
Proof Nets and Explicit Substitutions

Roberto Di Cosmo1, Delia Kesner2, and Emmanuel Polonovski1

1 PPS, Université de Paris VII
Case 7014 - 2 place Jussieu

75251 Paris France
{dicosmo,polonovs}@ens.fr

2 LRI, Université de Paris-Sud
Bât 490

91405 Orsay Cedex, France
kesner@lri.fr

Abstract. We refine the simulation technique introduced in [10] to show
strong normalization of λ-calculi with explicit substitutions via termi-
nation of cut elimination in proof nets [13]. We first propose a notion
of equivalence relation for proof nets that extends the one in [9], and
we show that cut elimination modulo this equivalence relation is termi-
nating. We then show strong normalization of the typed version of the
λl-calculus with de Bruijn indices (a calculus with full composition de-
fined in [8]) using a translation from typed λl to proof nets. Finally, we
propose a version of typed λl with named variables which helps to better
understand the complex mechanism of the explicit weakening notation
introduced in the λl-calculus with de Bruijn indices [8].

1 Introduction

This paper uses linear logic’s proof nets, equipped with an extended notion of
reduction, to provide several new results in the field of explicit substitutions. It is
also an important step forward in clarifying the connection between explicit sub-
stitutions and proof nets, two well established formalisms that have been used
to gain a better understanding of the λ-calculus over the past decade. On one
side, explicit substitutions provide an intermediate formalism that - by decom-
posing the β rule into more atomic steps - allows a better understanding of the
execution models. On the other side, linear logic decomposes the intuitionistic
logical connectives, like the arrow, into more atomic, resource-aware connectives,
like the linear arrow and the explicit erasure and duplication operators given by
the exponentials: this decomposition is reflected in proof nets, which are the
computational side of linear logic, and provides a more refined computational
model than the one given by the λ-calculus, which is the computational side of
intuitionistic logic1.
1 Using various translations of the λ-calculus into proof nets, new abstract machines

have been proposed, exploiting the Geometry of Interaction and the Dynamic Alge-
bras [14, 2, 5], leading to the works on optimal reduction [15, 17].

J. Tiuryn (Ed.): FOSSACS 2000, LNCS 1784, pp. 63–81, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

64 Roberto Di Cosmo, Delia Kesner, and Emmanuel Polonovski

The pioneer calculus with explicit substitutions, λσ, was introduced in [1] as a
bridge between the classical λ-calculus and concrete implementations of func-
tional programming languages. An important property of calculi with explicit
substitutions is nowadays known as PSN, which stands for “Preservation of
Strong Normalization”: a calculus with explicit substitutions has PSN when all
λ-terms that are strongly normalizing using the traditional β-reduction rule are
also strongly normalizing w.r.t. the more refined reduction system defined using
explicit substitutions. But λσ does not preserve β-strong normalization as shown
by Mellies, who exhibited a well-typed term which, due to the substitution com-
position rules in λσ, is not λσ-strongly normalizing [18].
Since then, a quest was started to find an “optimal” calculus having all of a
wide range of desired properties: it should preserve strong normalization, but
also be confluent (in a very large sense that implies the ability to compose sub-
stitutions), and its typed version should be strongly normalizing.
Meanwhile, in the linear logic community, many studies focused of the connec-
tion between λ-calculus (without explicit substitutions) and proof nets, trying to
find the proper variant or extension of proof nets that could be used to cleanly
simulate β-reduction, like in [7].
Finally, in [10], the first two authors of this work showed for the first time that
explicit substitutions could be tightly related to linear logic’s proof nets, by pro-
viding a translation into a variant of proof nets from λx [19, 4], a simple calculus
with explicit substitutions and named variables, but no composition.
This connection was promising because proof nets seem to have many of the
properties which are required of a “good” calculus of explicit substitutions, and
especially the strong normalization in the presence of a reduction rule which
is reminiscent of the composition rule at the heart of Mellies’ counterexample.
But [10] only dealt with a calculus without composition, and the translation
was complex and obscure enough to make the task of extending it to the case of
a calculus with composition quite a daunting one.
In this paper, we can finally present a notion of reduction for Girard’s proof nets
which is flexible enough to allow a natural and simple translation from David
and Guillaume’s λl, a complex calculus of explicit substitution with de Bruijn
indices and full composition [8]. This translation allows us to prove that typed
λl is strongly normalizing, which is a new result confirming a conjecture in [8].
Also, the fact that in the translation all information about variable order is lost
suggests a version of typed λl with named variables which is immediately proved
to be strongly normalizing. This is due to the fact that only the type information
is used in the translation of both calculi. Also, the typed named version of λl

gives a better understanding of the mechanisms of labels existing in the calcu-
lus. In particular, names allow to understand the fine manipulation of explicit
weakenings in λl without entering into the complicate details of renaming used
in a de Bruijn setting.

The paper is organized as follows: we first recall the basic definitions of linear
logic and proof nets and we introduce our refined reduction system for proof nets

Proof Nets and Explicit Substitutions 65

(Section 2), then prove that it is strongly normalizing (Section 3). In Section
4 we recall the definition of the λl calculus with its type system, present the
translation into proof nets, and show strong normalization of typed λl. Finally,
we introduce a version of typed λl with named variables (Section 5), enjoying
the same good properties, and we conclude with some remarks and directions
for future work (Section 6).

2 Linear Logic, Proof Nets, and Extended Reduction

We recall here some classical notions from linear logic, namely the linear se-
quent calculus and proof nets, and some basic results concerning confluence and
normalization.

MELL: Multiplicative Exponential linear logic Let A be a set of atomic formulae.
We suppose that A is partitioned in two disjoint subsets representing positive
and negative atoms respectively.
The set of formulae of the Multiplicative Exponential fragment of linear logic
(called MELL) is defined by the following grammar, where a ∈ A:

F ::= a | F ⊗ F (tensor) | F O F (par) | !F (of course) | ?F (why not)

For every p ∈ A, we assume that there is p′ ∈ A, called the linear negation
of the atom p. Linear negation of formulae is defined as follows

p⊥ = p′ p′⊥ = p A⊥⊥ = A (?A)⊥ =!(A⊥) (A ⊗ B)⊥ = A⊥ O B⊥

The name MELL comes from the connectors ⊗ and O which are called “mul-
tiplicatives”, while ! and ? are called “exponentials”. We say that a formula
is exponential if it starts with an exponential connector. While we refer the in-
terested reader to [13] for more details on linear logic, we give here a one-sided
presentation of the sequent calculus for MELL:

` A, A⊥ Axiom
` Γ, A ` A⊥, ∆

` Γ, ∆
Cut

` Γ, A

` Γ, ?A
Dereliction

` Γ, ?A, ?A

` Γ, ?A
Contraction

` Γ, A, B

` Γ, AOB
Par

` Γ, A ` B, Γ ′

` Γ, A⊗B, Γ ′ T imes ` Γ
` Γ, ?A

Weakening
` A, ?Γ

`!A, ?Γ
Box

MELL proof nets To all sequent derivations in MELL it is possible to associate
an object called a “proof net”, which allows to abstract from many inessen-
tial details in a derivation, like the order of application of independent log-
ical rules: for example, there are many inessentially different ways to obtain
` A1OA2, . . . , An−1OAn from ` A1, . . . An, while there is only one proof net
representing all these derivations.

66 Roberto Di Cosmo, Delia Kesner, and Emmanuel Polonovski

Proof nets are defined inductively by rules that follow closely the ones of the
one-sided sequent calculus, and the set of proof nets is denoted PN . To simplify
the drawing of a proof net, we use the following notation: a conclusion with a
capital greek letter Γ, ∆, . . . really stands for a set of conclusions, each one with
its own wire.

Ax

A A⊥

(Axiom)

Γ Γ ′A⊥A

(Cut)

Γ

D

?A

A

(Dereliction) ?A

C

Γ ?A ?A

(Contraction)

Γ A B

A O B

(Par)

Γ Γ ′
A B

A⊗B

(T imes)

W

?AΓ

(Weakening)

A ?Γ

!A ?Γ

(Box)

Each box has exactly one conclusion preceded by a !, which is named “principal”
port (or formula), while the other conclusions are named “auxiliary” ports (or
formulae). In what follows, we will sometimes write an axiom link as A A⊥.

Reduction of proof nets Proof nets are the “computational object” behind linear
logic, because there is a notion of reduction on them (called also “cut elimina-
tion”) that corresponds to the cut-elimination procedure on sequent derivations.
The traditional reduction system for MELL is recalled in Appendix A.

Extended reduction modulo an equivalence relation Unfortunately, the original
notion of reduction on PN is not well adapted to simulate neither the β rule
of λ-calculus, nor the rules dealing with propagation of substitution in explicit
substitution calculi: too many inessential details on the order of application of
the rules are still present, and to make abstraction from them, one is naturally
led to define an equivalence relation on PN , as is done in [9], where the following
two equivalences are introduced:

Proof Nets and Explicit Substitutions 67

C

C

?A

C

?A

C

?A

?A

?A1 ?A2

?A3

?A2 ?A3

?A1

∼A C

?A

?A

?A ?A

∼B

!B

C

?A

?A

?A ?A

?A

BB

!B

Equivalence A turns contraction into an associative operator, and corre-
sponds to forgetting the order in which the contraction rule is used to build,
for example, the derivation:

`?A, ?A, ?A
`?A, ?A Contraction

`?A Contraction

Equivalence B abstracts away the relative order of application of the rules of
box-formation and contraction on the premises of a box, like in the following
example.

`?A, ?A, B

`?A, B
Contraction

`?A, !B Box

`?A, ?A, B

`?A, ?A, !B Box

`?A, !B Contraction

Finally, besides the equivalence relation defined in [9], we will also need an extra
reduction rule allowing to remove unneeded weakening links when simulating
explicit substitutions:

wc

?A

?A?A

W

?A

C

.

.

.

.

.

.

This rule allows to simplify the proof below on the left into the proof on the
right

π
`?A

`?A, ?A
Weakening

`?A Contraction
π
`?A

Notation We will call in the following R the system made of rules Ax − cut,
O − ⊗, w − b, d − b,c − b, b − b and wc; we will name E the relation induced
on PN by the contextual closure of axioms A and B; we will write RE for the
system made of the rules in R and the equivalences in E; finally, R¬wc

E will stand
for system RE without rule wc.

68 Roberto Di Cosmo, Delia Kesner, and Emmanuel Polonovski

Systems RE and R¬wc
E , that contain E, are actually defining a notion of reduction

modulo an equivalence relation, so we write for example t −→RE s if and only if
there exist r′ and s′ such that r =E r′ −→R s′ =E s, where the equality =E is
the reflexive, symmetric and transitive closure of the relation defined by A and B.

The reduction RE is flexible enough to allow an elegant simulation of β
reduction and of explicit substitutions, but for that, we first need to establish
that RE is strongly normalizing. Let us see this property in the next section.

3 Termination of RE

We know from [9] that R¬wc
E is terminating, and we can show easily that wc

is terminating too, so if we could show that the wc-rule can be postponed with
respect to all the other rules of R¬wc

E , we would be easily done using a well-known
abstract lemma. Unfortunately, there is precisely one case in which we cannot
postpone the wc-rule: when a wc reduction creates an axiom-cut redex, which
in turn can only happen if the axiom link in question introduces an exponential
formula. So we are forced to proceed in two steps: first, we prove by postponement
that RE is terminating on the set of proof nets without exponential axioms
(Theorem 1). Then, we show that termination of RE on all proof nets of PN is
a consequence of termination of RE on proof nets without exponential axioms
(Theorem 2). To obtain this last result, we show how to translate a proof net R
with exponential axioms into a proof net R′ without exponential axioms in such
a way that a reduction out of R can be simulated by a longer or equal reduction
out of R′.

3.1 Termination of RE on Proof Nets without Exponential Axioms

We show in this section that all the RE-reduction sequences from a proof net
without exponential axioms terminate. We first remind the following result
from [9]:

Lemma 1 (Termination of R¬wc
E). The relation −→R¬wc

E
is terminating on

PN .

Then, we establish the termination of wc.

Lemma 2 (Termination of wc). The relation −→wc is terminating on PN .

Proof. The wc-rule strictly decreases the number of nodes in a proof net so no
infinite wc-reduction sequence is possible.

Finally, we show that given any proof net without exponential axioms, the
wc-rule can be postponed with respect to any rule of R¬wc

E .

Lemma 3 (Postponement of wc w.r.t R¬wc
E). Let t be a proof net with-

out exponential axioms. If t −→wc −→R¬wc
E

t′, then, there is a sequence
t−→+

R¬wc
E

−→∗
wc t′.

Proof Nets and Explicit Substitutions 69

Proof. By analyzing all the possible cases. See [11] for details.

We can now put together the previous results to prove termination of RE on
the set of proof nets without exponential axioms.

Lemma 4 (Extraction of R¬wc
E). Let S be an infinite sequence of RE-re-

ductions starting at a proof net t without exponential axioms. Then, there is a
sequence of RE-reductions from the same proof net t which starts by t −→R¬wc

E

t′, where t′ is also a proof net without exponential axioms, and which continues
with an infinite sequence S′. We write this sequence as (t −→R¬wc

E
t′) · S′.

Now it is easy to establish the fundamental theorem of this section:

Theorem 1 (Termination of RE on proof nets without exponential ax-
ioms). The reduction relation RE is terminating on the set of proof nets without
exponential axioms.

Proof. We show it by contradiction. Let us suppose that RE is not terminating
on those nets. Then, there exist a proof net without exponential axioms t and
an infinite sequence S of RE starting at t. By applying Lemma 4 to this se-
quence S, we obtain a sequence (t −→R¬wc

E
t′) ·S′ such that S′ is infinite again.

If we iterate this procedure an arbitrary number times, we obtain a sequence
of R¬wc

E -reduction steps arbitrary long. This contradicts the fact that R¬wc
E is

terminating.

3.2 Termination of RE on Proof Nets with Exponential Axioms

We know now that RE is terminating on every proof net without exponential
axioms, but we want now to show even more: termination of RE on all the
proof nets. To achieve this result, we show in this section how to associate to
a proof net t, which can eventually contain some exponential axioms, another
proof net E(t) without exponential axioms, and such that every reduction from
t of length n can be “simulated” on E(t) by another reduction of length at
least n. This property will be enough to reduce termination of RE on proof nets
with exponential axioms to termination of RE on proof nets without exponential
axioms.

We define in what follows a notion of complete expansion on axiom links
that is able to replace all exponential axiom by a correct net with the same
conclusions, but containing no exponential axiom, and then extend it to a full
proof net in the natural way (replace each exponential axiom by its complete
expansion).

Definition 1 (Complete expansion of an axiom link). For each axiom link
A A⊥ we can associate a net exp(A A⊥) with same conclusions, defined
by induction on the complexity of the formula A as follows:

70 Roberto Di Cosmo, Delia Kesner, and Emmanuel Polonovski

– exp(A A⊥) = A A⊥, if A is not an exponential formula

– exp(!A ?A⊥) =
A⊥A

D

?A⊥

?A⊥!A

exp()

which is well defined, because the formula A is smaller than !A.

We can associate a complexity measure rk to a complete expansion.

Definition 2 (Measure of a complete expansion). We define the measure
rk of a complete expansion of an axiom by cases:

– rk(exp(A A⊥)) = 0, if A is not an exponential formula
– rk(exp(?A⊥ !A)) = 1 + rk(exp(A A⊥))

We can now define the notion of expanded net E(t) for every net t:

Definition 3 (Expanded net). The expanded net of a net t, written E(t),
is the proof net obtained from t by replacing each occurrence of an exponential
axiom a by exp(a).

Remark 1. The only difference between a proof net t and its expanded net E(t)
is on the set of their axioms. So, for every reduction t −→RE t′ which does not
affect the axioms of t, there is a reduction E(t) −→RE E(t′).

We have now to show that there is no problem for the axioms either, and to
do so we need the following measure:

Definition 4 (Maximal distance of a cut). Given a proof net t and a cut
link on a completely expanded axiom a in t, the measure d(a, t) is the maximal
distance, in the proof net t, between this cut and the first weakening or dereliction
node encountered in the way which leaves the cut, by the opposite extremity from
the expanded axiom a, and go throw the nodes from down to up (here up and down
are used formally for the orientation of the nodes presented in the introduction).
More precisely, each node encountered and each box passed on the way values 1,
including the final dereliction or weakening node. This measure is always finite
on a finite proof net because there are no arbitrary long ascendant ways.

Example 1. In the following net, the maximal distance of the cut is 4.

Proof Nets and Explicit Substitutions 71

W

C

W
C

W3

4

1

2
2

3
Fully

expanded
axiom

Lemma 5 (Cut elimination on an expanded net). Let t be an expanded
net. A cut in t with a completely expanded axiom exp(a) reduces in t like in an
ordinary axiom cut. In other words,

!A
?A⊥!A

!A RE

+

Ax

Cut

exp()

Proof. We prove the property by induction on the lexicographic order
(rk(exp(a)), d(exp(a), t)) where exp(a) is the completely expanded axiom in the
proof net t.

All the cases such that rk(exp(a)) = 0 (including the base case) correspond
to a proof net in which exp(a) is an axiom link, so the same reduction rule
applies and the property then trivially holds. For the cases with rk(exp(a)) > 0,
we refer the interested reader to [11].

This allows us to establish the final result of this section :

Theorem 2 (Termination of RE). The reduction RE is terminating on all
proof nets.

Proof. We establish this result by proving that each reduction step t −→RE t′

can be simulated by at least one reduction step E(t)−→+
RE E(t′).

If the reduction step t −→RE t′ does not reduce any exponential axiom with
a cut, then we obtain the result immediately because the only difference between
t and E(t) is on their axioms. Indeed, we can reproduce the same reduction on
E(t) in order to obtain E(t′) and this concludes this case.

Otherwise, if t −→RE t′ reduces an exponential axiom a with a cut then by
Lemma 5 there exist a non-empty sequence of reductions starting at E(t) which
eliminates the complete expansion of the axiom a, and gives the proof net E(t′).

Now, to conclude the proof, suppose that there is a proof net t such that the
reduction RE is not terminating on t, that is, there is an infinite RE-reduction
sequence starting at t. By the previous remark we can simulate this infinite
reduction sequence by another RE-reduction sequence on expanded proof nets
not containing exponential axioms. This leads to a contradiction with Theorem 1
so that we can conclude that RE is terminating on the set of all proof nets.

72 Roberto Di Cosmo, Delia Kesner, and Emmanuel Polonovski

4 From λl with de Bruijn Indices to PN

We now study the translation from typed terms of the λl-calculus [8] into proof
nets. We start by introducing the calculus, then we give the translation of types
of λl into formulae of linear logic, and the translation of terms of λl into linear
logic proof nets PN . We verify that we can correctly simulate every reduction
step of λl via the notion of reduction RE . Finally, we use this simulation result
to show strong normalization of the λl-calculus.

4.1 The λl-Calculus

The λl-calculus is a calculus with explicit substitutions where substitutions are
unary (and not multiple). The version studied in this section has variables en-
coded with de Bruijn indices. The terms of λl are given by the following grammar:

M ::= n | λM | (MM) | 〈k〉M | [i/M, j]M

The term n is called a variable, λM an abstraction, (MM) an application,
〈k〉M a labeled term and [i/M, j]M a substitution.

Intuitively, the term 〈k〉M means that the k − 1 first indices in M are not
“free” (in the sense of free variables of calculus with indices). The term [i/N, j]M
means that the i−1 first indices are not free in N and the j−1 following indices
are not free in M . Those indices are used to split the typing environment of
[i/N, j]M in three parts: the first (resp. second) one for free variables of M
(resp. N), the third one for the free variables in M and N .

The reduction rules of λl are given in Figure 1 and the typing rules of λl are
given in Figure 2, where we suppose that |Γ | = i and |∆| = j.

(b1) (λMN) −→ [0/N, 0]M
(b2) (〈k〉(λM)N) −→ [0/N, k]M
(f) [i/N, j](λM) −→ λ[i + 1/N, j]M
(a) [i/N, j](MP) −→ ([i/N, j]M)([i/N, j]P)
(e1) [i/N, j]〈k〉M −→ 〈j + k − 1〉M if i < k
(e2) [i/N, j]〈k〉M −→ 〈k〉[i− k/N, j]M if i ≥ k
(n1) [i/N, j]k −→ k if i > k
(n2) [i/N, j]i −→ 〈i〉N
(n3) [i/N, j]k −→ j+k-1 if i < k
(c1) [i/N, j][k/P, l]M −→ [k/[i− k/N, j]P, j + l − 1]M if k ≤ i < k + l
(c2) [i/N, j][k/P, l]M −→ [k/[i− k/N, j]P, l][i− l + 1/N, j]M if i ≥ k + l
(d) 〈i〉〈j〉M −→ 〈i + j〉M

Fig. 1. Reduction rules of λl with de Bruijn indices

Proof Nets and Explicit Substitutions 73

Γ, A, ∆ ` i : A
Axiom

∆, Π ` N : A Γ, A,Π ` M : B

Γ, ∆, Π ` [i/N, j]M : B
Subst

∆ `M :B
Γ, ∆ `〈i〉M :B

Weak
Γ `M :B→A Γ `N :B

Γ ` (MN) :A
App

B, Γ `M :C

Γ `λM :B→C
Lambda

Fig. 2. Typing rules for λl with de Bruijn indices

We notice that for each well-typed term of the λl-calculus, there is only one
possible typing judgment. This will simplify the proof of simulation of λl by
easily considering the unique typing judgment of terms.

As expected the λl-calculus enjoys the subject reduction property [16].

Theorem 3 (Subject Reduction). If Ψ ` M : C and M −→ M ′, then
Ψ ` M ′ : C.

4.2 Translation of Types and Terms of λl

We use the translation of types introduced in [6] given by :

A∗ = A if A is an atomic type
(A → B)∗ = ?((A∗)⊥)O !B∗ (that is, !A∗(!B∗) otherwise

Since wires are commutative in proof nets, we feel free to exchange them
when we define the translation of a term. The translation associates to every
typed term M of λl, whose type judgment ends with the conclusion written
below on the left, a proof net having the shape sketched below on the right:

Γ ` M : A

M

A∗?Γ ∗⊥

Here is the formal definition of the translation T from λl-terms into proof nets.

– If the term is a variable and its type judgment ends with the rule written
below on the left, then its translation is the proof net on the right

Γ, A, ∆ ` i : A
Axiome

W

?∆∗⊥

W

?Γ ∗⊥

D

?A∗⊥

A∗⊥

A∗

where i is the position of A in the typing environment,
– If the term is a λ-abstraction and its type judgment ends with the rule

written below on the left, then its translation is the proof net on the right

74 Roberto Di Cosmo, Delia Kesner, and Emmanuel Polonovski

B, Γ ` M : C

Γ ` λM : B → C
Lambda

?B∗⊥?Γ ∗⊥ C∗

T(M)

?B∗⊥ O !C∗?Γ ∗⊥

!C∗?B∗⊥

– If the term is an application and its type judgment ends with the rule written
below on the left, then its translation is the proof net on the right

Γ ` M : B → A Γ ` N : B
Γ ` (MN) : A

App
C

T(M)

B∗
?B∗⊥

O !A∗ ?Γ ∗⊥

?Γ ∗⊥

A∗ ?Γ ∗⊥

T(N)

?Γ ∗⊥

D

!B∗ ?A∗⊥

!B∗ ⊗ ?A∗⊥

– If the term is a substitution and its type judgment ends with the rule written
below on the left, then its translation is the proof net on the right

∆, Π ` N : A Γ, A, Π ` M : B

Γ, ∆, Π ` [i/N, j]M : B
Subst

?A∗⊥

!A∗

T(N)

T(M)

B∗

?Π∗⊥

?Γ∗⊥ ?∆∗⊥

?∆∗⊥A∗

?Π∗⊥

?Π∗⊥

C

?Π∗⊥

where i is the length of the list Γ and j is the length of the list ∆, then its
translation is the proof net

– Finally, if the term is a label and its type judgment ends with the rule written
below on the left, then its translation is the proof net on the right

∆ ` M : B
Γ, ∆ ` 〈i〉M : B

Weak
?∆∗⊥ B∗ ?Γ ∗⊥

W
T(M)

where i is the length of the list Γ , then its translation is the proof net

Proof Nets and Explicit Substitutions 75

4.3 Simulating λl-Reduction

We now verify that our notion of reduction RE on PN simulates the λl-reduction
on typed λl-terms. It is in this proof that we find the motivation for our choice of
translation from λ-terms into proof nets: with the more traditional translation
sending the intuitionistic type A → B into the linear !A(B, the simulation of
the rewrite rule f would give rise to an equality, not to a reduction step like in
this paper.

Lemma 6 (Simulation of λl). The relation RE simulates the λl-reduction on
typed terms: if t −→λl

t′, then T (t)−→+
RE T (t′), excepted for the rules e2 and

d for which we have T (t) = T (t′).

Proof. The proof proceeds by cases on the reduction rule applied in the step
t −→λl

t′. Since reductions λl and RE are closed under all contexts, we only
need to study the cases where reduction takes place at the head position of t. In
the proof, rule wc is used to simulate b2, e1, n1, n2, n3, equivalence A is used to
simulate a, c1, c2, and equivalence B is used to simulate f, a, c1, c2.

Due to space limitations, we cannot give here the full proof, which is fully
developed in [11], but we show anyway the case of rule c1, one of the composition
rules:

[i/N, j][k/P, l]M −→ [k/[i− k/N, j]P, j + l − 1]M if k ≤ i < k + l

Here, the typing judgment of [i/N, j][k/P, l]M must end with

∆, Π, Π ′ ` N : B

Γ ′, B, Π, Π ′ ` P : C Γ, C, Π ′ ` M : A

Γ, Γ ′, B, Π, Π ′ ` [k/P, l]M : A
Subst

Γ, Γ ′, ∆, Π, Π ′ ` [i/N, j][k/P, l]M : A
Subst

while the typing judgment of [k/[i− k/N, j]P, j + l − 1]M must end with

∆, Π, Π ′ ` N : B Γ ′, B, Π, Π ′ ` P : C

Γ ′, ∆, Π, Π ′ ` [i− k/N, j]P : C
Subst

Γ, C, Π ′ ` M : A

Γ, Γ ′, ∆, Π, Π ′ ` [k/[i− k/N, j]P, j + l − 1]M : A
Subst

So, the translation of the type derivation of the first term is

Π′

C

Π′

C
C

Π′ A∗

T(M)

Γ ?C∗⊥

!C∗
C∗

Π′
Π′

T(P)

Γ ′
Γ ′

Π

Π

?B∗⊥
?B∗⊥

!B∗
B∗

∆

∆

T(N)

Π′
Π′

Π

Π

Π

76 Roberto Di Cosmo, Delia Kesner, and Emmanuel Polonovski

while the translation of the second derivation is

Π′

C

CC

Π′ A∗

T(M)

Γ ?C∗⊥ C∗ Γ ′

T(P)

Π′Π ?B∗⊥

!B∗
B∗

∆

∆

T(N)

Π′
Π′

Π

Π

Γ ′!C∗ ∆Π

Π Π′

Π′

To reduce the first proof net into the second one, we must eliminate the b − b
cut, then apply the equivalence relations A and B.

We are now able to show strong normalization of λl. To achieve this result, we
use the following abstract theorem (see for example [12]) :

Theorem 4. Let R = 〈O, R1 ∪R2〉 be an abstract reduction system such that
R2 is strongly normalizing and there exist a reduction system S = 〈O′, R′〉, with
a translation T of O into O′ such that a −→R1 b implies T (a)−→+

R′ T (b);
a −→R2 b implies T (a) = T (b). Then if R′ is strongly normalizing, R1 ∪ R2 is
also strongly normalizing.

If we take O as the set of typed λl-terms, R1 as λl−{e2, d}, R2 as {e2, d}, O′ as
the set of proof nets and R′ as the reduction RE , then, by the Theorem 4 and
the fact that the system including the rules {e2, d} is strongly normalizing [8],
we can conclude :

Theorem 5 (Strong normalization of λl). The typed λl-calculus is strongly
normalizing.

5 The λl-Calculus with Names

In this section we present a version of typed λl with named variables. We first
introduce the grammar of terms, then the typing and reduction rules, and finally,
we will briefly discuss the translation of this syntax to PN .

The terms of this calculus are given by the following grammar:

M ::= x | λx.M | (MM) | ∆M | M [x, M, Γ, ∆]

The term x is called a variable, λx.M an abstraction, (MM) an application, ∆M
a labeled term and M [x, M, Γ, ∆] a substitution.

Intuitively, the term ∆M means that the variables in ∆ are not in M , and
the term M [x, N, Γ, ∆] means that the variables in Γ do not appear in N (they

Proof Nets and Explicit Substitutions 77

only belong to the type environment of M) and the variables ∆ do not appear
in M (they only belong to the type environment of N).

Variables are bound by the abstraction and substitution operators, so that
for example x is bound in λx.x and in x[x, N, Γ, ∆].

Terms are identified modulo α-conversion so that bound variables can be
systematically renamed. Indeed, we have λy.y[x, z, ∅, ∅] =α λy′.y′[x, z, ∅, ∅] and
λy.y[x, z, ∅, ∅] =α λy.y[x′, z, ∅, ∅] and λl.y[x, z, {l}, ∅] =α λl′.y[x, z, {l′}, ∅]. We
remark that the conditions on indices used in the typing rules given in Section 4.1
are now conditions on sets of variables. The typing rules are given in Figure 3.

Γ, x : A ` x : A
Axiom

Γ ` M : A Γ ∩∆ = ∅
Γ, ∆ ` ∆M : A

Weak

Γ ` M : B → A Γ ` N : B
Γ ` (MN) : A

App
Γ, x : A ` M : B

Γ ` λx : A.M : B → A
Lambda

∆, Π ` N : A Γ, x : A, Π ` M : B (Γ, x : A) ∩∆ = ∅
∆, Γ, Π ` M [x, N, Γ, ∆] : B

Subst

Fig. 3. Typing rules for the λl-calculus with named variables

We remark that whenever Γ ` M [x, N, ∆, Π] is derivable, then Γ necessarily
contains ∆ and Π .

As expected the λl-calculus with names enjoys the subject reduction property
(See [11] for a detailed proof).

Theorem 6 (Subject Reduction). If Ψ ` M : C and M −→ M ′, then
Ψ ` M ′ : C.

We define the reduction rules only on typed terms, since we are focusing here
on a named version of the typed λl calculus with indices. These rules already give
the flavor of what a general notion of reduction for non-typed terms with names
should be, but a precise formalization of the untyped case is left for further work.

The reduction rules of the typed λl-calculus with names are given in Figure 4
(notice that rule b1 is a particular case of rule b2 with ∆ = ∅).

As customary in explicit substitutions calculi with names [3], we work mod-
ulo α-conversion, so that we can suppose that in the rule Weak the set ∆ does
not contain variables that are bound in M . Also, this allows us to restrict rule
f , without loss of generality, to the case where no variable capture arise.

In order to translate a term of λl into a proof net, we use exactly the same
translation of types that we used in Section 4.2 and we then define the translation
of a term M using the type derivation of M .

78 Roberto Di Cosmo, Delia Kesner, and Emmanuel Polonovski

(b1) (λx : A.M)N −→ M [x, N, ∅, ∅]
(b2) (∆(λx : A.M))N −→ M [x, N, ∅, ∆]
(f) (λy : A.M)[x, N, Γ, ∆] −→ λy : A.M [x, N, Γ + y,∆] if y 6∈FV (N)
(a) (MP)[x, N, Γ, ∆] −→ (M [x, P, Γ, ∆]P [x, N, Γ, ∆])
(e1) ΛM [x, N, Γ, ∆] −→ (∆ ∪ (Λ \ x))M x ∈ Λ
(e2) ΛM [x, N, Γ, ∆] −→ (Γ ∩ Λ)M [x, N, Γ \ Λ, ∆ ∪ (Λ \ Γ)] x 6∈ Λ
(n1) y[x,N, Γ, ∆] −→ y y 6= x
(n2) x[x,N, Γ, ∆] −→ ΓN
(c1) M [y, P, Λ, Φ][x, N, Γ, ∆] −→ M [y, P [x,N, Γ \ Λ, ∆], Λ, ∆ ∪ (Φ \ x)] x ∈ Φ \ Λ
(c2) M [y, P, Λ, Φ][x, N, Γ, ∆] −→ M [x, N, (Γ \ Φ) + y, ∆]

[y, P [x,N, Γ \ Λ, ∆], Λ, Γ ∩ Φ] x 6∈ Φ ∪ Λ
(d) Γ∆M −→ (Γ ∪∆)M

Fig. 4. Reduction Rules of the λl-calculus with named variables

Since in proof nets there is no trace left of the order which is implicit in the
formalism of de Bruijn indices, it comes as no surprise that the translation of λl

with names into the nets is really the same than the one for λl (see [11] for full
details).

The simulation of the reduction rules of the λl-calculus with names by the
reduction RE is identical to that given in Section 4.2 for the λl-calculus with
indices. We just remark that rule n3 has no sense in the formalism with names
so that the proof has one less case. We just state the result without repeating a
boring verification:

Lemma 7 (Simulation of λl with names). If t λl-reduces to t′ in the for-
malism with names, then T (t)−→+

RE T (t′), except for the rules e2 and d for
which we have T (t) = T (t′).

We can then conclude the following:

Theorem 7 (Strong Normalization of λl with names). The typed λl-
calculus with names is strongly normalizing.

6 Conclusion and Future Works

In this paper we enriched the standard notion of cut elimination in proof nets in
order to obtain a system RE which is flexible enough to provide an interpretation
of λ-calculi with explicit substitutions and which is much simpler than the one
proposed in [10]. We have proved that this system is strongly normalizing.

We have then proposed a natural translation from λl into proof nets that
immediately provides strong normalization of the typed version of λl, a calculus
featuring full composition of substitutions. The proof is extremely simple w.r.t
the proof of PSN of λl given in [8] and shows in some sense that λl, which
was designed independently of proof nets, is really tightly related to reduction
in proof nets.

Proof Nets and Explicit Substitutions 79

Finally, the fact that the relative order of variables is lost in the proof-net
representation of a term lead us to discover a version of typed λl with named
variables, instead of de Bruijn indices. This typed named version of λl gives a
better understanding of the mechanisms of the calculus. In particular, names al-
low to understand the manipulation of explicit weakenings in λl without entering
into the details of renaming of de Bruijn indices. However, the definition of a gen-
eral notion of reduction for non-typed terms with names remains as further work.

This work suggests several interesting directions for future investigation: on
the linear logic side, one should wonder whether RE is the definitive system
able to interpret β reduction, or whether we need some more equivalences to
be added. Indeed, there are still a few cases in which the details of a sequent
calculus derivation are inessential, even if we did not need to consider them for
the purpose of our work, like for example

` Γ, B

`?A, Γ, B
Weakening

`?A, Γ, !B Box

` Γ, B

` Γ, !B Box

`?A, Γ, !B
Weakening

On the explicit substitutions side, we look forward to the discovery of a
calculus with multiple substitutions with the same properties as λl, in the spirit
of λσ.

Acknowledgments

We would like to thank Bruno Guillaume and Pierre-Louis Curien for their interesting

remarks.

References

[1] M. Abadi, L. Cardelli, P. L. Curien, and J.-J. Lévy. Explicit substitutions. Journal
of Functional Programming, 4(1):375–416, 1991.

[2] S. Abramsky and R. Jagadeesan. New foundations for the geometry of interaction.
In Proc. of LICS, pages 211–222, 1992.

[3] R. Bloo. Preservation of Termination for Explicit Substitution. PhD thesis, Eind-
hoven University of Technology, 1997.

[4] R. Bloo and K. Rose. Preservation of strong normalization in named lambda cal-
culi with explicit substitution and garbage collection. In Computing Science in the
Netherlands, pages 62–72. Netherlands Computer Science Research Foundation,
1995.

[5] V. Danos. La logique linéaire appliquée à l’étude de divers processus de normali-
sation (et principalement du λ-calcul). PhD thesis, Université de Paris VII, 1990.
Thèse de doctorat de mathématiques.

[6] V. Danos, J.-B. Joinet, and H. Schellinx. Sequent calculi for second order logic.
In J.-Y. Girard, Y. Lafont, and L. Regnier, editors, Advances in Linear Logic.
Cambridge University Press, 1995.

80 Roberto Di Cosmo, Delia Kesner, and Emmanuel Polonovski

[7] V. Danos and L. Regnier. Proof-nets and the Hilbert space. In J.-Y. Girard,
Y. Lafont, and L. Regnier, editors, Advances in Linear Logic, pages 307–328.
Cambridge University Press, London Mathematical Society Lecture Notes, 1995.

[8] R. David and B. Guillaume. The λl-calculus. In Proceedigs of WESTAPP, pages
2–13, Trento, Italy, 1999.

[9] R. Di Cosmo and S. Guerrini. Strong normalization of proof nets modulo structural
congruences. In P. Narendran and M. Rusinowitch, editors, Proc of RTA, volume
1631 of LNCS, pages 75–89, Trento, Italy, 1999. Springer Verlag.

[10] R. Di Cosmo and D. Kesner. Strong normalization of explicit substitutions via cut
elimination in proof nets. In Proc of LICS, pages 35–46, Warsaw, Poland, 1997.

[11] R. Di Cosmo, D. Kesner, and E. Polonovski. Proof nets and explicit sub-
stitutions. Technical report, LRI, Université Paris-Sud, 2000. Available as
ftp://ftp.lri.fr/LRI/articles/kesner/es-pn.ps.gz.

[12] M. C. Ferreira, D. Kesner, and L. Puel. Lambda-calculi with explicit substitutions
preserving strong normalization. Applicable Algebra in Engineering Communica-
tion and Computing, 9(4):333–371, 1999.

[13] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987.
[14] J.-Y. Girard. Geometry of interaction I: interpretation of system F. In R. Ferro,

C. Bonotto, S. Valentini, and A. Zanardo, editors, Logic colloquium 1988, pages
221–260. North Holland, 1989.

[15] G. Gonthier, M. Abadi, and J.-J. Lévy. The geometry of optimal lambda reduction.
In Proc. of POPL, pages 15–26, Albuquerque, New Mexico, 1992. ACM Press.

[16] B. Guillaume. Un calcul de substitution avec Étiquettes. PhD thesis, Université
de Savoie, 1999.

[17] J. Lamping. An algorithm for optimal lambda calculus reduction. In Proc. of
POPL, pages 16–30, San Francisco, California, 1990. ACM Press.

[18] P.-A. Melliès. Typed λ-calculi with explicit substitutions may not terminate. In
M. Dezani-Ciancaglini and G. Plotkin, editors, Proc of TLCA, volume 902 of
LNCS, April 1995.

[19] K. Rose. Explicit cyclic substitutions. In Rusinowitch and Rémy, editors, Proc.
of CTRS, number 656 in LNCS, pages 36–50, 1992.

A Reduction of Proof Nets

Reduction acting on a cut Ax− cut, removing an axiom :

Ax-cut

Ax

A A⊥ A

Cut

A

Proof Nets and Explicit Substitutions 81

Reduction acting on a cut O−⊗ :

A B

A O B

A⊥ B⊥

A⊥ ⊗ B⊥

Cut

O−⊗
A B A⊥

Cut
Cut

B⊥

Reduction acting on a cut w − b, erasing a box :

W

?A

W

?ΓA⊥ ?Γ

!A⊥ ?Γ

Cut

w-b

Reduction acting on a cut d− b, opening a box :

D

?A

A

A⊥ ?Γ

!A⊥ ?Γ

Cut

d-b

A⊥ ?Γ

Cut

A

Reduction acting on a cut c− b, duplicating a box :

?A

A⊥ ?Γ

!A⊥ ?Γ

Cut

?A

C

A⊥

!A⊥ ?Γ?A

c-b?A

Cut
Cut

A⊥
?Γ

?Γ

!A⊥ ?Γ?A
C

?Γ

Reduction acting on a cut b− b, absorbing a box into another :

?Γ ′ ?AB

Cut

?Γ ′

A⊥

?Γ!A⊥

?Γ

b-b ?Γ

?Γ

A⊥

Cut
!B

!A⊥

?Γ

?Γ ′

?Γ ′

?A

?A

B

!B

	Introduction
	Linear Logic, Proof Nets, and Extended Reduction
	Termination of R_E
	Termination of R_E on Proof Nets without Exponential Axioms
	Termination of R_E on Proof Nets with Exponential Axioms

	From $lambda _l$ with de Bruijn Indices to PN
	The $lambda _l$-Calculus
	Translation of Types and Terms of $lambda _l$
	Simulating $lambda _l$-Reduction

	The $lambda _l$-Calculus with Names
	Conclusion and Future Works
	Reduction of Proof Nets

