII, 1978.

Tan Mackie. YALE: Yet another lambda evaluator based on interaction nets. In
Proceedings of the 3rd ACM SIGPLAN International Conference on Functional
Programming (ICFP’98), pages 117-128. ACM Press, September 1998.

	Introduction
	Background and Motivation
	A Sequential Abstract Machine for Interaction Nets
	Correctness of the Sequential Abstract Machine
	A Concurrent Abstract Machine
	Implementing the Abstract Machine
	Conclusions

