An Algebraic Foundation for Adaptive
Programming

Peter Thiemann

Institut fiir Informatik
Universitat Freiburg, Germany
thiemann@informatik.uni-freiburg.de

Abstract. An adaptive program is an object-oriented program which
is abstracted over the particular class structure. This abstraction fosters
software reuse, because programmers can concentrate on specifying how
to process the objects which are essential to their application. The com-
piler of an adaptive program takes care of actually locating the objects.
The adaptive programmer merely writes a traversal specification deco-
rated with actions. The compiler instantiates the specification with the
actual class structure and generates code that traverses a collection of
objects, performing visits and actions according to the specification.

Previous approaches to compiling adaptive programs rely on standard
methods from automata theory and graph theory to achieve their goal.
We introduce a new foundation for the compilation of adaptive programs,
based on the algebraic properties of traversal specifications. Exploiting
these properties, we develop the underlying theory for an efficient com-
pilation algorithm. A key result is the derivation of a normal form for
traversal specifications. This normal form is the basis for directly gener-
ating a traversal automaton with a uniformly minimal number of states.

Key words: object-oriented programming, semantics, finite automata, compi-
lation

1 Introduction

An adaptive program [12| [14] [11], [I5] is an object-oriented program which is
abstracted over the particular class structure. Adaptive programming moves the
burden of navigating through a linked structure of objects of many different
classes from the programmer to the compiler. The key idea is to only specify the
landmarks for navigation and the actions to be taken at the landmarks, and leave
to the compiler the task of generating traversal code to locate the “landmark”
classes and to perform the actions.

This abstraction fosters software reuse in two dimensions. First, the same
adaptive program applies unchanged to many similar problems. For example,
consider the adaptive program Awverage that visits objects of class Item and
computes the average of the field amount therein. This program can be compiled
with respect to a class structure for a company, instantiating Item to Employee

J. Tiuryn (Ed.): FOSSACS 2000, LNCS 1784, pp. 314328, 2000.
© Springer-Verlag Berlin Heidelberg 2000

An Algebraic Foundation for Adaptive Programming 315

and amount to salary, to compute the average salary of the employees. But the
same program can also be compiled by instantiating Item to Inventoryltem and
amount to price. This instance computes the average price of all items in stock.

Second, adaptive programming is attractive for programming in an evolv-
ing environment. Here, “evolving” means that classes, instance variables, and
methods are added, deleted, and renamed, as customary in refactoring [13} (5, [§].
In this situation, many adaptive programs need merely be recompiled without
change, thus alleviating the tedious work of refactoring considerably.

An adaptive program consists of two parts: a traversal specification and wrap-
per (action) specifications. The traversal specification mentions classes whose
objects must (or must not) be visited in a certain order and the instance vari-
ables that must (or must not) be traversed. A wrapper specification links a class
to an action that has to be performed when the traversal encounters an object of
that class. Following Palsberg et al [15],[14], our semantics only considers actions
to be performed on the first encounter with an object.

Although a traversal specification only mentions names of classes and in-
stance variables that are relevant for the programming task at hand, the ac-
tual class structure, for which the adaptive program is compiled, may contain
intermediate classes and additional instance variables. The compiler automati-
cally generates all the code to traverse or ignore these objects. Likewise, wrapper
specifications need only be present for classes whose objects require special treat-
ment. Hence, the programmer writes the important parts of the program and
the compiler fills in the boring rest.

1.1 Related Work

Due to the high-level programming style of adaptive programs, their compila-
tion is an interesting problem. Palsberg et al [I5] define a formal semantics for
adaptive programs, formalizing Lieberherr’s original approach to compilation
[I1], and identify a number of restrictions. A subsequent paper [I4] removes the
restrictions and simplifies the semantics, but leads to a compilation algorithm
which runs in exponential time in the worst case. Both papers rely on the theory
of finite automata and employ standard constructions, like minimization and the
powerset construction (which leads to the exponential worst case behavior). In
addition, these works employ a more restrictive notion of traversal specification
than the present paper.

Finally, Lieberherr and Patt-Shamir [12] introduce further generalizations
and simplifications which lead to a polynomial-time compilation algorithm. How-
ever, whereas the earlier algorithms perform “static compilation”, which pro-
cesses all compile-time information at compile time, their polynomial-time al-
gorithm performs “dynamic compilation”, which means that a certain amount
of compile-time information is kept until run time and hence compile-time work
is spread over the code implementing the traversal. They employ yet another
notion of traversal specification. While this is more general than their earlier
work, the relation to our specifications is not clear.

316 Peter Thiemann

The algebraic approach is based on a notion of derivatives which is closely
related to quotients of formal languages [9] and to derivatives of regular ex-
pressions [6} [7] 4]. However, traversal specifications differ from standard regular
expressions, so our derivatives are novel to this work.

There is a companion paper dealing with the practical aspects of compiling
adaptive programs by partial evaluation [I7].

1.2 Contribution of This Work

The algebraic foundations of adaptive programming are based on the algebraic
properties of traversal specifications. Exploiting the algebraic laws, we define
a normal form for traversal specifications. If the specification contains alterna-
tive paths (like + in a regular expression) then the size of the normal form can
be exponential in the size of the original specification, so that its computation
takes exponential time, too. We show that the exponential bound is tight by ex-
hibiting a suitable specification. For a specification without alternatives (coined
“multiplicative specification” [14]) this step takes linear time.

Starting from a traversal specification in normal form our algorithm computes
the state skeleton of the uniformly minimal traversal automaton, using a notion
of derivatives for traversal specifications. Uniform minimality means that the
number of states is minimal over all automatons that implement the traversal
for all possible class structures. This step takes linear time for multiplicative
specifications and exponential time in the worst case for general specifications.
We show that the exponential bound is tight.

Only the final compilation step requires the actual class structure. It con-
structs the actual traversal automaton from the state skeleton and the class
structure. It takes time proportional to the product of the sizes of both. We
prove that the resulting automaton implements the semantics of a traversal
specification. Hence the automaton is equivalent to the one constructed with
“static compilation” by Palsberg et al [14].

The main technical contribution of this work is the exploration of the algebra
of traversal specifications, in particular Theorems [l and [2, which demonstrate
that the formally constructed automaton is indeed uniformly minimal. These
theorems can also be viewed as normal form results for a certain class of regular
expressions.

Overview Section Plestablishes some formal preliminaries and defines a seman-
tics of adaptive programs. Section [explores traversal specifications and their
algebraic properties; culminating in the first compilation step. Section [deals
with the second compilation step, the construction of the uniformly minimal
traversal automaton. Section [l considers extensions and further work, and Sec-
tion [concludes. A companion technical report [16] contains an appendix with
all proofs.

An Algebraic Foundation for Adaptive Programming 317

2 Semantics of Adaptive Programs

This section first recalls the basic concepts of class graphs and object graphs used
to define the semantics of adaptive programs. Then, we define a generalized (with
respect to previous work [I4, [15]) notion of traversal specifications and use it to
define a semantics of adaptive programs.

2.1 Graphs

A labeled directed graph is a triple (V, E, L) where V is a set of nodes, L is a set

of labels, and F C V x L x V is the set of edges. Write u L, for the edge
(u,l,v) € E; then u is the source, [the label, and v the target of the edge.

Let G = (V,E, L) be a labeled directed graph. A path from vy to v, is a
sequence (vg,l1,v1,l2,...,l,,v,) where n > 0, vg,...,v, € V, ly,... 0, € L,

and, for all 1 < i < n, there is an edge v;_1 SN v; € E. The set of all paths in
G is Paths(G).
If p = (vo,l1,...,vn) and p’ = (v{,1],...,v),) are paths with v, = v} then

define the concatenation p - p’ = (vo,l1,...,0n,1],...,v.,). For sets of paths P

»¥m

and P'let P-P' ={p-p' |p€ P,p' € P',p-p is defined}.

2.2 Class Graphs and Object Graphs

Let C be a set of class names and A be a set of instance names, totally ordered
by <. A class graph is a finite labeled directed graph Go = (C,Ec, N U {<O}).
There are two kinds of edges in the class graph. A construction edge has

the form u — v where [€ N (I # ©). It indicates that objects of class u
have an instance variable [containing objects of class v. There is at most one
construction edge with source u and label [. Each cycle in G¢o involves at least
one construction edge.

An edge u 2, v is a subclass edge, indicating that v is a subclass of wu.
Without lack of generality [3][15][T2] we assume that class graphs are simple, i.e.,
every class is either abstract (all outgoing edges are subclass edges) or concrete
(all outgoing edges are construction edges). In addition, if u e Ec then v
is concrete.

Figure [[] shows an example class graph with an abstract class A and three
concrete classes B, C, and D. Dashed arrows indicate subclass edges, solid arrow
indicate construction edges. Class A has subclasses B and C. Class B has one
instance variable a of class D. Class C has an instance variable b of class D and
another c¢ of class A.

Let 2 be a set of objects. An object graph is a finite labeled graph (£2, o, N)

such that there is at most one edge with source u and label . The edge u LY
means that the instance variable [in object u holds the object v.

Figure Plshows an example object graph corresponding to the class structure
in Fig. [The objects C1 and C2 have class C, Bl class B, and D1, D2, and
D3 are object identities of class D.

318 Peter Thiemann

Fig. 2. Example object graph

A class map is a mapping Class : 2 — C from objects to class names of
concrete classes. The subclass map Subclasses : C — P(C) maps a class name to
the set of class names of all its subclasses, including itself. Subclasses(A) is the
set of all B € C such that there is a path (A, ¢,..., <, B) in the class graph.

2.3 Traversal Specifications

A traversal specification answers the question “where do we go from here?”
at some point of a traversal of an object or class graph. Hence, a traversal
specification is either B (denoting a path to an object of class B), a concatenation
of specifications, or an alternative of specifications. Figure Bl shows the formal
syntax.

The semantics of a traversal specification is specified relative to a starting
node A. It is a set of paths in a class graph.

RPathSet(A, B) ={(A, 11, A1, .., 1, Ay) €Paths(Ge) | Ay, €Subclasses(B)}
RPathSet(A, p1 - p2) = UBeTarget(pl) RPathSet(A, p1) - RPathSet (B, p2)
RPathSet(A, p1 + p2) = RPathSet(A, p1) U RPathSet(A, p2)

The function Target yields the set of possible target classes of a traversal.

Target(B) ={B}
Target(p; - p2) = Target(p2)
Target(p1 + p2) = Target(p1) U Target(p2)

An Algebraic Foundation for Adaptive Programming 319

=B simple path to B
| p-p concatenation
| p + p alternative

Fig. 3. Traversal specifications

The definition of the semantics naturally adapts to object graphs, by replacing
occurrences of class names with objects of the respective classes:

RPathSetg,, (A, B) = { (00, 11,01, - . .,ln,0,) € Paths(Go) |
Class(og) € Subclasses(A),
Class(oy,) € Subclasses(B)}

2.4 Semantics

An adaptive program is a pair (p, W) of a traversal specification p and a wrapper
map W. The map W maps a class name A € C to an action to be executed when
visiting an object of class A. Given an object graph Go, the semantics of (p, W)
with respect to some initial object o is completely determined by listing the
objects in the order in which they are traversed. Formally,

Trav(p, 0) = Seq(RPathSetg,, (0, p))

where
Seq(IT) = 09Seq(I1;)...Seq(I1,)
where
{oo} ={oeN]o...eIl}
{ll,...,ln}:{l€N|Ool...EH} l; <li+1
1I; :{MEQ(J\/Q)* |Ooli’w€H}

To see that Trav(p, o) is well-defined, observe that

1. 0p is uniquely determined in the first expansion of Seq() because each path
in RPathSetg,, (0, p) starts with the inital object o;

2. op is uniquely determined in every recursive expansion of Seq() because the
initial segment ogl; of a path in an object graph completely determines the
next object (there are no inheritance edges in an object graph).

To run the adaptive program on o means to execute the wrappers specified
by W in the sequence prescribed by Trav(p, o).

3 Traversal Algebra

In this section, we investigate some algebraic laws that hold for traversal spec-
ifications and define a normal form for them. Working towards a compilation

320 Peter Thiemann

(pr-p2)-ps = p1-(p2-ps)

(p1+ p2) + p3 = p1+ (p2 + p3)
p1+ p2 = p2+ p1

p+p =p

p1-(p2+ps) = (p1-p2) + (p1-ps)
(p1+p2)-ps = (p1-p3)+ (p2 - ps)

Fig. 4. Laws for traversal specifications

algorithm, we define a notion of derivative for traversal specifications, where
taking the derivative of a specification corresponds to visiting a certain node
during a traversal. Finally, we consider the complexity of the resulting compila-
tion algorithm.

3.1 Algebraic Laws

Traversal specifications obey some algebraic laws. The concatenation of specifica-
tions - is associative. The alternative of specifications + is associative, commuta-
tive, and idempotent. Furthermore, concatenation - distributes over +. Figure
shows the resulting laws.

Lemma 1. The algebraic laws given in Fig. [§] are correct, in the sense that if
p1 = p2 s a law then, for all A, RPathSet(A, p1) = RPathSet(A4, p2).

A further law compresses a concatenation of simple paths even further.
Lemma 2. A-A=A

Given an arbitrary total ordering on the set of class names, a traversal spec-
ification is in mormal form if it has the form wy + wo + ... + w, where each w;
is a traversal word (that is, it is generated by the grammar w 1= B | B - w)
and w; < w;41 in the induced lexicographic ordering. The function norm maps a
traversal specification to its normal form. In the algorithm, O denotes the empty
traversal specification.

norm(p) = sort(norm’(p, O))

norm’(B,wy + ...+ wy) = prefix(B,wy) + ... + prefix(B, w,)
norm’(py - pa,) norm’(py, norm’(ps, L))

norm’(py + p2, L) = norm’(p1, L) + norm’(p2, L)

B ifw=0
prefix(B,w) = w ifw=B-u
B - w otherwise

The function sort merges traversal specifications by sorting an alternative of
words and removing duplicates. The function norm has exponential complexity

An Algebraic Foundation for Adaptive Programming 321

in the worst case. To see that, consider the family of specifications p,, = (41 +
Bi)--- (A, + B,) for distinct A; and B;. Each p, has size linear in n, but
norm(p,) = Ay - As -+ A, + ...+ By - By -+ By, has size proportional to 2.

Lemma 3. For all A and p: RPathSet(A, p) = RPathSet(A, norm(p)).

3.2 Second Normal Form

Further simplifications are possible for specifications in normal form. First, define
another ordering on words. A word v is less than or equal to a word w- A,, 1 if v is
a subsequence of w followed by a non-empty ascending sequence of superclasses
of An+1 .

Definition 1. Let m > 0. Define v =<, w iff there is some n > 0 such that
v = A1Ay---A,B1By -+ Byyy1 and there exist aq,...,Qn41 Such that w =
a1ArasAg - - Ao 1At where Ayq1 € Subclasses(By) and, for alll <i <m,
B; € Subclasses(B;41).

Write v < w if there exists some m such that v <,, w.

We will be most interested in the special case where m = 0. It turns out that
=<p is related to the reverse inclusion of the corresponding path sets.

Proposition 1. The relation < is a partial ordering on the set of normalized
traversal words.

Corollary 1. The relation =g is a partial ordering on traversal words.

Lemma 4. For all words v and w, if w <o v then, for all A, RPathSet(A,v) C
RPathSet(A, w).

The proof is by induction on v.

The lemma does not extend to =<, for m > 0, hence it does not hold for <.
To see this, consider three distinct class names A, B, and D so that A- B < D if
D € Subclasses(A) and A € Subclasses(B). Now, RPathSet(D, D) contains (D),
but (D) & RPathSet(A - B,), since every element of the latter contains A.

As a corollary, we have the following additional law.

Lemma 5. Suppose w =g v then v+ w = w.

Proof. We need to show that, for each A, RPathSet(A, v+ w) = RPathSet(A4, w).
The inclusion RPathSet(A4,w) C RPathSet(A,v + w) is obvious by definition.
The reverse inclusion is Lemma

Definition 2. A traversal specification p is in second normal form (2NF) if it
is in normal form p = wy + ...+ wy, and, for alli,j € {1,...,n}, if i # j then
(5 ﬁo wy .

To get norm to produce traversal specifications in 2NF, it suffices to have
sort not just remove duplicates but also remove each word w if there is another
word v such that v <¢ w. Call this modified function sort’.

322 Peter Thiemann

Ox (A)
Ox (A - w)

A

w ifX=A
{ A-w 0therw1se
Ox (w1

Ox (w1 + ...+ wn) o4 Ox (wn)

Fig. 5. Derivative of a traversal specification

3.3 Formal Derivatives

Another view of a traversal specification is to consider it as a state in a traversal.
For example, the specification A means “continue until you find some object of
class A”, and the specification B - A means “search for some B-object and then
continue looking for some A-object”. Clearly, whenever a traversal visits a node
of class X in the object graph, the traversal specification might change to reflect
the new state of the traversal. For example, if the traversal hits upon a B-object
in state B - A, the traversal continues through B’s instance variables in state
A. In principle, the new state should be B - A + A because, by definition, the
traversal should still look for As following some B. However, Lemma [shows
that A is equivalent to B - A + A.

Formally, when a traversal in state p encounters an X-object, the new traver-
sal specification for the instance variables is the derivative of the old specification
p with respect to the class X, that is dx(p). The definition in Fig. Bl assumes
that p is already in normal form.

Lemma 6. If p is in (second) normal form then so is sort'(9x (p)), for all X.

Computation of dx (p) takes time linear in the length of p. Subsequent nor-
malization boils down to a single run of sort’ on the derivative, which takes
O(n?logn) where n is the length of p (since each comparison may take time
linear in n).

3.4 The State Skeleton

Let Der(p) be the set of all iterated derivatives of a traversal specification p.
Since it only depends on p, it is possible to precompute Der(p) before a concrete
class graph is given.

The complexity for computing Der(p) is clearly its size |Der(p)| for some p
in normal form. First, for words the table

w |Der(w) |[Der(w)]

A |{A} 1
A-w|{A-w} UDer(w)|1+ |Der(w)]

determines the number of derivatives. That is, |Der(w)] is linear in the size of w.

An Algebraic Foundation for Adaptive Programming 323

For a general specification p = w; 4. .. 4w, which also includes alternatives
Der(wi + ...+ wy) C{v1+...+ vy | v; € Der(w;)} (some alternatives may be
deleted due to Lemma [)), it holds that |Der(w; + ...+ wy,)| < |Der(wi)|- ... -
|Der(wy,)| ~ |w1|- - - |wy|. Depending on the structure of p, |w1] - - - |wy,| can range
from linear in |p| (for n = 1) to exponential in |p|. To demonstrate the latter,
consider the following example. Let w; = A;- B;-C where all A; and B; and C are
distinct. In this case, |Der(wy +...4+wy,)| = 2™ +1 (by straightforward induction
using Lemma [5]) whereas the size of wy + ...+ w, is linear in n. Therefore, the
exponential bound is tight.

3.5 Compiling Traversal Specifications

Compiling a traversal specification means to compute the set of its iterated
derivatives. In the case of a multiplicative specification [14] (which does not use
+), compilation takes linear time. Firstly, normalization of a specification boils
down to removing repeated class names, which can be done in linear time. Sec-
ondly, computing the normalized derivative takes unit time. Finally, the number
of normalized derivatives is linear in the size of the multiplicative specification.

For general specifications, compilation takes exponential time in the worst
case, for two reasons. First, the normalization of a traversal specification may
take exponential time and, second, the traversal specification may have an ex-
ponential number of derivatives.

From now on we can safely assume that the function 0x(p) only deals with
specifications in 2NF. Once the elements of Der(p) have been computed, the
compiler assigns numbers to them and reduces the computation of dx(p) to a
constant-time table lookup.

Starting from a specification p and a designated source class A, a compiled
traversal specification is a quadruple (A, P, pg,d) where pg € P is the initial
traversal specification in 2NF, P = Der(pg) is the set of normalized iterated
derivatives of pg, and 0 : P x C — P is the table of derivatives.

4 Adaption to a Class Structure

Given a specific class graph G = (C,Ec, N U {<}) and a compiled traversal
specification (A, P, pg,d), the next task is to produce a target program which
implements the traversal. The abstract model of the target program is a finite
automaton, the traversal automaton. We describe its construction and prove its
correctness with respect to the traversal specification. Then, we show that it is
uniformly minimal, ie., it has the least number of states among those automata
that implement the semantics of pg and work for all possible class graphs.

4.1 Traversal Automaton

The first step towards the target program is the construction of the traversal
automaton. The traversal automaton is a non-deterministic finite automaton
A=(Q,X,6,q0, F) 9] where

324 Peter Thiemann

— @ =C x {in,out} x P is the set of states;

— XY =CUN U{<} is the alphabet;

— qo = (A,in, pp) is the initial state;

— F = {(A,out,p) | A € C,p € P and there exists some B and p’ such that
p=DB+p'Vp=B,A € Subclasses(B)} is the set of final states;

~ 0((A,in, p), A) = {(A,out, p)} and §((A, out, p), 1) = {(B,in,da(p)) | A
B € ¢} defines the transition function.

As usual, L(A,q) is the language recognized from initial state ¢ € Q.
Inheritance edges in the class graph are the only sources of non-determinism
in A. All transitions on construction edges are deterministic because there is at
most one construction edge with a given source u and label [.
The next Lemma shows that the automaton A indeed implements the se-
mantics of the traversal specification pg.

Lemma 7. The automaton A recognizes RPathSetg,, (4, po).

We actually prove a more general claim: for all A € C, for all p € P,
L(A, (A, in, p)) = RPathSet(A4, p). This can be shown using induction on the
length n of a path (Ao, l1, A1,lo, ..., 1n, As).

4.2 Minimal Traversal Automaton

The step from the traversal automaton to generated code is simple. The states
of the automaton correspond to a set of mutually recursive procedures/methods,
each of which implements one step of the traversal and — possibly — an action.
If there were equivalent states they would have to employ equivalent code to
continue the traversal. In other words, the compiled code would suffer from
code duplication. Hence, the traversal automaton should have as few states as
possible.

Standard results from automata theory [9l Sec. 3.4] show that a minimal
(deterministic) finite automaton always exists. This minimal automaton has the
property that for all its states q and ¢/, if ¢ # ¢/ then L(A, q) # L(A,q’), that is,
q and ¢’ are distinguishable. Theorem [I] below demonstrates that the set Der(p)
generates distinguishable states under certain assumptions on the class graph.

Since we want to compute the uniformly minimal automaton, ie., an automa-
ton which works regardless of the actual class graph, we make the following two
assumptions.

Assumption 1 (REACHABILITY) Let B be an arbitrary class. For all con-
crete classes A there is a label | # & such that A . Be Ec.

Assumption 2 (RICHNESS) Given a specification p, there is always a suf-
ficient number of classes not mentioned in p.

An Algebraic Foundation for Adaptive Programming 325

These assumptions are technical devices to enable a proof of the following
development. They are not the weakest possible assumptions, but rather they are
chosen to make the proofs palatable. They are not meant to be imposed on class
graphs submitted to the compiler. If a class graph violates the assumptions, then
the generated automaton may not be minimal for this particular class graph.

The intuition behind the assumptions is to guarantee the existence of a suit-
ably connected set of classes which are not mentioned in the specification which
is compiled. This is usually true because any given specification only mentions
a very small subset of the classes in a system.

From now on, REACHABILITY and RICHNESS are implicitly assumed for
all statements.

Theorem 1. Let p1, p2 € Der(p), all in 2NF, such that p1 Z p2.
For all A € C, RPathSet(A, p1) # RPathSet (4, p2).

We need a number of auxiliary lemmas to prove this theorem. First, we
establish that the inclusion of path sets for words implies that the words are
related by <.

Lemma 8. Let v and w be words in normal form.
Suppose VA . RPathSet(A, v) C RPathSet(A,w). Then w =g v.

The proof is by induction on the length of w.
Since Lemma [provides the other implication, we have proved the following
theorem.

Theorem 2. Let v and w be words in normal form.
VA .RPathSet(A,v) C RPathSet(A, w) if and only if w <o v.

Exploiting that =< is a partial order immediately yields the following.

Corollary 2. Let v and w be words in normal form. VA.RPathSet(A4,v) =
RPathSet(A, w) if and only if w = v.

This result for words extends to traversal specifications in strong 2NF. To
obtain the strong form of 2NF, we replace <y by =< in the definition of 2NF.

Theorem 3. Suppose p and p' are in strong 2NF. Then VA .RPathSet(4, p) =
RPathSet (A, p') if and only if p = p’.

Theorem [I] follows immediately from Theorem [3l Theorem [3] characterizes all
specifiable traversals since it establishes a one-to-one correspondence between
traversal specifications in strong 2NF and specifiable path sets.

From another point of view, we have proved a normal form result for a
certain kind of regular expressions, namely traversal specifications. Theorem [l
completely characterizes them, by putting the languages in one-to-one corre-
spondence with expressions in normal form.

326 Peter Thiemann

1. (A,il’l7 po) € Q.
2. If g = (A,in, p) € Q then let ¢’ = (4, out, p) in
— ¢ €Q;and
if ¢’ € F then active(q'); and
if active(q’) then active(q); and
if active(q’) then (q, 4,¢') € 4.
3. If g = (A,out, p) € Q then
for each A —— B € &c let ¢ = (B,in,04(p)) in
— ¢ € Q; and
— if active(q’) then active(q); and
— if active(q’) then (q,l,q") € 4.

Fig. 6. Constraint system specifying those states of A which are reachable and
active

4.3 Generation of the Automaton

The naive construction of the automaton A is too costly because not all states
of A are accessible from the initial state. Fortunately, it is easy to restrict the
construction of the state space of A so that only accessible states are constructed.

Likewise, naive use of A to control a traversal leads to unnecessary visits
because some states of A are sink states. A state ¢ is a sink state if there is no
path from ¢ to a final state or, equivalently, L(A,¢g) = 0. The non-sink states
are easily identified by marking all those states that have a path to a final state
(analogous to the construction of an automaton for INIT(L) from an automaton
for L [9]). The remaining unmarked states are sink states.

Both properties can be computed in one traversal of the reachable part of the
automaton. This traversal takes O(|E¢| - |Der(pg)|) time. The constraint system
in Fig. [6] specifies the traversal. In the specification, the predicate active(q) is
true iff ¢ is not a sink state. It can be implemented using standard techniques
in the complexity given above.

5 Extensions and Further Work

The algebraic approach using derivatives of traversal specifications is also suit-
able for dynamic compilation [T2]. In this case, the compilation time is constant
for each class (i.e., linear in the size of the class structure) and the amount of
work left to run time is comparable to that in Lieberherr and Patt-Shamir’s
approach [I2]. However, their approach employs a different notion of traversal
specification.

It is easy to generalize the framework to multiple source classes since traversal
specifications do not mention source classes to begin with. Also the adaption to
multiple target classes requires no change in the method, due to our removal
of the notion of well-formedness. Well-formedness was only a real requirement

An Algebraic Foundation for Adaptive Programming 327

in the early work which relied on identifying the set of states of the traversal
automaton with the set of classes [15]. The later works have been able to dispense
with well-formedness, too [12].

Further operators like negation and intersection could be allowed for traversal
specifications. While the algebraic approach seems to work with these operators
in principle, its impact on normal forms and the remaining development of Sec.
has been left to further investigation. In the database community [1},[10, 2], more
expressive path expressions have been considered, including /=1 (find an object
o so that the current one is the value of instance variable o.l) and p(l) (find
the closest reachable object with instance variable [) [18]. These would also be
interesting to investigate.

6 Conclusion

We have presented a new algebraic foundation for compiling adaptive programs.
Our approach provides a simple and intuitive algorithm based on formal deriva-
tives of traversal specifications, while maintaining and verifying the previously
established complexity bounds. We have implemented the compilation of adap-
tive programs using partial evaluation, thus substantiating earlier claims in this
regard. We hope that this new perspective provides further insight into the
structure of adaptive programs.

References

[1] Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, and Janet
Wiener. The Lorel query language for semistructured data. Journal of Digital
Libraries, 1(1):68-88, 1997.

[2] Serge Abiteboul and Victor Vianu. Regular path queries with constraints. In
PODS ’97. Proceedings of the Sizteenth ACM SIG-SIGMOD-SIGART Symposium
on Principles of Database Systems, pages 122—133, Tucson, Arizona, May 1997.
ACM Press.

[3] Paul L. Bergstein. Object-preserving class transformations. In OOPSLA’91, ACM
SIGPLAN Sizth Annual Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 299-313. ACM, November 1991. SIGPLAN
Notices (26)11.

[4] Gerard Berry and Ravi Sethi. From regular expressions to deterministic automata.
Theoretical Computer Science, 48:117-126, 1986.

[5] W. Brown, R. Malveau, H. McCormick, and T. Mowbray. AntiPatterns: Refactor-
ing Software, Architectures, and Projects in Crisis. John Wiley and Sons, 1998.

[6] Janusz A. Brzozowski. Derivatives of regular expressions. Journal of the ACM,
11(4):481-494, 1964.

[7] John H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971.

[8] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, 1999.

[9] John E. Hopcroft and Jeffrey D. Ullman. Introduction to automata theory, lan-
guages and computation. Addison-Wesley, 1979.

328

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Peter Thiemann

Michael Kifer, Wong Kim, and Yehoshua Sagiv. Querying object oriented
databases. In Michael Stonebraker, editor, Proceedings of the SIGMOD Inter-
national Conference on Management of Data, volume 21 of SIGMOD Record,
pages 393-402, New York, NY, USA, June 1992. ACM Press.

Karl J. Lieberherr. Adaptive Object-Oriented Software: The Demeter Method with
Propagation Patterns. PWS Publishing Company, Boston, 1996.

Karl J. Lieberherr and Boaz Patt-Shamir. Traversals of object structures: Spec-
ification and efficient implementation. Technical Report NU-CCS-97-15, College
of Computer Science, Northeastern University, Boston, MA, July 1997.

W. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, University of
Illinois at Urbana-Champain, 1992.

Jens Palsberg, Boaz Patt-Shamir, and Karl Lieberherr. A new approach to com-
piling adaptive programs. Science of Computer Programming, 29(3):303-326,
September 1997.

Jens Palsberg, Cun Xiao, and Karl Lieberherr. Efficient implementation of
adaptive software. ACM Transactions on Programming Languages and Systems,
17(2):264-292, March 1995.

Peter Thiemann. An algebraic foundation for adaptive programming. http://
www.informatik.uni-freiburg.de/ thiemann/papers/adaptive-1lncs.ps’.gz,
October 1999.

Peter Thiemann. Compiling adaptive programs by partial evaluation. In David
Watts, editor, Proc. of the 9th International Conference on Compiler Con-
struction, Lecture Notes in Computer Science, Berlin, Germany, March 2000.
Springer-Verlag. Preliminary version available from http://www.informatik.
uni-freiburg.de/~thiemann/papers/compile.ps.gz.

Jan Van den Bussche and Gottfried Vossen. An extension of path expressions
to simplify navigation in object-oriented queries. In Proc. of Intl. Conf. on De-
ductive and Object-Oriented Databases (DOOD), volume 760 of Lecture Notes in
Computer Science, pages 267-282, 1993.

	Introduction
	Related Work
	Contribution of This Work

	Semantics of Adaptive Programs
	Graphs
	Class Graphs and Object Graphs
	Traversal Specifications
	Semantics

	Traversal Algebra
	Algebraic Laws
	Second Normal Form
	Formal Derivatives
	The State Skeleton
	Compiling Traversal Specifications

	Adaption to a Class Structure
	Traversal Automaton
	Minimal Traversal Automaton
	Generation of the Automaton

	Extensions and Further Work
	Conclusion

