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Abstract. The ambient calculus was designed to model mobile pro-
cesses and study their properties. A first type system was proposed by
Cardelli-Gordon-Ghelli to prevent run-time faults. We extend it by intro-
ducing subtyping and present a type-checking algorithm which returns
a minimal type relatively to this system. By the way, we also add two
new constructs to the language. Finally, we remove the type annotations
from the syntax and give a type-inference algorithm for the original type
system.

1 Introduction

With the growing development of the World-Wide-Web, it becomes interesting
and fruitful to investigate the problems and properties of mobile code. The am-
bient calculus was designed to model within a single framework both mobile
computing, that is to say computation in mobile devices like a laptop, and mo-
bile computation, that is to say mobile code moving between different devices,
like applets or agents. It also shows how the notions of administrative domains,
their crossing, firewalls, authorizations... can be formalized in a calculus. In this
sense, it is more appropriate than the m-calculus ([Mil91]), even if the bases
are the same (for more discussion about the problems raised by mobility and
computation over wide-area networks, see [Car99al [Car99h]).

Informally, an ambient is a bounded place, with an inside and an outside,
where computation happens. Many ambients can be nested so that they form a
hierarchy. Each of them has a name (not necessarily distinct from other ambient
names), which will be used to control access. An ambient can be moved as a
whole with all the computations and subambients it contains: it can enter another
ambient or exit it. It can also be opened so that its contents get visible at the
current level. For more intuitions motivating the ambient calculus or its graphical
vision (the folder calculus), we recommend reading [CG97, ICGIS| [Car99al.

In order to prove some specific properties concerning mobility, locking, com-
munication... in the ambient calculus, Cardelli and Gordon proposed a simple
type system, nondeterministic and without subtyping (see [CG99. (CGG99)):
some simple valid processes like (1) | (« : Real).P were not typable. The aim of
our work was to introduce a subtyping relation, deduce a typing algorithm and,
in doing this, to make the type system more suitable for a treatment of mobile
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ambients as a “programming language for mobility” (departing thus from the
“ambients as a specific language for reasoning on mobility” approach).

The rest of the paper is organized as follows. In Section [2] we will review
briefly the ambient calculus and its semantics, by the way adding two new con-
structs to the original syntax. Then, in Section [3], we present our extension of
the type system, introduce a subtyping ordering, and define a new typing sys-
tem. In Section [, we show that the set of derivable types for a term has got a
minimum, and we give an algorithm to compute it efficiently. It is now possible
to type-check a term of the ambient calculus automatically. The next step in
Section[H is to remove all type annotations from the term and try to find a type-
inference algorithm. We give a complete solution for the original type system
without subtyping.

This paper is a shortened version of an internship report [Zim99], which con-
tains more explanations, further developments and all the proofs of the theorems
enunciated in this paper.

2 DMobile Ambients: Syntax and Semantics

In this Section, we are going to briefly review the polyadic ambient calculus we
will use throughout this paper. We will try to explain its main constructs and
rules, but we recommend reading [CG98| (or any other paper presenting the
calculus extensively) to have a more complete presentation. By the way, we are
also going to extend the original calculus and introduce two new constructs.

The polyadic ambient calculus is mainly composed of processes. As in many
other process calculi, we have an inactive process 0 which does nothing, we
can compose processes in parallel (P | @), we have a construct to replicate a
process as many times as necessary (!P) and we have a restriction operator
((vn)P) which introduces a new name n and restricts its scope to the inside
of P. In the w-calculus, those names represented channels; here they represent
ambient names. In our calculus, we also declare the type of this ambient name
((vn : AmbY [T,,, T"])P), but we will not care about that until the next Section.

An ambient is composed of a name n and a process P which is running in-
side the ambient. We write it n[P]. Here we extend the syntax of the polyadic
ambient calculus with a new construction. Up to now, the locking-unlocking of
an ambient was defined only in the declaration of its name. So ambients with
the same name had all the same locking annotation. We kept this possibility
(extending it with ordering), but we changed the syntax of ambient construc-
tions: n[P] is an unlocked ambient and n[P] is a locked one. So we can now have
an explicit construct which guarantees that an ambient will be locked. This can
seem redundant with the locking annotation in the type declaration of n, but
from a programming point of view, it just appears to be more flexible.

The process M.P executes the action induced by the capability M and then
continues with the process P. There are three kinds of capabilities: one to enter
an other ambient (in n), one to exit (out n) and one to open up an ambient
(open n). To build such a capability, a process must know the name n. It can
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also have received the capability via communication (see below). Implicitly, it is
impossible to reconstruct the ambient name n out of one or all of these capabil-
ities (this is important to prove the security of a firewall for example). (In the
original calculus, we could also compose capabilities into paths (M.M’) where €
was the empty path; we do not use these constructs in this paper, but they are
not difficult to handle; see [Zim99] for details.)

The use of these three capabilities is given by the following reduction rules:

nlin m.P | Q] | m[R] — m[n[P | Q] | R] (Red In)
m[nlout m.P | Q] | R] — n[P | Q]| m[R] (Red Out)
open n.P | n[@Q] — P|Q (Red Open)

with the convention that in (Red In) and (Red Out), each occurrence of [.] can
be replaced by [.] (the ambients can be locked or unlocked), whereas in (Red
Open), the ambient n must be unlocked.

Here we add our second extension: the imm capability. A process containing
it must be immobile. We added it, because also for immobility we want a lan-
guage construct which obliges a process to be immobile, instead of delegating it
to the types (an other reason is that, without it, no construct would introduce
the mobility annotation Y in our type system). The corresponding reduction rule

imm.P — P (Red Imm)

is very simple and actually “ignores” the imm capability. In fact, imm is only
useful when typing: if imm.P is typable, then P cannot contain moving capa-
bilities (even by receiving them). At run-time, only this guarantee is important
and we can throw imm away.

Finally, we have two communication primitives: (ny : Wi,...,ng : Wy).P
and (My x -+ x My). The first waits for a tuple of values of respective types
Wi, ..., Wk, and binds them to the variables ny, ..., nj in the continuing process
P. The second outputs a tuple of values. Note that the output is asynchronous
(no continuing process). The corresponding reduction rule is:

(n1:W1,...,nk:Wk).P| <M1,...,Mk>

— P{ny « My,...,ng < My} (Red Comm)

The five last rules just say that reduction (i.e. computation) can also occur
beyond scope restrictions, inside ambients, or by using the structural congruence
rewriting (which we will not detail here):

P —- Q= (wvn:W)P — (vn:W)Q (Red Res)
P —- Q = n[P] — nlQ] (Red Amb,)
P —- @ = n[P] — n][Q] (Red Amb,)
P —-@Q=P|R— Q|R (Red Par)
PP=PP - QQ=Q = P — @ (Red =)

Here is the complete syntax of our calculus. Note that it allows strange
expressions like (in n)[P] or out (out n).P. Rejecting those nonsense terms will
be an automatic property of the type system.



378 Pascal Zimmer

PQ = processes
(vn: AmbY [T, T'))P restriction
0 inactivity M == expressions
P|Q composition n name
P replication in M can enter into M
M|[P] unlocked ambient out M can exit out of M
MI[P] locked ambient open M can open M
M.P action mm immobility
(n1: Wha,...,ng : Wg).P input
(Mq, ..., My) async output

Terms are also identified up to the consistent renaming of bound variables,
in the restriction and input constructs. Thus, we can always suppose that all the
ambient names and input variables are distinct.

3 A Type System with Subtyping

In order to verify some properties of processes in the ambient calculus, Cardelli
and Gordon proposed a first type system in [CG99] and extended it with Ghelli
in [CGGY9). It assured that a well-typed process could not cause certain kinds
of run-time fault: exchanging values of the wrong type, moving or opening an
ambient if it was not allowed to... We will always refer to this type system as
“CGG”.

In this Section, we will describe a new type system, extending (in some way)
CGG. We will first introduce some new types and define an ordering relation on
them (subtyping is essential to be able to write a typing algorithm). Then, we
will give new typing rules and show some properties.

3.1 Type Definitions
We start by giving all the definitions of our types:

Z ::= mobility annotations Y ::= locking annotations
N mobility unknown 1 locking bottom
v immobile ° locked
~ mobile o unlocked
T mobile and immobile T° locking top
O,1 == input/output types
il bottom value T:= process type
Wi x - x Wy (k>0) tuple 20~ T
T top value
W = message types

AmbY [T, T'] with T < T’ (see below) ambient name
Cap[T) capability
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3.2 Intuitive Meanings and Ordering

The main intuition in defining the order is to always respect the subsumption
rule: if P has got type T and T' < T”, then P has also type T". There are a few
changes in the syntax of types compared to those of CGG. They were motivated
by the introduction of subtyping: what seems “intuitive” is not always correct
(this problem appeared clearly in the referee reports for a draft of this paper:
whereas one referee found “may be mobile < immobile, may be opened < locked”
as the “implicit” relation in CGQG, an other one stated that “immobile < mobile
and locked < unlocked” was the “obvious subtyping of CGG”).

Mobility Annotations What is the “obvious” subtyping of CGG 7 It depends
on the point of view. If we consider that an immobile process can generate
movements, we should define ¥ < ~. For example, everybody would say that the
process 0 is immobile, but in order to type in n.0, we should also be able to say
that 0 is mobile. On the other hand, with this definition, if we restrict a process
to stay immobile, it can always remove this restriction with the subsumption
rule, which speaks more in favour of ~ < V.

The subtyping relation we need depends on the property we privilege: gener-
ation of movement or restriction of immobile processes. If we want to keep both
results, we have to introduce a new symbol s, and keep ~ and Y incomparable.
In order to have a complete lattice, we introduce also T’ (which will also be useful
in the typing algorithm and for the ambient types), and we define 1, < ¥, ~n< T.
Since this structure is a complete lattice (4 points with a lozenge-like ordering),
there is no problem to define meet and join operations on it.

Process Type In the type system of CGG, there was only one single term
representing the type of values exchanged in the ambient (Shh or a tuple).
In presence of subtyping, we should now accept that outputs and inputs have
different types. For example, the output of the integer 1 should be accepted
by an input variable of type Real. So we decided to track the types of output
and input values exchanged in the ambient. If a process is valid, it must then
have type O ~» I with O < I to ensure that any output can be read by
any input instruction (note that this is not specified in the syntax of T, but
will be a property of the type system; see also below). Later, it appeared that
Yoshida and Hennessy used the same approach for a higher-order 7-calculus with
subtyping ([YH99]). Moreover, a valid process should not contain both mobile
and immobile instructions; consequently the mobility annotation T is forbidden
for processes.

Definition 1 (Validity). A process type 2O ~» I is said to be valid if Z # T
and O < 1.

For the process type, we define :

/ z<7
20 I<Z20 ~»T = {0<0O
I>r
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1>

INTONO TV T
VOO A TAT

20 INZ O ~> T
20m INVZ O~ T

1>

The set of all process types has a complete lattice structure, with =1 ~» T
as the minimal element and T T ~» L as the maximal one. But, if we consider
only valid processes, there are many maximal types: all ~O ~» O and “O ~ O
for every input/output type O.

Input/Output Types Then, we have to define what are output and input
types. As before, it can be a tuple. But we had to replace Shh by two different
values, one for outputs (Shh,,: = L) and one for inputs (Shh;, = T). Then it
appeared useful to consider that the meaning of these values was different for
the input and output terms:

Value Output term (O) Input term (1)
1 No output There can be an
Dumb process (Shhout) input of any type
T There can be an No input
output of any type Deaf process (Shhin)

For example, if there are two outputs of different arities in parallel, the re-
sulting process has type T for O. With the condition that O < I, the process
is valid if and only if I = T, i.e. if there are no input instruction (you can say
anything only if nobody is listening). A similar argument holds by exchanging
inputs and outputs. This is a different vision from [YH99] where T was forbidden
as an output type and L as an input type.

For the input/output types, we define the partial order:

1 <Wix-- - xWp<T Yk YW;
Wix e o xWe<W{x---xW, < W; <W] V1<i<k

This definition induces a complete lattice structure on input/output types,
so that the meet and join operations are always defined (the obvious cases with
1 and T are omitted for simplicity):

WiAW] X - x Wy AW, ifk=k
and W; AW/ is defined V1 <i<k

(1>

Wi X o Xx We AWY X - x Wi,

1 otherwise

WiV WX x WA VWL itk =K
and W; V W/ is defined V 1 < i < k

(1>

Wi X Xx Wi VW] X x Wi,

T  otherwise

Message Types Finally, we have a type for messages that can be exchanged
in an ambient. It can be either an ambient name or a capability. It is safe to add
here other common types like Int, Bool...
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A capability Cap[T] contains simply the effects T which will be released if
the capability is executed. And the ordering is natural:

Cap[T) < Cap[T'] <= T <T

Cap[T) A Cap[T'] & Cap[T AT
Cap[T]V Cap|T'] & Cap[T VT’

An ambient name is composed of a locking annotation and two types rep-
resenting the processes running inside the ambient. Concerning the locking an-
notations, we can repeat the same discussion as for mobility annotations. Thus
we add two new symbols L, and T°, and define 1, < e, 0 < T° with e and o
incomparable.

With L, all three constructions n[P], n[P] and open n are allowed. With o
only n[P] and open n are allowed, and with e only n[P] is allowed. With T°
none of them is allowed. However, note that all other constructions (like in n or
(n)) are valid with any locking annotation for n.

Concerning the process running inside an ambient, it seems that only one
process type would be enough (it was in CGG). With subtyping, we would like
to say that a process is allowed to run inside an ambient of type AmbY [T if
and only if it has a type 77 < T (so that 0 is always accepted). T represents the
maximal effects allowed in the ambient.

Now, what is the natural ordering for ambient names ? Suppose AmbY [T] <
AmbY [T'] when T < T'. Then, if n has type AmbY [T}, it has type AmbY [T'] by
the subsumption rule for any 77 > T. Thus, n[P] is typable for any process P
of arbitrary type T, which is contrary to our requirements.

On the other hand, suppose AmbY [T] < AmbY[T'] when T” < T. Then,
if n has type AmbY [T], it has type AmbY [Tinin] where T is the minimal
process type. open n has type Cap[Tin], which is contrary to our intuition: n
can contain processes with “stronger” effects.

This explains why we need two process types in the type of an ambient
name, with two different orderings. In AmbY [T, T'], T represents the maximal
type allowed for processes inside the ambient (i.e. all valid processes also have
type T') (cf. rules (Proc Amb,) and (Proc Amb,) in Section [3.3]), whereas T’
represents the maximal effect a valid process can produce (cf. rule (Exp Open)),
thus the condition T' < T” to be coherent. We define:

y <Y’
AmbY [T1, Tz < AmbY [T}, T3] < { Ty > T}
T < Ty

At first sight, it could seem strange to declare a new ambient name with
T < T': if we specify the maximal allowed type T', why would we say that worse
effects T' can appear when opening an ambient of that name ? In fact, we need
them to be consistent with the rest of the calculus. Suppose we want to write the
program (n) | (m) | (z :7).P where n and m accept processes of type T,, and T},
respectively. What input type should we declare for z 7 We can use the type of
the parallel output (n) | (m), which is with our ordering AmbY [T}, ATy, TnV Tin)-
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In general, there is no reason to have T,, AT}, =T}, V T),. This explains why we
cannot replace T and T’ by one single process type in an ambient name.

Note that the conditions Z # T and O < I are not required for an ambient
name. For example, AmbY [—PT ~ J_,—'%T ~» 1] is the type of an ambient name
allowing all processes, whereas the ambient name AmbY [> L ~» T,51 ~» T]is
the most restrictive one, allowing only processes which do not have inputs or
outputs, i.e. only processes behaving like 0.

We can only define partial meet and join operations, since there are some
incomparable types (the other cases are undefined):

AmbY [Ty, To) A AmbY ' [T], T3] 2 Amb* "Y' [Ty v T{,To A T3]
if Ty VT < To ATs (or equivalently if Ty < Ty and T} < T)

AmbY [Ty, To] v AmbY [T}, T3] 2 Amb"VY [Ty AT{, To v T3]

There is no comparability between ambient names and capabilities. It is
safe to add other useful types here with their usual ordering (for example, I'nt <
Real), with no comparability with ambient names and capabilities.

The set of capability types has a structure similar to the process types
(i.e. a complete lattice). The set of ambient names has a maximal element
(AmbT > L ~ T,7T ~ 1]), but infinitely many minimal elements: all the
types Amb[T, T for every process type T

3.3 Typing Rules

Having defined the types and explained their ordering, we can now give the
typing rules of this new type system. A feature of the present approach w.r.t.
CGG is that we avoid to introduce arbitrary types in the conclusions of typing
rules. However note that this derivation system is also not deterministic because
of the subsumption rules and the shape of some rules (for example, in (Proc
Par), the same type T appears in two premises).

Good Environment (E F ©)

(Env n) EFo n¢dom(E)

(EHVQ)W—O En:Wko

These two rules are exactly the same as in CGG.

Good Expression of Type W (E+ M : W)

E+ M : AmbY [T, T'] E+ M : AmbY [T, T']

(Exp In) G AT Capl~ L~ 7] (BxP OUt) B out 3+ Capl~ L~ T]
EI—M:AmbO[T,T'] Eto
E Exp 1
(Exp Open) E+ open M : Cap[T"] (Exp Tmm) EFimm : Cap[* L~ T]
/ . 7 W W < /
(Bxp n) W E Do (Exp Sub) M =

E'n:WE'"F-n: W EFM:W
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In (Exp In), (Exp Out) and (Exp Imm), the type in the conclusion of the rule
is the minimal effect (or constraint) that the corresponding instruction produces.
In (Exp Open), we use the maximal effect contained in the ambient name and
we check that M is an unlocked ambient. In (Exp Sub), we allow to upgrade the
type of an expression. The other rules are identical to those of CGG.

Good Process of Type T (E+ P : T)

ErP:T FERQ:T EF-M:Cap[ll] ERP:T

Proc P Proc Acti
(Proc Par) =517 (Proc Action) EFMP:T
EFo EFP:T
Proc Zero) ——— ¢ P AR
(Proc Zero) g T 57 (Proc Repl) 57

E,n: AmbY [T, T, - P: T
Et (vn: AmbY [T, T))P: T
E+-M: Amb° [T, T'] E-P:T
E-M[P]:»L~T
E-M:Amb* T, T'] E-RP:T
ErM[P] : 5L~ T
E,n1:W1,...,nk:Wk|—P:ZOMI IT<W;x- - x W
Eb(ni:Wi,...,ng: Wg).P: 20~ 1
E-M :W1 -+ EFM;: W, (EFo if E=0)
EF (M, My 5Wix - x Wi T
EFP:T T<T T valid
E-P:T

(Proc Res)

(Proc Amby,)

(Proc Amb,)

(Proc Input)

(Proc Output)

(Proc Sub)

(Proc Par), (Proc Action), (Proc Repl) and (Proc Res) are the same rules as
those of CGG (with a syntax modification for (Proc Res)). In (Proc Zero), we
use the minimal process type.

In (Proc Amb,), we check that M is an unlocked ambient name and that P
has the type of an allowed process inside M (with the subsumption rule, we can
always upgrade it or decrease the type in the ambient name so that they match).
Like for 0, we use the minimal process type in the conclusion of the rule. (Proc
Amb,) is similar.

In (Proc Input), we just need to check that the input type of the process P
is below the type generated by the input (i.e. is more specific since the ordering
for input types is contravariant). This is valid: every input type is accepted in
the conclusion provided that it covers the input Wi x - - - x Wy. If P has a bigger
input type (T for 0 for example), it must first be upgraded with the subsumption
rule before applying (Proc Input).

In (Proc Output), we just give the minimal effect: the output of a type
Wy x -+ x Wg. Since the output is asynchronous, there is no condition to check
like in (Proc Input).

(Proc Sub) is the classical subsumption rule, with the additional condition
that the new process type must be valid (we are explicitly typing a process here
and not a capability or an ambient name).
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3.4 Results
Theorem 2 (Subject reduction). IfE+P:T and P — Q,then EFQ:T.

Theorem 3 (Validity). If EF P : T, then T is valid.

By this last theorem, we are sure that a well-typed process will never cause
run-time faults, i.e. there will never be an exchange of incompatible values dur-
ing execution and it cannot contain instructions requiring both mobility and
immobility (like in imm.in n.P). Another desired property is that we do not
want an ambient to be opened if it is locked. This property is a direct result of
the type system: the instructions open n and n[P] can be typed only if we can
prove that n is unlocked.

4 A First Typing Algorithm

In this Section, we are going to deduce a typing algorithm from the type system
we introduced in the previous one. Then, we will see that this algorithm returns
exactly all the types (in a certain sense) that could be derived.

4.1 Typing Rules

Definition 4. An environment is said to be well-formed if all the names it
contains are different. This is of course equivalent to E + o. Algorithmically, it
just consists in checking that all the names are different.

For any well-formed environment F, we define an algorithm returning the
type of expressions and processes by the following rules. For every undefined case,
we will say that the algorithm fails. Note that even if we write it as derivation
rules for simplicity, it can also be expressed directly in an algorithmic way. Note
also that the algorithm can be implemented in a parallel way when there are
several recursive calls (for instance in (Type Par)).

Type of an Expression M (Type(E,M) = W)
Type(E,M) = AmbY [T, T]
Type(E,in M) = Cap[™L ~ T]
Type(E, M) = AmbY [T, T']
Type(E,out M) = Cap[™L ~ T]
Type(E, M) = Amb¥ [T, T'] Y <o
Type(E,open M) = Cap[T"]

(Type In)

(Type Out)

(Type Open)

T I
(Type Imm) Type(E,imm) = Cap[*L ~ T]

(Type n) Type((E',n:W,E"),n) =W

For each message type, we always return the minimal type required by this
capability (for example, Cap[™L ~» T] for in M). In (Type Open), we return
the maximal effects 7" which can appear when opening an ambient of that name
and we check that this ambient is unlocked by Y < o.
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Type of a Process P (T'ype(E,P) =T)
Type(E,P) =T Type(E,Q)=T" T VT valid
Type(E,P | Q)=TVT
Type(E,M) = Cap[T| Type(E,P)=T" TV T valid
Type(E,M.P) =TV T’

(Type Par)

(Type Action)

Type(E,P)=T

Type(E,0) =51~ T Type(E,'P) =T

Type((E,n: AmbY [T,,,T}]),P) =T

Type(E, (vn : AmbY [T, Ti)))P) =T

Type(E,M) = AmbY [T, T'] Type(E,P)=T" T'<T Y <o
Type(E,M[P]) =1L~ T

Type(E, M) = Amb* [T,T'] Type(E,P)=T" T'<T Y <e
Type(E,M[P])=+>1~T

Type((E,n1: Wh,...,nk : Wi),P)=20~1T O<Wix-x W

Type(E,(n1: Wi,...,ng : W,).P) =20~ T AW1 X --- x Wy
Type(E,M1)=W1 -+ Type(E,My) = Wj
Type(E,(M,..., M) =Lb5Wi x -+ x W~ T

(Type Zero) (Type Repl)

(Type Res)

(Type Amb,)

(Type Amb,)

(Type Input)

(Type Output)

In (Type Par), we just take the join of the two sub-processes types, ensuring
first that the resulting process is still valid.

In (Type Amb,), we must check that the type T" of P is accepted by this
ambient (7" < T') and that the ambient can be opened (Y < o).

In (Type Input), we add the information of the input instruction by returning
the meet of I and W7 x --- x Wj. We must also check that O < Wy x -+ x Wy
in P, to ensure that O < I AWy X --+ X W}, in the resulting process.

In (Type Output), we just put the information of an output of type Wy x
-+ X Wp,. Since there is no continuation, there is nothing to check here.

The other rules are similar or (quite) natural.

4.2 Results
Theorem 5 (Soundness).

— If Type(E,M) =W, then E- M : W.
— If Type(E,P) =T, then E+ P :T.

Theorem 6 (Completeness).

— IfEF M : W, then the algorithm succeeds on M and Type(E, M) < W.
— If EF P : T, then the algorithm succeeds on P and Type(E,P) <T.

From those two theorems, we easily deduce the property of minimal type for
our type system and that the algorithm is able to compute it efficiently.

Corollary 7 (Minimal Type). The set of all possible types for a typable ex-
pression or process has a minimum and this minimum is precisely the type re-
turned by the algorithm.
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5 Type Inference

In the previous Section, we described a deterministic typing algorithm. This is a
satisfactory result, to be compared to the nondeterministic type system we had
before. But, up to now, this algorithm performs only type-checking: the program-
mer must still annotate explicitly all ambient names and input variables with
their types. To go one step further, the natural extension would be to remove
these type annotations and try to design a type-inference algorithm. Unfortu-
nately, even if at first sight this seems to require only minor modifications, some
new and difficult problems appear if we want to keep the subtyping relation. So
we will have to go a little back and restrict our problem to the original type
system of CGG. For this system, we will show that it can be completely and
efficiently solved with a Damas-Milner style algorithm.

5.1 Background

For the syntax, we will consider the calculus we studied since the beginning, that
is with the two new constructs and the associated reduction rules (they do not
bring any new difficulties). For the type system, we will nearly take the typing
rules of CGG, as they are described in [CGG99]. We modify them only to handle
the two new constructs.

Instead of simply removing the type annotations, we keep them but allow to
write type variables instead. For this, we must extend the definitions of types
by adding an infinite set of variables for each of them. More generally, for the
same letter, the lower case one will denote a type variable and the upper case
one will denote a metavariable (as before).

Now we can write expressions like (z : w).P or (vn : AmbY[t])P, or even
(z : Cap[™u]).P. In fact, we allow to mix both type variables and explicit types
in a same term or even in a same type expression. By this mean, we get a more
generic algorithm, and this property can be useful in practice: for example, if
you want to check an insecure code, you should be able to constraint some of its
types by specifying them explicitly before applying the type-inference algorithm.
Note also that one can express equality constraints between types just by using
the same variable: in (z : w).P | (y : w).Q, the input variables z and y must
have the same type.

5.2 The Algorithm

We first need some classical definitions and results: a substitution is a total
map from the set of all type variables (of any kind) to types of the same kind.
We will denote them by the letters o, 6, p... The empty substitution is the
identity function and will be noted id. Finally, the composition of substitutions
is defined in exactly the same way as functions. We extend naturally substitutions
to complex types (and not only type variables), to processes (by replacing type
annotations in input and restriction constructions) and to environments.
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An wunifier of two types X3 and X is a substitution o such that o(X;) =
o(X3). Since the types in our system are simple trees, we know that there is a
sound and complete unification algorithm for those types. It returns the principal
unifier of two types (when it exists; otherwise it fails). We will call it mgu(.,.)
(it is not difficult to write its rules explicitly).

We can know give the rules of the typing algorithm. They are used to infer
judgments of the forms Infer(E, M) = (W,c) and Infer(E, P) = (T, ), where
W or T is the most generic possible type for M or P (possibly containing type
variables), o is a substitution representing the constraints on the type variables
in M or P, and F is a well-formed environment.

In the following rules, the premises must be read (and applied) from left
to right. We do not detail how the algorithm gets new type variables. We will
only consider that whenever a variable is declared new, it is different from all
type variables previously used. In practice this can be achieved by using a global
counter to number new type variables.

Type-Inference for an Expression M (Infer(E,M))

Infer(E,M)= (W,o0) y,tnew mgu(W,Amb’[t]) =p u new
Infer(E,in M) = (Cap[™ul, po)

(Infer In)

Infer(E,M)=(W,o) y,tnew mgu(W,Amb[t]) =p u new
Infer(E,out M) = (Cap[™ul, po)
Infer(E,M)=(W,o) tnew mgu(W,Amb°[t]) =p
Tn fer(B, open M) = (Caplp(t)], po)
u new

Infer(E,imm) = (Cap[*u],id)

(Infer Out)

(Infer Open)

(Infer Imm)

(Infer n) Infer(E,n: W,E"),n) = (W,id)

Type-Inference for a Process P (Infer(E, P))

Infer(E,P) = (T,0) Infer(o(E),0(Q))=(T",0')
mgu(o’(T),T") = p
Infer(E, P | Q)= (p(T"), po’o)

t new Infer(E,P) = (T,0)
Tnfer(E,0) = (1,id) (Infer Repl) 2 F 1P = (T, 0)
Infer(E,M) = (W,o) Infer(c(E),o(P))=(T,0")

mgu(o’ (W), Cap[T])
Infer(E,M.P) = (p(T),po’o)

(Infer Par)

(Infer Zero)

Il
>

(Infer Action)

ofer Res Infer((E,n: Amb¥[T]),P) = (T’,0)
(Infer Res) Infer(E,(vn: AmbY [T])P) = (T7,0)
Infer(E,M) = (W, o) Infer(a(E) o(P))=(T,o")

mgu(o’ (W), Amb°[T]) = p t new

(Infer Amb,) Infer(E,M[P)]) = (t, po’c)
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Infer(E,M) = (W,o) Infer(c(E),o(P))=(T,o")
mgu(a’ (W), Amb®*[T]) =p t new
Infer(E,M[P]) = (t,po’c)
Infer((E,n1: Wi, ...,ng: Wg), P) = (
znew mgu(T,’c(Wi) x -+ xa(Wg)) =p
Infer(E,(n1: Wi,...,ng : Wg).P) = (p(T), po)
Infer(E,Ml) = (Wl,O'l) Infer(al(E),Mz) = (W270'2)
. Infer(ok—1...01(E), My) = (Wg,0r) 2z new
Infer(E, (M, ..., My)) =
(zdk...UQ(Wl) X oo X U'k(Wk—l) X Wk,O'k ...0’1)

(Infer Ambs,)

(Infer Input)

(Infer Output)

5.3 Results

Theorem 8 (Soundness). If Infer(E,P) = (T,0), then o(F) Feaa o(P) :
T. Moreover, o'c(E) Foag o'o(P) : o/ (T) for any substitution o’ (we will say
that all these derivations are solutions returned by the inference algorithm,).

Theorem 9 (Completeness). If there is a type T such that o(E) Foga o(P) :
T (i.e. if the process P is typable in the environment E after performing some
substitutions on type variables), the inference algorithm Infer(E,P) succeeds
and o(E) Foga o(P) : T is one of the returned solutions.

5.4 Type Inference with Subtyping

Returning back to the original problem, can we do the same as above with the
type system with subtyping ? Adding subtyping brings many problems, mainly
because there is no minimal type for ambient names and because we get ordering
constraints due to ambient names and valid processes. Some similar problems
appeared in the type system of Abadi and Cardelli for object calculus. In this
case, Jens Palsberg gave a solution in [Pal95], by building a graph of constraints
and checking some properties on it. Maybe the same approach would be possible
with the ambient calculus, but our attempts in this way failed. Up to now, all we
could do is build a set of constraints that type variables should satisfy in order
to get a solution. But solving it remains an open problem (see [Zim99] for more
details and explanations).

6 Conclusion

We have extended the previous type system for mobile ambients with new types
and with a subtyping relation. We gave the corresponding typing rules and de-
duced a type-checking algorithm. We also gave a type-inference algorithm for
CGG, but the problem of solving the constraints set in the system with subtyp-
ing remains open.
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These algorithms are efficient and could be implemented quite easily. To our
knowledge, there are two “implementations” of ambients so far: a Java applet
from L. Cardelli and a translation into the join-calculus in a modified version of
Objective Caml ([EF'S99]). None of them use types for now.

An other primitive was introduced by Cardelli-Ghelli-Gordon in [CGG99]:
the primitive go, which performs objective moves. To prevent some dangerous
effects such moves can induce (entrapping of an ambient), they extended the
type system so that the type of an ambient name says explicitly if the ambient
allows them or not. We did not keep this primitive to simplify the notations for
ambient names, but we checked that all our work and algorithms could be easily
extended so as to include go.

In [LS00], Levi and Sangiorgi studied plain and grave interferences in the
ambient calculus. They proposed a syntax extension along with a new type sys-
tem to prevent grave interferences. Future work may be to extend our subtyping
relation and algorithms to their system.
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