Technical Report

Department of Computer Science
and Engineering
University of Minnesota
4-192 EECS Building
200 Union Street SE
Minneapolis, MN 55455-0159 USA

TR 01-002

Efficient Parallel Algorithms for Mining Associations

Mahesh Joshi, Euihong (sam) Han, George Karypis, and Vipin Kumar

January 26, 2001

Efficient Parallel Algorithms for Mining
Associations *

Mahesh V. Joshi, Eui-Hong (Sam) Han, George Karypis, and Vipin Kumar

Department of Computer Science, University of Minnesota,
Minneapolis, MN 55455, USA

{mjoshi,han,karypis,kumar}@cs.umn.edu

Abstract. The problem of mining hidden associations present in the
large amounts of data has seen widespread applications in many practi-
cal domains such as customer-oriented planning and marketing, telecom-
munication network monitoring, and analyzing data from scientific ex-
periments. The combinatorial complexity of the problem has fascinated
many researchers. Many elegant techniques, such as Apriori, have been
developed to solve the problem on single-processor machines. However,
most available datasets are becoming enormous in size. Also, their high
dimensionality results in possibly large number of mined associations.
This strongly motivates the need for efficient and scalable parallel algo-
rithms. The design of such algorithms is challenging. In the chapter, we
give a evolutionary and comparative review of many existing represen-
tative serial and parallel algorithms for discovering two kinds of asso-
ciations. The first part of the chapter is devoted to the non-sequential
associations, which utilize the relationships between events that happen
together. The second part is devoted to the more general and poten-
tially more useful sequential associations, which utilize the temporal or
sequential relationships between events. It is shown that many existing
algorithms actually belong to a few categories which are decided by the
broader design strategies. Overall the focus of the chapter is to serve as a
comprehensive account of the challenges and issues involved in effective
parallel formulations of algorithms for discovering associations, and how
various existing algorithms try to handle them.

* This work was supported by NSF grant ACI-9982274, by Army Research Office grant
DA/DAAG55-98-1-0441, by Army High Performance Computing Research Center
cooperative agreement number DAAH04-95-2-0003/contract number DA AH04-95-
C-0008, the content of which does not necessarily reflect the position or the policy of
the government, and no official endorsement should be inferred. Access to computing
facilities was provided by AHPCRC, Minnesota Supercomputer Institute. Related
papers are available via WWW at URL: http://www.cs.umn.edu/kumar.

Parallel Algorithms for Discovering Associations 1

1 Introduction

One of the important problems in data mining [1] is discovering associations
present, in the data. Such problems arise in the data collected from scientific
experiments, or monitoring of physical systems such as telecommunications net-
works, or from transactions at a supermarket. The problem was formulated orig-
inally in the context of the transaction data at supermarket. This market basket
data, as it is popularly known, consists of transactions made by each customer.
Each transaction contains items bought by the customer. The goal is to see if
occurrence of certain items in a transaction can be used to deduce occurrence of
other items, or in other words, to find associative relationships between items.
If indeed such interesting relationships are found, then they can be put to vari-
ous profitable uses such as shelf management, inventory management, etc. Thus,
association rules were born [2]. Simply put, given a set of items, association
rules predict the occurrence of some other set of items with certain degree of
confidence. The goal is to discover all such interesting rules. This problem is
far from trivial because of the exponential number of ways in which items can
be grouped together and different ways in which one can define interestingness
of a rule. Hence, much research effort has been put into formulating efficient
solutions to the problem.

It is commonly agreed upon that the number of occurrences of a set of items
in a given transaction database, called support, can be used to formulate the
interestingness of association rules derived from it. A more formal definition of
association rules will follow later in the chapter, but informally, the association
rule discovery problem usually translates into finding all sets of items that satisfy
a pre-specified minimum threshold on support, and then postprocessing them
to find the interesting rules. Such itemsets are called frequent. In this chapter,
we concentrate on the most time consuming operation in this discovery pro-
cess, which is the discovery of frequent itemsets. Since usually the number of
distinct items is large in transaction-based databases, the total number of po-
tential itemsets satisfying the support threshold can be prohibitively large. The
first algorithm that handled this problem of exponential explosion elegantly was
the Apriori algorithm [3] . This algorithm used a very fundamental property of
the support of itemsets: an itemset of size £ can meet the minimum level of
support only if all of its subsets also meet the minimum level of support. This
property is used to systematically prune the search space of desired itemsets, by
progressively increasing the length of the itemsets being discovered. Briefly, in
an iteration k, all candidate k-itemsets (of length k) are formed such that all its
(k — 1)-subsets are frequent. The number of occurrences of these candidates are
then counted in the transaction database. Efficient data structures are used to
perform fast counting. Overall, the algorithm has been successful on a wide vari-
ety of transaction databases. Since its conception, many other algorithms [4-11]
have emerged that improve upon the runtime, I/O, and scalability performance
of the Apriori algorithm by various efficient means of pruning the itemset search
space and counting the candidate occurrences in large databases. We describe

2 Joshi, Han, Karypis, and Kumar

serial Apriori algorithm in detail, and give a comparative review of many other
representative serial algorithms.

Many practical applications of association rules involve huge transaction
databases which contain a large number of distinct items. In such situations,
the serial algorithms like Apriori running on single-processor machines may take
unacceptably large times. This is despite of the algorithmic improvements pro-
posed in many serial algorithms. The primary reasons are the memory, CPU
speed, and I/O bandwidth limitations faced by single-processor machines. As an
example, in the Apriori algorithm, if the number of candidate itemsets becomes
too large, then they might not all fit in the main memory, and multiple database
passes would be required within each iteration, incurring expensive I/O cost.
This implies that, even with the highly effective pruning method of Apriori, the
task of finding all association rules can require a lot of computational and mem-
ory resources, especially when the data is enormous and high dimensional (large
number of distinct items). This is true of most of the other serial algorithms as
well. This motivates the development of parallel formulations.

Computational work in association rule discovery consists of candidate gen-
eration and counting their occurrences, and the memory requirements come from
storing the candidates generated. In order to extract concurrency, the compu-
tational work and the memory requirements need to distributed among all the
available processors. In this chapter, we discuss the pros and cons of different
work and memory distribution approaches by studying various parallel formu-
lations of the Apriori-like algorithms in an evolutionary manner. Most existing
parallel algorithms can be classified based on how the candidates are distributed
among processors. We give details of the representative algorithms [12,13,5, 14,
15,9], and briefly review few other parallelization strategies [16,17].

The concept of association rules can be generalized and made more useful by
observing another fact about transactions. All transactions have a timestamp
associated with them; i.e. the time at which the transaction occurred. If this
information can be put to use, one can find relationships such as ”if an item
A was bought by a customer, then he/she is likely to buy an item B in a few
days time”. The usefulness of this kind of rules gave birth to the problem of
discovering sequential patterns or sequential associations.

In general, the data can be characterized in terms of objects and events hap-
pening on these objects. As an example, a customer can be an object and items
bought by him/her can be the events. In experiments from molecular biology, an
organism or its chromosome can be an object and its behavior observed under
various conditions can form events. In a telecommunication network, switches
can be objects and alarms happening on them can be events. The events hap-
pening in such data are related to each other via the temporal relationships of
together and before (or after). The association rules utilize only the together part
of the relationship. The concept was extended to the discovery of sequential pat-
terns [18] or episodes [19], which take into account the sequential (before/ after)
relationship as well. The formulation in [18] was motivated by the supermarket
transaction data, and the one in [19] was motivated by the telecommunication

Parallel Algorithms for Discovering Associations 3

alarm data. A unified and generalized formulation of sequential associations is
proposed in [20].

The sequential nature of the data, depicted by the before/ after relationships,
is important from the discovery point of view as it can be used to discover more
powerful and predictive associations, but it is also important from the algorith-
mic point of view as it increases the complexity of the problem enormously.
The total number of possible sequential associations is much larger than non-
sequential associations. Various formulations and algorithms proposed so far [18,
19,21,22,20], try to contain the complexity by imposing various temporal con-
straints, and by using the monotonicity of the support criterion as the number
of events in the association increases. The enormity and high dimensionality
of data can make these algorithms computationally very expensive, especially
because of the more complex nature of sequential associations; and hence, the
need for efficient parallel algorithms is even more as compared non-sequential
associations. In many situations, the techniques used in parallel algorithms for
discovering standard non-sequential associations can be extended easily to dis-
cover sequential associations. However, different issues and challenges arise due
to the sequential nature of the associations and the way in which interesting
associations are defined (counting strategies). In the final part of this chapter,
we discuss all these issues and challenges, and a few parallel formulations for
resolving them.

The rest of this chapter is organized as follows. Section 2 provides an overview
of the serial algorithms for mining association rules. Section 3 describes paral-
lel algorithms for finding association rules. Section 4 contains a description of
a generalized formulation of sequential associations and parallel algorithms to
discover them. Section 5 summarizes the chapter.

2 Serial algorithms for association rule discovery

2.1 Apriori Algorithm

Let T be the set of transactions where each transaction is a subset of the itemset
I. Let C be a subset of I, then we define the support count of C with respect to
T to be:

a(C)=|{tlt e T,C C t}.

Thus ¢(C) is the number of transactions that contain C. For example, consider
a set of transactions from supermarket as shown in Table 1. The items set I for
these transactions is {Bread, Beer, Coke, Diaper, Milk}. The support count of
{Diaper, Milk} is o(Diaper, Milk) = 3, whereas o(Diaper, Milk, Beer) = 2.
An association rule is an expression of the form X =22 V, where X C [
and Y C I. The support s of the rule X 23 Y is defined as o(X UY)/|T],
and the confidence « is defined as o(X UY)/o(X). For example, consider a
rule {Diaper, Milk} = {Beer}, i.e. presence of diaper and milk in a trans-
action tends to indicate the presence of beer in the transaction. The support
of this rule is o(Diaper, Milk, Beer)/5 = 40%. The confidence of this rule is

4 Joshi, Han, Karypis, and Kumar

Table 1. Transactions from supermarket.

TID||Items

Bread, Coke, Milk

Beer, Bread

Beer, Coke, Diaper, Milk
Beer, Bread, Diaper, Milk
Coke, Diaper, Milk

Ol W N =

o(Diaper, Milk, Beer)/o(Diaper, Milk) = 66%. A rule that has a very high
confidence (i.e., close to 1.0) is often very important, because it provides an ac-
curate prediction on the association of the items in the rule. The support of a
rule is also important, since it indicates how frequent the rule is in the transac-
tions. Rules that have very small support are often uninteresting, since they do
not describe significantly large populations. This is one of the reasons why most
algorithms [3,23, 5] disregard any rules that do not satisfy the minimum sup-
port condition specified by the user. This filtering due to the minimum required
support is also critical in reducing the number of derived association rules to
a manageable size. Note that the total number of possible rules is proportional
to the number of subsets of the itemset I, which is 2/'l. Hence the filtering is
absolutely necessary in most practical settings.

The task of discovering an association rule is to find all rules X =3 Y, such
that s is greater than or equal to a given minimum support threshold and « is
greater than or equal to a given minimum confidence threshold. The association
rule discovery is composed of two steps. The first step is to discover all the
frequent itemsets (candidate sets that have more support than the minimum
support threshold specified). The second step is to generate association rules
from these frequent itemsets. The computation of finding the frequent itemsets
is much more expensive than finding the rules from these frequent itemsets.
Hence in this chapter, we only focus on the first step.

A number of serial algorithms have been developed for discovering frequent
itemsets. We will give a brief review of many of them later in section 2.2. The
primary parallel algorithms discussed in this chapter are based on the Apriori
algorithm [3]. We describe it briefly in the remainder of this section.

The high level structure of the Apriori algorithm is given in Figure 1. The
Apriori algorithm consists of a number of passes. Initially F} contains all the
items (i.e., item set of size one) that satisfy the minimum support requirement.
During pass k, the algorithm finds the set of frequent itemsets Fj of size k that
satisfy the minimum support requirement. The algorithm terminates when Fj, is
empty. In each pass, the algorithm first generates C}, the candidate itemsets of
size k. Function apriori_gen(F}_1) constructs Cy by extending frequent itemsets
of size k — 1. This ensures that all the subsets of size kK — 1 of a new candidate
itemset are in Fj_;. Once the candidate itemsets are found, their frequencies are
computed by counting how many transactions contain these candidate itemsets.

Parallel Algorithms for Discovering Associations 5

Finally, F} is generated by pruning Cj to eliminate itemsets with frequencies
smaller than the minimum support. The union of the frequent itemsets, |J Fj,
is the frequent itemsets from which we generate association rules.

. Fi = { frequent 1-itemsets} ;

for (k= 2; Fi_1 # ¢; k++) {

Cr = apriori_gen(Fj_1)

for all transactions ¢t € T' {
subset(C, t)

}

F, = {c € Cy | c.count > minsup}

© 0N AWN R~

-}
. Answer = |J Fy

Fig. 1. Apriori Algorithm

Computing the counts of the candidate itemsets is the most computationally
expensive step of the algorithm. One naive way to compute these counts is to
perform string-matching of each transaction against each candidate itemset. A
faster way of performing this operation is to use a candidate hash tree in which
the candidate itemsets are hashed [3]. Here we explain this via an example to
facilitate the discussions of parallel algorithms and their analysis.

Figure 2 shows one example of the candidate hash tree with candidates of size
3. The internal nodes of the hash tree have hash tables that contain links to child
nodes. The leaf nodes contain the candidate itemsets. A hash tree of candidate
itemsets is constructed as follows. Initially, the hash tree contains only a root
node, which is a leaf node containing no candidate itemset. When each candidate
itemset is generated, the items in the set are stored in sorted order. Note that
since C7 and Fj are created in sorted order, each candidate set is generated
in sorted order without any need for explicit sorting. Each candidate itemset
is inserted into the hash tree by hashing each successive item at the internal
nodes and then following the links in the hash table. Once a leaf is reached, the
candidate itemset is inserted at the leaf if the total number of candidate itemsets
are less than the maximum allowed. If the total number of candidate itemsets at
the leaf exceeds the maximum allowed and the depth of the leaf is less than k,
the leaf node is converted into an internal node and child nodes are created for
the new internal node. The candidate itemsets are distributed to the child nodes
according to the hash values of the items. For example, the candidate item set
{1 2 4} is inserted by hashing item 1 at the root to reach the left child node of
the root, hashing item 2 at that node to reach the middle child node, hashing
item 3 to reach the left child node which is a leaf node.

Joshi, Han, Karypis, and Kumar

Hash Function

3,69

1+ [2356

Transaction -7

145 (136 [345] [356][367
357 |368
689
(124] [125] |159]
|457] |458

Fig. 2. Subset operation on the root of a candidate hash tree.

Parallel Algorithms for Discovering Associations 7

1o [z359

Transaction g

124 [125] [159]

457 458

Fig. 3. Subset operation on the left most subtree of the root of a candidate hash tree.

The subset function traverses the hash tree from the root with every item
in a transaction as a possible starting item of a candidate. In the next level of
the tree, all the items of the transaction following the starting item are hashed.
This is done recursively until a leaf is reached. At this time, all the candidates
at the leaf are checked against the transaction and their counts are updated
accordingly. Figure 2 shows the subset operation at the first level of the tree
with transaction {1 2 3 5 6}. The item 1 is hashed to the left child node of the
root and the following transaction {2 3 5 6} is applied recursively to the left
child node. The item 2 is hashed to the middle child node of the root and the
whole transaction is checked against two candidate itemsets in the middle child
node. Then item 3 is hashed to the right child node of the root and the following
transaction {5 6} is applied recursively to the right child node. Figure 3 shows
the subset operation on the left child node of the root. Here the items 2 and 5
are hashed to the middle child node and the following transactions {3 5 6} and
{6} respectively are applied recursively to the middle child node. The item 3 is
hashed to the right child node and the remaining transaction {5 6} is applied
recursively to the right child node.

As stated earlier, the runtime for the entire algorithm is dominated by the
counting process encoded in the subset function. More precisely, according to
the analysis presented in [13], at level k of the algorithm, the computation time
required per transaction for visiting the hash tree is proportional to N¢,, the
number of candidate k-itemsets present in a transaction, and the expected num-
ber of distinct leaf nodes visited by the transaction. It is shown that as the

8 Joshi, Han, Karypis, and Kumar

number of leaf nodes in hash tree grows larger, the runtime gets dominated
more by N¢, .

2.2 Other Serial Algorithms

In the previous subsection, we described Apriori, one of the first and most popu-
lar algorithms for generating frequent itemsets. There are many other algorithms
proposed after the conception of Apriori. We will briefly describe some represen-
tative algorithms from the lot, namely DHP [4], Tree Projection algorithms [9,
10], PARTITION [5], the sampling-based algorithms [6], a family of algorithms
proposed in [7], the DIC algorithm [8], and the FP-tree based algorithm [11].

All the algorithms use the monotone property of the itemset support in some
way. As stated earlier, this property implies that a k-itemset is frequent only if all
of its (k—1)-subitemsets are frequent. The sets of items can be visualized to form
a lattice. Essentially, all the algorithms traverse this itemset lattice. Different
ways of using the monotone property result in different ways of traversal, and
that reflects in the performance. Another dimension where algorithms differ is
the way they handle the transaction database; i.e. how many passes they make
over the entire database and how they reduce the size of the processed database
in each pass. With these points in mind, we present a comparative summary of
all the algorithms.

A class of algorithms generate candidate k-itemsets from frequent (k — 1)-
itemsets. These are called level-wise algorithms. The Apriori, DHP, and breadth-
first Tree Projection algorithms make a pass over the entire database at every
level of the algorithm. They differ in the ways they optimize on the number of
candidates generated, and the ways that make the counting phase efficient.

DHP (direct hashing and pruning) algorithm improves upon the Apriori algo-
rithm in two ways. First, it reduces the candidate space by looking ahead in the
transactions for potentially frequent (k + 1)-itemsets while counting candidate
k-itemsets. This is achieved by hashing all potentially frequent (k + 1)-subsets
of each transaction to a common hash table, and using this hash table to prune
some (k + 1) candidates without counting them. The algorithm, however, must
balance the trade-off between the size of the hash table and its effectiveness in
aggressive pruning. The second factor which allows DHP to improve upon Apri-
ori, is its idea of transaction trimming. While counting at level k, each item in
a transaction is checked for whether it appears in at least k different candidate
k-itemsets. If it does not, then it will not be present in any subsequent candidate
j-itemsets (j > k), and hence it can be removed from the transaction. Similarly,
while preparing the hash table at level k, if an item does not appear in any of
the (k + 1)-itemsets being hashed, then it can be removed from the transaction.
If the hashing scheme is effective in pruning many candidates at an early level,
then this transaction trimming scheme reduces the active transaction database
size substantially, which in turn can reduce the computation time spent per
transaction.

Tree Projection algorithms achieve candidate space pruning as well as count-
ing efficiency by combining a novel idea of representing the candidates in a lex-

Parallel Algorithms for Discovering Associations 9

icographic tree structure with a way of reducing the transaction database size
in every pass by projecting the transactions onto this lexicographic tree. The
lexicographic tree is an alternative systematic representation of the itemset lat-
tice. Each node in the tree is associated with an itemset and a set of its possible
extensions. A node can be extended only by an item that is lexicographically
larger and appears as an extension of the its parent. A list of active items is kept
at each node. Also, the extensions of each node are marked active or inactive.
The active item list is used to project a transaction onto the node, and this
projected transaction needs to flow down only the active extensions. The idea is,
only those items in a transaction percolate down the tree that can potentially be
useful in extending the tree by one more level. With every pass of the algorithm,
many extensions become progressively inactive, which in turn results in reduc-
tion of active item list sizes at all nodes. This yields the algorithm its efficiency
in counting phase as well as helps it in possibly pruning the candidate space
more aggressively as compared to Apriori or DHP. The concept of projection
can be thought of as a more generalized form of transaction trimming used in
DHP. Also, the concept of active items and active extensions effectively render
the lexicographic tree as a compact, dynamic version of the hash-tree structures
used in Apriori.

The PARTITION and sampling-based algorithms [6] are level-wise, but only
on a small portion of the entire database. In fact, use of smaller subsets of
database allows them to optimize the database performance by making at most
two passes over the entire database.

PARTITION algorithm takes the idea of support monotonicity further. It
partitions the database into multiple parts, and observes that if an itemset is
frequent in the entire database then it is frequent in at least one of the partitions,
when the frequency is computed relative to the partition size. This observation
is used to prune the potential frequent itemsets by counting the candidates in
smaller local partitions. A level-wise algorithm is employed to generate all lo-
cally frequent itemsets. All such itemsets are gathered and their global counts
are collected in a second pass over the database. Thus, only two database passes
are needed. In order to achieve true gain in performance, the algorithm has to
minimize the effect of data skew across partitions by randomizing the partition-
ing scheme. It also has to take care of the trade-off between the partition size
and number of partitions. Finding locally large itemsets in smaller partitions is
quick, but the lower amount of information available in smaller partitions also
tends to give rise to many false positives because the support is counted with
respect their small size. The PARTITION algorithm has one more novel feature
as compared to Apriori, which can potentially accelerate the counting phase. It
uses vertical data layout in which instead of storing a list of items for each trans-
action (horizontal layout as used in Apriori), it stores the tid-list of transaction
ids for each item. It is made sure that the size of each partition is such that
all the required tid-lists in a partition fit in the main memory. This allows the
itemset support counting to be performed efficiently by intersecting the tid-lists
of its individual items.

10 Joshi, Han, Karypis, and Kumar

The sampling-based algorithms proposed in [6] use a randomly sampled par-
tition of the database to find locally frequent itemsets in that partition. The gain
in performance is possible due to the less amount of data that the algorithms
work on, making it attractive for large databases. However, in order to ensure
the completeness of the frequent itemsets discovered, the algorithm has to do
several things. First, it has to reduce the support threshold used for discovering
frequent sets in the sampled data. This is done with the hope of capturing most
of the actual frequent itemsets. Despite of this reduction in support threshold
(which cannot be reduced below certain level), some itemsets will be missing.
The algorithm has a novel systematic strategy of checking for all the missing
itemsets. It introduces a concept of negative border of the locally frequent item-
sets. This border is formed by all minimal small itemsets; i.e., the sets which
are infrequent but all their subsets are frequent. Locally frequent sets and the
sets in their negative border are counted in the entire database, and these global
counts are used to see if any true frequent itemsets are lost by sampling. Since
the algorithm is based on a random sample, the authors present a probabilistic
analysis that relates the sample size, the limit on lowering support threshold,
and accuracy that can be achieved.

The class of non-level-wise algorithms consists of the hybrid lattice traver-
sal technique proposed in [7], the DIC algorithm, and the depth-first version
of the tree projection algorithm [10]. Like PARTITION and sampling-based al-
gorithms, the design goal for these algorithms is reduction in the number of
passes made over the entire database. However, the major point of difference
is their itemset lattice traversal technique. Instead of a level-wise (or breadth-
first) traversal, they interleave the depth-first and breadth-first searches with
the database passes. In other words, the candidate generation and candidate
counting phases are interleaved. The guiding factor is the search for either the
maximal frequent itemsets [7] or the minimal infrequent itemsets [8].

The lattice traversal algorithms proposed in [7] use a vertical layout (simi-
lar to PARTITION). One pass is made over the database to generate the item
tid-lists. After that, no more passes are required over the database. Only the tid-
lists need to be scanned. A novel feature of all their algorithms is that they are
seeded by an itemset clustering method. The clustering allows them to identify
close approximations to the potentially maximal itemsets. This may substan-
tially prune the candidate search space by dividing the original itemset lattice
into smaller sublattices formed only by items belonging to same cluster. They
propose three different approaches to traverse these smaller itemset sublattices.
The bottom-up approach does a breadth-first traversal of the lattice starting
with the 2-itemsets. This is similar to the level-wise algorithms. But it faces a
problem of generating all the subsets of frequent itemsets. The top-down ap-
proach starts with potentially maximal itemsets given by the clustering, and
goes down the lattice until all the maximal frequent itemsets are found. This
approach faces the problem of costly multi-way intersections of tid-lists as well
as it suffers from the approximate nature of clusters. A hybrid approach com-
bines the good features of both approaches, and is shown to be better than

Parallel Algorithms for Discovering Associations 11

the two. Although it is true that the entire database is scanned once, there are
several passes made over the individual tid-lists. The main performance gain
achieved may be attributed to their clustering scheme to prune the search space
clubbed with an underlying assumption that the tid-lists for individual items or
2-itemsets are not very large.

The DIC algorithm is a recent non-level-wise algorithm which is actually
closer to the sampling-based algorithms. Instead of using a random sample of the
database and potentially losing some frequent item-sets, it proposes a systematic
search of the database that reduces the number of database passes to some
number between 1 and the total number of passes that would be made by a
level-wise algorithm. Unlike level-wise algorithms which count only k-itemsets in
one pass of the algorithm, DIC starts counting longer itemsets after some fixed
intervals during a given database pass. For example, in a database of 10000
transactions, it starts computing 1l-itemsets at first transaction, then some 2-
itemsets start getting counted after M=1000 transactions, some 3-itemsets start
getting counted after 2¥M=2000 transactions, and so on. The value of M can
be changed. Each itemset that the algorithm decides to count, gets counted in
each transaction. The algorithm keeps track of potential frequent itemsets and
potential minimal small itemsets. The counting starts only for those itemsets
whose subsets have been found frequent in the data visited so far. Essentially
the amount of lattice traversed by the algorithm is same as that by a level-wise
algorithm, but the dynamic nature of counting the itemsets gives the algorithm
a flexibility to reduce database passes. The crucial factor for its performance is
the ability to identify frequent subsets of a given itemset early enough so that the
itemset starts getting counted early. Ideally if the probability of seeing a given
itemset in any fraction of transactions is the same, then DIC performs very well.
However, if the dataset is not homogeneous, then the performance would suffer.
The authors of DIC identify this problem and propose some remedies such as
randomization and relaxing the support threshold.

The depth-first version of the tree projection algorithm [10] generates the
lexicographic tree in a depth-first manner. The crucial factor for its performance
is that the entire transaction database needs to fit in the memory, which is not
very practical for many transaction databases. Hence, we will not review it in
detail here.

Finally, we briefly review a class of algorithms [24, 11] that choose a radically
different approach to discover frequent itemsets. These algorithms do not involve
generation of potential candidates. The algorithm based on FP-trees [11] uses
a compact trie-like representation of the transaction database that is used to
directly infer the frequent itemsets involving a given frequent item. This com-
pact representation is achieved using the data structure called frequent pattern
tree (FP-tree), which is a data structure based on set-enumeration tree formed
using frequency-ordered 1-itemsets. It is constrained using the given transac-
tion database in the following manner. Each transaction is transformed to a
frequency-ordered set of items and is mapped to the set-enumeration tree. The
counts of items on the path it gets mapped to are incremented by one. All the

12 Joshi, Han, Karypis, and Kumar

occurrences of a given item are linked across the tree. Once FP-tree is con-
structed, for each item, the algorithm finds all the frequent itemsets having that
item as the last item (in frequency-order). This is achieved by using the prefix
paths to all the occurrences of that item in the tree. A systematic recursive de-
composition of the prefix paths yields all the desired frequent itemsets. If this
process is mapped to a lattice traversal process, then the algorithm essentially
traverses the lattice in a top-down fashion (i.e. going from longer itemsets down
to smaller itemsets), starting with the itemset formed by all the frequent items
in the union of the items occurring in the prefix paths. However, its recursion
process breaks the lattice down into only the interesting sublattices driven by
the increasingly smaller FP-trees. This authors show their algorithm to be an
order of magnitude faster than the Apriori algorithm and considerably faster
than the Tree Projection algorithm.

A related algorithm proposed in [24], also uses the compact trie [25] repre-
sentation of the transaction database, to directly infer the frequent associations.
However, unlike FP-tree, which encodes the entire transaction database into a
trie-like structure, their algorithm constructs a trie only out of those subsets of
a transaction that contains less than a pre-specified number of items. This was
motivated by their observation that the largest frequent itemsets do not con-
tain more than 8-10 items. Once the trie is constructed, they use all the subsets
present in the trie as potential frequent sets. However, unlike FP-tree based al-
gorithm, they do not give a systematic algorithm for inferring actual frequent
itemsets based on support.

This concludes our survey of the representative serial algorithms for comput-
ing frequent itemsets.

3 Parallel Formulations

The enormity and high dimensionality of datasets typically available as input to
the problem of association rule discovery, makes it an ideal problem for solving
on multiple processors in parallel. The primary reasons are the memory and CPU
speed limitations faced by single processors. Despite of many recent improved
approaches to compute all frequent itemsets, the sheer amount of computational
work that needs to be done for large and high dimensional problems results in
prohibitively large runtimes on single processors. Thus, it is critical to design
efficient parallel algorithms to do the task. Another reason for designing parallel
algorithms comes from the fact that many transaction databases are already
available in parallel databases or they are distributed at multiple sites to begin
with. The cost of of bringing them all to one site or one computer for serial
discovery of association rules can be prohibitively expensive.

In the process of association rule discovery, the first part of finding frequent
itemsets is much more expensive as compared to the second part of finding rules
from these frequent itemsets. Hence, we concentrate on parallel algorithms for
frequent itemset discovery. We reviewed many different serial algorithms in pre-
vious subsection. Except for a few, most of these algorithms involve generation

Parallel Algorithms for Discovering Associations 13

of candidate itemsets and counting them in the transaction database, especially
the level-wise algorithms such as Apriori. First, we present possible parallel for-
mulations of such algorithms and map the existing parallel algorithms to these
formulations. In the end, we review parallel formulations of some non-level-wise
algorithms.

3.1 Parallel Formulations of level-wise Algorithms

The computational work in level-wise algorithms can be viewed to consist of
two parts: the effort spent in generating the candidates and the effort spent
in counting them. In order to distribute this work among processors, multiple
possibilities emerge depending on how the transactions and candidate itemsets
are assigned to processors. The need for parallel algorithms comes from the
transaction database being too large (enormity of the database), or possible
number of frequent itemsets being too large (because of high dimensionality of
the database), or both. Correspondingly, in order to achieve concurrency, either
the candidates need to be counted in parallel, or they need to be generated in
parallel, or both phases need to be done in parallel.

We assume that the transaction database is too large to be replicated among
all processors. For most practical problems in data mining, this is a fair or
rather necessary assumption. Usually, the transactions are distributed among
processors equally. Given this, the issue becomes how to distribute the candi-
dates among processors such that their counting and generation is effectively
parallelized. There are two possibilities. One is to replicate the candidates on all
processors and the other is to avoid replication. In the following we review in
detail various algorithms based on these possibilities. The discussion takes into
account the issues of minimizing parallelization overheads, extracting concur-
rency, and utilizing the total available memory effectively.

Replicating Candidate Itemsets One possible way to parallelize is to simply
replicate the candidate generation process on all the processors, and parallelize
the counting process. Here are a few representative algorithms that take this
approach.

— Count Distribution (CD): In this parallel formulation of Apriori algo-
rithm, proposed in [26], each processor computes how many times all the
candidates appear in the locally stored transactions. This is done by build-
ing the entire hash tree that corresponds to all the candidates and then
performing a single pass over the locally stored transactions to collect the
counts. The global counts of the candidates are computed by summing these
individual counts using a global reduction operation [27]. This algorithm is
illustrated in Figure 4. Note that since each processor needs to build a hash
tree for all the candidates, these hash trees are identical at each processor.
Thus, excluding the global reduction, each processor in the CD algorithm
executes the serial Apriori algorithm on the locally stored transactions. The

14

Joshi, Han, Karypis, and Kumar

NPA (Non-Partitioned Apriori) algorithm, proposed in [15], is also identical
to this CD algorithm.

This algorithm has been empirically shown to scale linearly with the num-
ber of transactions [26]. A detailed scalability analysis is presented by [13].
Given N number of transactions and P number of processors, if M is the total
number of candidates that get generated, then they show that the parallel
runtime of the algorithm is T, /P + O(M), where T, is the serial runtime
of the algorithm. The O(M) term comes from the hash tree construction
and global reduction of counts. This indicates that the algorithm is scalable
in number of transactions, however it does not parallelize the computation
of building the candidate hash tree. This step becomes a bottleneck with
large number of processors. Furthermore, if the number of candidates is
large, then the hash tree does not fit into the main memory. In this case,
this algorithm has to partition the hash tree and compute the counts by
scanning the database multiple times, once for each partition of the hash
tree. The cost of extra database scanning can be expensive in the machines
with slow I/O system. Note that the number of candidates increases if either
the number of distinct items in the database increases or if the minimum
support level of the association rules decreases. Thus the CD algorithm is ef-
fective for small number of distinct items and a high minimum support level.

N:

Proc 0 Proc1 Proc 2
Data Data Data
N/P N/P N/P
punt Count Count
Candidate Hash Tree Candidate Hash Tree Candidate Hash Tree
{1, 2} 2 {1, 2} 7 {1, 2} 0
{1, 3} 5 {1, 3} 3 {1,3} 2
{2, 3} 3 {2, 3} 1 {2,3} 8
M M M
{2, 4} 7 {2, 4} 1 {2, 4} 2
{3, 4} 6 {3, 4} 3 {3, 4} 6
{45 | 2 {45 |9 {45 | 6
~ \\ N 7 ﬁ/ = <~ - | B

number of dataitems M: size of candidateset P: number of processors

Fig. 4. Count Distribution (CD) Algorithm

Parallel Algorithms for Discovering Associations 15

— Parallel PARTITION algorithm: The parallel formulation of the serial
PARTITION algorithm has been given in [5]. The serial algorithm has in-
herent parallelism in it as far as processing of each partition is concerned.
The algorithm is very similar to the count distribution algorithm, in that the
data is distributed and the candidate set is replicated among processors. The
difference is that the frequent itemsets are counted in four stages. In the first
stage, each processor discovers locally frequent itemsets assuming that its lo-
cal data is the entire database. Next, these itemsets are exchanged among
processors, forming the global candidate set. In the third stage, local counts
for these candidates are computed by scanning the local data again. Finally,
a communication operation is performed to add up the local counts to get
the global counts for the candidates, from which globally frequent itemsets
can be determined. In this algorithm, the size of the candidate set generated
in second stage is dependent on the size of local datasets and skew in the
data. It could potentially be bigger than the candidate set in CD because of
false positives, and hence can cause the algorithm to lose its main purpose of
achieving efficiency by pruning based on local counts. As in the serial case,
the vertical data layout used in parallel PARTITION can make the count-
ing phase efficient, and allows it to avoid multiple scans of the local database.

— PDM Algorithm: Another parallel algorithm which is based on the serial
Apriori-like algorithm is PDM [14], which is a parallel formulation of the
DHP [4] algorithm. The approach to parallelization is very much similar to
the CD algorithm. The difference is in the fact that DHP differs from Apri-
ori in its use of hash tables to look ahead into the potential candidates of
next phase. The phase of candidate generation from frequent k-itemsets in
parallelized in PDM by using a parallel nested loop join algorithm, where
each processor generates only a small subset of entire candidate set. These
sets are exchanged by all nodes to generate global candidate set similar to
CD. The crucial point in the parallel formulation of DHP is the construction
of the hash table in parallel. Since the hash table is used in the subsequent
candidate generation pass to prune the candidates, a global copy of the hash
table should be available to all the processors. While counting k-itemsets,
the hash table stores the counts of k + 1-itemsets appearing in transactions.
Since the transactions are partitioned across processors, each processor will
have the counts due to local transactions. A simple approach of gathering
global counts for each location in the hash table is to do a global exchange
of all local hash tables. The potential of requiring a large hash table size,
especially for 2-itemsets, makes this simple approach inefficient. The paper
proposes an optimization over this by simply observing the fact that not all
entries in the local hash tables need to be exchanged with other processors.
An entry in the global hash table will be greater than support threshold, s,
only if at least one processor has its corresponding local entry greater than
s/p, where p is the number of processors. This fact is used to determine which
entries should be exchanged using global broadcast. Rest of the entries in the
hash table are exchanged using a clue-and-poll procedure which reduces the

16 Joshi, Han, Karypis, and Kumar

amount of communication. Since the same hash table and the entire candi-
date set is available to all the processors, the transaction trimming feature of
DHP algorithm is easily maintained in PDM as well. Each processor tries to
reduce the size of transactions in its local partition. Overall, PDM is much
similar to CD. But, effective parallelization of hash table construction, the
possible advantages gained by a good hashing function, and the transaction
trimming might give PDM an edge over CD.

— Count Distributed Tree Projection algorithm: This formulation pro-
posed in [9] is based on the CD algorithm described above. Identical lexico-
graphic tree, upon which the tree projection algorithms are based, is built on
each processor and counts are communicated at every level. As with CD, this
parallel formulation works well only if the lexicographic tree fits in memory,
and its scalability with number of candidates is poor.

Partitioning Candidate Itemsets Given the problems possibly encountered
because of replication of candidates, an alternative approach would be to par-
tition the candidates among processors. However, many issues arise regarding
how to partition them and how to effectively parallelize counting for given par-
titioning. Following algorithms handle these issues. DD algorithm discussed first
makes a simple yet weak effort to parallelize. The next algorithm, IDD, improves
upon it greatly. A few other algorithms, inspired by IDD, are also described in
the end.

— Data Distribution (DD): This algorithm [26] addresses the memory prob-
lem of the CD algorithm by partitioning the candidate item-sets among the
processors. This partitioning is done in a round robin fashion. Each proces-
sor is responsible for computing the counts of its locally stored subset of the
candidate item-sets for all the transactions in the database. In order to do
that, each processor needs to scan the portions of the transactions assigned
to the other processors as well as its locally stored portion of the transac-
tions. In the DD algorithm, this is done by having each processor receive the
portions of the transactions stored in the other processors as follows. Each
processor allocates P buffers (each one page long and one for each proces-
sor). At processor P;, the i*" buffer is used to store transactions from the
locally stored database and the remaining buffers are used to store transac-
tions from the other processors. Now each processor P; checks the P buffers
to see which one contains data. Let | be this buffer (ties are broken in favor
of buffers of other processors and ties among buffers of other processors are
broken arbitrarily). The processor processes the transactions in this buffer
and updates the counts of its own candidate subset. If this buffer corresponds
to the buffer that stores local transactions (i.e., [= i), then it is sent to all
the other processors (via asynchronous sends), and a new page is read from
the local database. If this buffer corresponds to a buffer that stores transac-
tions from another processor (i.e., | # i), then it is cleared and this buffer is
marked available for next asynchronous receive from any other processors.

Parallel Algorithms for Discovering Associations 17

This continues until every processor has processed all the transactions. Hav-
ing computed the counts of its candidate item-sets, each processor finds the
frequent item-sets from its candidate item-set and these frequent item-sets
are sent to every other processor using an all-to-all broadcast operation [27].
Figure 5 shows the high level operations of the algorithm. Note that each
processor has a different set of candidates in the candidate hash tree.

The SPA (Simply Partitioned Apriori) algorithm, proposed in [15], is iden-
tical to DD. It partitions the candidates among processors in a round robin
manner. Each transaction is broadcast to all the processors so as to generate

a global count for all the candidates.

Proc O Proc 1 Proc 2
Local Data Remote Data Local Data Remote Data Local Data Remote Data
o | o | o 1
| | ! | ! !
I I I
Data | N/P w | Data | N/P w | Data | N/P w | Data
- - - > ! | = - - = ! [| ! [.
Broadcast l ' Broadcag l ' Broadcast l ' Broadcast
| 1 1 1 1 !
| | ! | ! !
Count Count Count Count Count Count
Candidate Hash Tree Candidate Hash Tree Candidate Hash Tree
{122 | 3 {L3 | 9 {14 |5
M/P {2,5y |7 M/P | {3,4 | 2 M/P | {3,5 | 1
{4,6 | 5 {47 |3 {56 | 2
N 7~ 7

N: number of dataitems

Thell ‘All-to-all Broadcas_t_//_l—”

M: size of candidate set P: number of processors

Fig. 5. Data Distribution (DD) Algorithm

The DD algorithm exploits the total available memory better than CD, as
it partitions the candidate set among processors. As the number of proces-
sors increases, the number of candidates that the algorithm can handle also
increases. However, as reported in [26], the performance of this algorithm is
significantly worse than the CD algorithm. The run time of this algorithm
is 10 to 20 times more than that of the CD algorithm on 16 processors [26].
The problem lies with the communication pattern of the algorithm and the
redundant work that is performed in processing all the transactions.

The communication pattern of this algorithm causes three problems. First,
during each pass of the algorithm each processor sends to all the other pro-
cessors the portion of the database that resides locally. In particular, each

18

Joshi, Han, Karypis, and Kumar

processor reads the locally stored portion of the database one page at a time
and sends it to all the other processors by issuing P — 1 send operations.
Similarly, each processor issues a receive operation from each other proces-
sor in order to receive these pages. If the interconnection network of the
underlying parallel computer is fully connected (i.e., there is a direct link
between all pairs of processors) and each processor can receive data on all
incoming links simultaneously, then this communication pattern will lead to
a very good performance. In particular, if O(IN/P) is the size of the database
assigned locally to each processor, the amount of time spent in the commu-
nication will be O(N/P). However, even on the parallel computer with fully
connected network, if each processor can receive data from (or send data to)
only one other processor at a time, then the communication will be O(N).
On all realistic parallel computers, the processors are connected via a sparser
networks (such as 2D, 3D or hypercube) and a processor can receive data
from (or send data to) only one other processor at a time. On such ma-
chines, this communication pattern will take significantly more than O(N)
time because of contention within the network.

Second, in architectures without asynchronous communication support and
with finite number of communication buffers in each processor, the proposed
all-to-all communication scheme causes processors to idle. For instance, con-
sider the case when one processor finishes its operation on local data and
sends the buffer to all other processors. Now if the communication buffer of
any receiving processors is full and the outgoing communication buffers are
full, then the send operation is blocked.

Third, if we look at the size of the candidate sets as a function of the number
of passes of the algorithm, we see that in the first few passes, the size of the
candidate sets increases and after that it decreases. In particular, during the
last several passes of the algorithm, there are only a small number of items
in the candidate sets. However, each processor in the DD algorithm still
sends the locally stored portions of the database to all the other processors.
Thus, even though the computation decreases, the amount of communication
remains the same.

The redundant work is introduced due to the fact that every processor has to
process every single transaction in the database. In CD (see Figure 4), only
N/ P transactions go through each hash tree of M candidates, whereas in DD
(see Figure 5), all N transactions have to go through each hash tree of M /P
candidates. Although, the number of candidates stored at each processor
has been reduced by a factor of P, the amount of computation performed
for each transaction has not been proportionally reduced. According to the
analysis presented in [13], in general, the amount of work per transaction
will go down by a factor much smaller than P.

The detailed analysis of parallel runtime is given in [13], according to which
the algorithm is not scalable with respect to number of transactions, but it
scales well with respect to number of candidates.

Parallel Algorithms for Discovering Associations 19

— Intelligent Data Distribution (IDD): This algorithm was proposed in
[28]. It solves the problems of the DD algorithm. First, in IDD, the locally
stored portions of the database are sent to all the other processors by us-
ing a ring-based all-to-all broadcast described in [27]. Compared to DD,
where all the processors send data to all other processors, IDD performs
only a point-to-point communication between neighbors,; thus eliminating
any communication contention that DD algorithm faces. Thus, the all-to-all
broadcast operation takes O(N) time on any parallel architecture that can
be embedded in a ring. Furthermore, if the time to process a buffer does
not vary much, then there is little time lost in idling. Also, when it is im-
plemented using asynchronous communication operations, the computation
and communication operations can be overlapped.

Second problem of DD that IDD improves upon is that of redundant work.
In order to eliminate the redundant work due to the partitioning of the can-
didate item-sets, IDD finds a fast way to check whether a given transaction
can potentially contain any of the candidates stored at each processor. This
cannot be done by partitioning Cj in a round-robin fashion. However, if
C} is partitioned among processors in such a way that each processor gets
item-sets that begin only with a subset of all possible items, then the items
of a transaction can be checked against this subset to determine if the hash
tree contains candidates starting with these items. The hash tree is traversed
with only the items in the transaction that belong to this subset. Thus, the
redundant work problem of DD is solved by the intelligent partitioning of
Cy.

These points can be understood better by looking at Figure 6, which shows
the high level picture of the algorithm. In this example, Processor 0 has all
the candidates starting with items 1 and 7, Processor 1 has all the candidates
starting with 2 and 5, and so on. Each processor keeps the first items of
the candidates it has in a bit-map. In the Apriori algorithm, at the root
level of hash tree, every item in a transaction is hashed and checked against
the hash tree. However, in IDD, at the root level, each processor filters
every item of the transaction by checking against the bit-map to see if the
processor contains candidates starting with that item of the transaction. If
the processor does not contain the candidates starting with that item, the
processing steps involved with that item as the first item in the candidate
can be skipped. This reduces the amount of transaction data that has to go
through the hash tree; thus, reducing the computation. For example, let {1
23456 78} be a transaction that processor 0 is processing in the subset
function discussed in Section 2.1. At the top level of the hash tree, processor
0 will only proceed with items 1 and 7 (i.e., 1 + 23456 7 8 and 7 +
8). When the page containing this transaction is shifted to processor 1, this
processor will only process items starting with 2 and 5 (i.e., 2 + 34567
8 and 5 + 6 7 8). Figure 7 shows how this scheme works when a processor
contains only those candidate item-sets that start with 1, 3 and 5.

Thus for each transaction in the database, IDD partitions the amount of
work to be performed among processors, thus eliminating most of the re-

20 Joshi, Han, Karypis, and Kumar

Proc 0 Proc 1 Proc 2
Local Data Remote Data Local Data Remote Data Local Data Remote Data
1 ! 1 ! 1 !
| | ! | ! !
Data | N/P ! I Data | N/P| ! I Data | N/P| ! I
77777 > ! | F-- - > ! [e | ! [
Shift | ! Shift | | Shift | !
I L o
Coun Count| Coun Count| Coun Count|

Candidate Hash Tree Candidate Hash Tree Candidate Hash Tree

{12 . {23 .| {45

mp | (L3} | 6 mp | {25 | 6 mp | 4.6 | 6
(7.8 | 9 {56} | 9 (a7 |9
~: o - Z7

“o---____ Allto-dlBroadcast ___---~

N: number of dataitems M: size of candidate set P: number of processors

Fig. 6. Intelligent Data Distribution (IDD) Algorithm

Transaction bitmap -7

’ 2+ |356 Skipped!!

[124] [125] [159]

Fig. 7. Subset operation on the root of a candidate hash tree in IDD.

Parallel Algorithms for Discovering Associations 21

dundant work of DD. Note that both the judicious partitioning of the hash
tree (indirectly caused by the partitioning of candidate item-set) and the
filtering step are required to eliminate this redundant work.

The intelligent partitioning of the candidate set used in IDD brings up the
issue of load balancing. One of the criteria of a good partitioning involved
here is to have an equal number of candidates in all the processors. This gives
about the same size hash tree in all the processors and thus provides good
load balancing among processors. Note that in the DD algorithm, this was
accomplished by distributing candidates in a round robin fashion. This does
not give any guarantees of load balance. Even in IDD, a naive method for
assigning candidates to processors can lead to a significant load imbalance.
For instance, consider a database with 100 distinct items numbered from 1
to 100 and that the database transactions have more data items numbered
with 1 to 50. Let the candidates be partitioned between two processors. If
all the candidates starting with items 1 to 50 are assigned to processor Py
and all candidates starting with items 51 to 100 to processor P;, then there
would be more work for processor Fy.

To achieve an equal distribution of the candidate item-sets, the authors of
IDD use a partitioning algorithm that is based on bin-packing [29]. For each
item, they first compute the number of candidate item-sets starting with
this particular item. Note that at this time they do not actually store the
candidate item-sets, but they just store the number of candidate item-sets
starting with each item. Then a bin-packing algorithm is used to partition
these items in P buckets such that the sum of numbers of the candidate
item-sets starting with these items in each bucket are roughly equal. Once the
location of each candidate item-set is determined, then each processor locally
regenerates and stores candidate item-sets that are assigned to this processor.
Note that bin-packing is used per pass of the algorithm and the amount of
time spent on bin-packing is minor compared to the overall runtime. Figure 6
shows the partitioned candidate hash tree and its corresponding bitmaps in
each processor.

Note that this scheme will not be able to achieve an equal distribution of
candidates if there are too many candidate itemsets starting with the same
item. For example, if there are more than M /P candidates starting with
the same item, then one processor containing candidates starting with this
item will have more than M /P candidates even if no other candidates are
assigned to it. This problem gets more serious with increasing P. One way
of handling this problem is to partition candidate item sets based on more
than the first items of the candidate item sets. In this approach, whenever
the number of candidates starting with one particular item is greater than
the threshold, this item set is further partitioned using the second item of
the candidate item sets.

Note that the equal assignment of candidates to the processors does not
guarantee the perfect load balance among processors. This is because the
cost of traversal and checking at the leaf node are determined not only by
the size and shape of the candidate hash tree, but also by the actual items

22 Joshi, Han, Karypis, and Kumar

in the transactions. However, in the experiments, authors [28] have observed
a reasonably good correlation between the size of candidate sets and the
amount of work done by each processor. For example, with 4 processors, the
load imbalance was 1.3% in terms of the number of candidate sets, which
translated into 5.4% load imbalance in the actual computation time. With
8 processors, load imbalance was 2.3% in the number of candidate sets,
and this resulted in 9.4% load imbalance in the computation time. Since the
effect of transactions on the work load cannot be easily estimated in advance,
IDD scheme only ensures that each processor has roughly equal number of
candidate itemsets in the local hash tree.

A detailed analysis of the load balancing issues and scalability of IDD is
given in [13]. In summary, IDD has the flexibility of minimizing the data
movement cost by overlapping the counting computation with data com-
munication. Moreover, it does not perform any redundant computation as
in DD, which makes it more scalable than DD with respect to number of
transactions, and it is scalable with respect to the number of candidates.

— HPA Algorithm: The HPA (Hash Partitioned Apriori) algorithm, given in
[15], is similar in spirit to the IDD algorithm. It tries to reduce the commu-
nication overhead of sending each transaction to every processor. It assigns
the candidates to processors using a hash function, which determines which
processor the candidate would go to. In the counting phase, if candidate
k-itemsets are being counted, then each transaction in local database is first
processed to find all the k-itemsets present in the transaction. Each such
itemset is hashed using the same hash function as used for partitioning the
candidates to derive the destination processor, and is sent to that processor.
This partitioning due to hashing function can be considered similar to the
mechanism of partitioning candidates in IDD, but unlike IDD, HPA does not
give any guarantees of load balance achieved because of its hashing-based
candidate distribution.

— Intelligent Data Distributed Tree Projection algorithm: This formu-
lation proposed in [9] is based on the IDD algorithm described above. The
lexicographic tree, upon which the tree projection algorithms are based, is
distributed among different processors based on the first item in the tree.
Using the active item lists at the root of each of the processor’s lexicographic
tree, only relevant transactions can be communicated to a given processor.
This can further save on the communication overhead.

Hybrid Approach: Partial Replication of Candidate Itemsets We saw
two approaches: pure replication of candidates and pure partitioning with no
replication. However, according to analyses of these approaches, especially for
CD and IDD, it can be seen that each approach has some issues regarding
scalability. In particular, CD is scalable with respect to number of transaction
because of replicated candidate sets, whereas IDD is scalable with respect to

Parallel Algorithms for Discovering Associations 23

number of candidates. This hybrid approach is essentially an attempt to see if
two approaches can be combined via partial replication of candidates, to achieve
better scalability than both. In the following, we discuss some algorithms that
have been able to do this successfully.

— HD (Hybrid Distribution) Algorithm: The IDD algorithm exploits the
total system memory by partitioning the candidate set among all proces-
sors. The average number of candidates assigned to each processor is M/P,
where M is the number of total candidates. As more processors are used, the
number of candidates assigned to each processor decreases. This has two im-
plications. First, with fewer number of candidates per processor, it is much
more difficult to balance the work. Second, the smaller number of candidates
gives a smaller hash tree and less computation work per transaction. Even-
tually the amount of computation may become less than the communication
involved. This would be more evident in the later passes of the algorithm as
the hash tree size further decreases dramatically. This reduces overall effi-
ciency of the parallel algorithm. This will be an even more serious problem
in a system that cannot perform asynchronous communication.

The Hybrid Distribution (HD) algorithm addresses the above problem by
combining the CD and the IDD algorithms in the following way. Consider
a P-processor system in which the processors are split into G equal size
groups, each containing P/G processors. In the HD algorithm, we execute
the CD algorithm as if there were only P/G processors. That is, we partition
the transactions of the database into P/G parts each of size N/(P/G), and
assign the task of computing the counts of the candidate set C} for each
subset of the transactions to each one of these groups of processors. Within
each group, these counts are computed using the IDD algorithm. That is, the
transactions and the candidate set C} are partitioned among the processors
of each group, so that each processor gets roughly |C|/G candidate item-
sets and N/P transactions. Now, each group of processors computes the
counts using the IDD algorithm, and the overall counts are computing by
performing a reduction operation among the P/G groups of processors.

The HD algorithm can be better visualized if we think of the processors
as being arranged in a two dimensional grid of G rows and P/G columns.
The transactions are partitioned equally among the P processors. The can-
didate set C}, is partitioned among the processors of each column of this
grid. This partitioning of C}, is identical for each column of processors; i.e.,
the processors along each row of the grid get the same subset of C}. Figure 8
illustrates the HD algorithm for a 3 x 4 grid of processors. In this exam-
ple, the HD algorithm executes the CD algorithm as if there were only 4
processors, where the 4 processors correspond to the 4 processor columns.
That is, the database transactions are partitioned in 4 parts, and each one
of these 4 hypothetical processors computes the local counts of all the candi-
date item-sets. Then the global counts can be computed by performing the
global reduction operation discussed in Section 3.1. However, since each one
of these hypothetical processors is made up of 3 processors, the computation

24

Joshi, Han, Karypis, and Kumar

of local counts of the candidate item-sets in a hypothetical processor requires
the computation of the counts of the candidate item-sets on the database
transactions sitting on the 3 processors. This operation is performed by ex-
ecuting the IDD algorithm within each of 4 hypothetical processors. This
is shown in the step 1 of Figure 8. Note that processors in the same row
have exactly the same candidates, and candidate sets along the each column
partition the total candidate set. At the end of this operation, each processor
has complete count of its local candidates for all the transactions located in
the processors of the same column (i.e., of a hypothetical processor). Now a
reduction operation is performed along the rows such that all processors in
each row have the sum of the counts for the candidates in the same row. At
this point, the count associated with each candidate item-set corresponds to
the entire database of transactions. Now each processor finds frequent item-
sets by dropping all those candidate item-sets whose frequency is less than
the threshold for minimum support. These candidate item-sets are shown as
shaded in Figure 8(b). In the next step, each processor performs all-to-all
broadcast, operation along the columns of the processor mesh. At this point,
all the processors have the frequent sets and are ready to proceed to the next
pass.

The HD algorithm determines the configuration of the processor grid dy-
namically. In particular, the HD algorithm partitions the candidate set into
a big enough section and assign a group of processors to each partition. Let
m be a user specified threshold. If the total number of candidates M is less
than m, then the HD algorithm makes G equal to 1, which means that the
CD algorithm is run on all the processors. Otherwise G is set to [M/m].
The HD algorithm inherits all the good features of the IDD algorithm. It
also provides good load balance and enough computation work by maintain-
ing minimum number of candidates per processor. At the same time, the
amount of data movement in this algorithm has been cut down to 1/G of
the IDD. A detailed parallel runtime analysis of HD is given in [13]. It shows
that HD is scalable with respect to both number of transactions and number
of candidates. The analysis also proves the necessary conditions under which
HD can outperform CD. Detailed experimental results which compare CD,
DD, IDD, and HD formulations of Apriori algorithm are given in [28]. HD
is shown to be faster and more scalable as compared to the other algorithms.

HPA-ELD algorithm: The paper [15] that proposed the HPA algorithm,
proposes another algorithm called HPA-ELD (Hash-Partitioned Apriori with
Extremely Large Itemsets Duplication). This algorithm reduces the commu-
nication required by HPA, by using partial replication of candidates. It first
sorts the itemsets based on their frequency of appearance and replicates the
most frequently occurring itemsets over all processors. For the replicated
candidates, NPA (or CD) algorithm is used to collect global counts. For
the rest, HPA algorithm is used. Because of the replication of most frequent
itemsets, HPA-ELD is less sensitive to the data skew. Also, it also utilizes the
local processor memory efficiently in case of relatively small size of candidate

Parallel Algorithms for Discovering Associations 25

Step 1: Partitioning of Candidate Sets and Data Movement Along the Columns

¥ \ ¥ ¥ £
Candidate Hash Tree| Candidate Hash Tree| Candidate Hash Tree| Candidate Hash Tree|
12| 1 \ 12| 0 | 1,22 | 12| 0 \
450 | 45| 1 | 45| 3 ! 45| 2 |
7,8| 3 | 78| 2 | 7,81 \ 7,8| 3 |
! ! ! \ ! I ! I
V Data Shift ! V Data Shift ! V Data Shift ! V DataShift !
| | | |
Candidate Hash Tree ' Candidate Hash Tree ' Candidate Hash Tree i Candidate Hash Tree '
23] 3 23] 0 23] 0 23] 1 !
56/ 1 | Daa 56| 1 ! Daa 56| 0 ! Data 56| 1 , Data
1 Shift 1 Shift i Shift 1+ Shift
89| 2 ' 89| 2 ' 89| 2 ! 89| 2 ;
; | ; | ; | ; |
V DataShift j V DataShift | V Data Shift | V Data Shift |
i | |)
Candidate Hash Tree ‘: Candidate Hash Tree | Candidate Hash Tree { Candidate Hash Tree ‘:
|
34| 0 ! 34| 1 | 34| 0 1 34| 1)
67| 2 67| 4 67| 1 67| 0
68| 3 ! 68| 0 ! 68| 1 | 68| 1 |
- ; R ; - ! - !
Step 2: Reduction Operation Along the Rows
g T y T Iy v
Candidate Hash Tree Candidate Hash Tree Candidate Hash Tree Candidate Hash Tree
12]3 12] 3 12] 3 [12] 3
45] 6 45| 6 45] 6 [45] 6
78] 9 78] 9 78] 9 [7.8] o
g v T Ly v
Candidate Hash Tree Candidate Hash Tree Candidate Hash Tree Candidate Hash Tree
23] 4 23] 4 23] 4 [23] 4
56| 3 56| 3 56| 3 [56] 3
898 898 898 [8.9] 8
g T y T Iy v
Candidate Hash Tree Candidate Hash Tree Candidate Hash Tree Candidate Hash Tree
342 342 342 342
67| 7 67| 7 67| 7 67| 7
68| 5 68| 5 68| 5 68| 5
Step 3: All-to-all Broadcast Operation Along the Columns
Frequent Item Set Frequent Item Set Frequent Item Set Frequent Item Set
\‘ \‘ \‘
! . . . 1
! 1 1 ' '
: ' ' ' '
o o o i
Frequent Item Set o Frequent Item Set Lo Freguent Item Set ;oo Frequent Item Set ;oo
’ I . I . ’ I // I
L All-to-all ¢ Allto-dl ¢ Allto-dl “All-to-all
*\ Broadk *\ Broad *, Broad *, Broadt
[aole] [\rowes i Srowes CXIEI e
Voo A Voo Voo
- - - -
/ / B i , h J .
Frequent Item Set /! //' Frequent Item Set b //' Frequent Item Set b //' Freguent Item Set S /,'

Fig. 8. Hybrid Distribution (HD) Algorithm in 3 x 4 Processor Mesh (G = 3, P = 12)

26 Joshi, Han, Karypis, and Kumar

itemsets. This replication of highly frequent itemsets to all processors is sim-
ilar in spirit to the HD algorithm. However, HD replicates some candidates
on a small number of processors, instead of on all processors. According to
the performance comparisons presented in [15], HPA-ELD performs better
for the smaller support thresholds, whereas NPA performs better for large
support thresholds. However, as with HPA, the performance of HPA-ELD is
critically dependent on the hashing scheme, and the paper does not provide
any theoretical results regarding the scalability of the algorithm.

3.2 Other Parallel Formulations

Along with the parallel formulations of level-wise algorithms, presented in pre-
vious subsections, many other schemes have been proposed in the literature so
far[5,14,16,17,15]. This section reviews these formulations in a comparative
manner.

Parallel formulation, DMA, designed specifically for distributed databases is
described in [17]. It uses an idea of pruning based on local count. The founding
principle of DMA is similar to that of PARTITION: a globally frequent itemset
(when support is counted with respect to the entire database) has to be frequent
in at least one of the processors (when support is counted with respect to the
local database). DMA uses this principle to compute heavy itemsets at each
site. These are the itemsets which are frequent locally as well as globally. The
k+ 1-candidates are locally generated using the local heavy k-itemsets instead of
using the globally frequent k-itemsets. Use of heavy itemsets can generate much
smaller number of candidates overall, when compared to the CD algorithm which
uses global frequent k-itemsets. Local counts for these candidates are measured
by scanning the database once. The candidates which are not locally frequent
are pruned away and the remaining candidates are communicated to all other
processors. Each processor measures the local count for each candidate received
from remote processors, and sends it back to the processor who requested it.
Adding up local and remote counts, each processor determines which of the
candidates are globally frequent and forms the local heavy set. Local heavy
sets are exchanged by a broadcast operation to find global frequent sets. The
algorithm proposes communication optimizations by assigning each candidate a
host site for the purpose of collecting its remote counts. In this form, DMA is
similar in nature to the DD algorithm where candidates as well as the data are
distributed across processors.

It should be noted that DMA uses horizontal data layout similar to CD
and DD, unlike the vertical data layout used in PARTITION. If implemented
naively, DMA would need to two passes over database in each iteration over
k, one for counting candidates generated from local heavy itemsets, and second
for candidates received from remote processors. The paper identifies this and
proposes an optimization for making only a single scan by generating all the
candidates that would be generated at all remote sites, and collecting counts for
these along with the locally generated candidates. This optimization brings the
algorithm closer to the CD algorithm, except that the candidate set generated

Parallel Algorithms for Discovering Associations 27

in DMA could be potentially much smaller than the one in CD (because of the
use of heavy itemsets). In the performance results shown in the paper, DMA
performs better than CD, mainly because of the reduction in the number of
candidates generated. It should be noted that although DMA uses the same
principle as PARTITION, its sensitivity to the problems of small partition size
and data skew is less than PARTITION. This is because PARTITION, in an
effort of reducing the database scans, generates all locally frequent itemsets in
its first scan of the database. It does not have the flexibility of interleaving the
global information with local information in every iteration over k. This causes
it to generate many false positives which need to be counted in the second pass
over the database.

The last set of algorithms that we will discuss here is the parallel formula-
tions of the itemset-clustering based lattice traversal algorithms given in [7]. As
described in section 2.2, these algorithms try to find potential maximal frequent
itemsets by pruning the search space of itemsets. This pruning is achieved by
finding clusters of related items, using either the equivalence class method or
the hypergraph clique method. Each cluster corresponds to a potential maximal
itemset. Such itemsets form disjoint sublattices of the entire itemset lattice. The
idea behind the parallel formulations given in [16] is essentially to identify such
sublattices and assign them to different processors so that the processing of each
sublattice can be done entirely independently. The algorithms try to achieve load
balance by estimating the work needed for each sublattice and determining the
number of sublattices going to each processor. To achieve independent processing
of each sublattice, the algorithms bring all the transaction data required for that
sublattice to the processor assigned to process the sublattice. Remember that
these algorithms use vertical data layout for efficient counting of candidates.

These parallel algorithms have the same advantages that are enjoyed by their
serial counterparts, specifically those of doing at most two database scans and
performing efficient counting by simple tid-list intersection. Along with these, the
parallel formulations have the advantage of reducing communication overhead
involved in communicating candidates or counts. But, these algorithms have
limitations also. First, they have to pay the cost of replicating parts of the
database across multiple processors. Second, the amount of concurrency that
the algorithm can achieve depends entirely on the quality of clusters it can find,
and on the transaction dataset. If the number of clusters is very few, then the
algorithm may not fully utilize the total number of processors available, thus
making it unscalable to larger number of processors. In the worst case, the
algorithm may reduce to serial algorithm with a single processor working on
the entire problem because of lack of multiple maximal potential itemsets. The
hypergraph clique based clustering can be used avoid such worst case scenarios.
But, clique based techniques tend to become expensive based on how dense the
hypergraph gets, which in turn depends on the nature of transactions and the
support threshold level. Another possibility where these algorithms can become
expensive is when the number of clusters is such that the items appearing in
different clusters have a large overlap. In such cases, the algorithm may end up

28 Joshi, Han, Karypis, and Kumar

replicating a large part of the database to all the processors. As an aside, the
idea of itemset clustering using equivalence classes used in these algorithms is
similar to the Candidate Distribution algorithm of[12], which assigns candidates
to processors based on their equivalence classes.

4 Bringing in the Sequential Relationships

The data collected from scientific experiments, or monitoring of physical sys-
tems such as telecommunications networks, or from transactions at a supermar-
ket, have inherent sequential nature to them. Sequential nature means that the
events occurring in such data are related to each other by relationships of the
form before (or after) and together. The concept of item-sets and association
rules discussed so far takes into account only the together part of the relation-
ship, the information provided by the before/ after relationships is ignored. This
information could be very valuable in finding more interesting patterns hidden
in the data, which could be useful for many purposes such as prediction of events
or identification of better sequential rules that characterize different parts of the
data.

In this section, we discuss the concept of sequential associations, more com-
monly known as sequential patterns, and algorithms to discover them.

4.1 Generalized Sequential Associations: Definition

Sequential associations are defined in the context of an input sequence data
characterized by three columns: object, timestamp, and events. Each row records
occurrences of events on an object at a particular time. An example is shown in
Figure 9(a). Alternative way to look at the input data is in terms of the time-line
representations of all objects as illustrated in Figure 9(b). Note that the term
timestamnyp is used here as a generic term to denote a measure of sequential (or
temporal) dimension.

Various definitions of object and events can be used, depending on what kind
of information one is looking for. For example, in one formulation, object can be
a telecommunication switch, and event can be an alarm type occurring on the
switch. With this, the sequences discovered will indicate interesting patterns of
occurrences of alarm types occurring at a switch. In another formulation, object
can be a day, and event can be a switch or a pair of switch and type of the alarm
occurring on it. This will give interesting sequential relations between different
switches or switch-alarm type pairs over a day.

Given this input data, the goal is to discover associations or patterns of the
form given in Figure 10. A pattern is essentially a sequence of sets of events,
which conform to the given timing constraints. As an example, the sequential
pattern (A) (C,B) (D), encodes an interesting fact that event D occurs after an
event-set (C,B), which in turn occurs after event A. The occurrences of events in
a sequential pattern are governed by the following timing constraints:

Parallel Algorithms for Discovering Associations 29

Timeline: R
10 15 20 25 30 35
obj A: | i F—+— i |
2 6 1
3 1
2 ‘
Object timestamp events : : :
A 10 2,35 Obj B: I B R |
A 20 6,1 4 2 7 1
A 23 1 LS (8 6
6 1
B 1 4,56 ‘ ‘ 2 ‘ ‘
B 17 2 i D: | | | | | |
B 21 7,812 || 1 \ ! \ \
B 28 1,6 :
D 14 1,87 7
@ ®)

Fig. 9. Example Input Data: (a) Flat representation, (b) Timeline Representation

— Maximum Span(ms): The maximum allowed time difference between the
latest and earliest occurrences of events in the entire sequence.

— Event-set Window Size(ws): The maximum allowed time difference be-
tween the latest and earliest occurrences of events in any event-set.

— Maximum Gap(zg): The maximum allowed time difference between the
latest occurrence of an event in an event-set and the earliest occurrence of
an event in its immediately preceding event-set.

— Minimum Gap(ng): The minimum required time difference between the
earliest occurrence of an event in an event-set and the latest occurrence of
an event in its immediately preceding event-set.

We assume the interestingness of a sequence to be defined based on how many
times it occurs in the input data; i.e. its support. If the support is greater than a
user-specified support threshold, then the sequence is called frequent or interest-
ing. The the number of occurrences of a sequence can be computed in many ways,
which are illustrated using the example shown in in Figure 11(a). The method
COBJ counts at most one occurrence of a sequence for every object, as long as
it is found within the given timing constraints. In the example, (1)(2) has two
occurrences, one for each object. This method may not capture the sequences
which are exhibited many times within a single object, which could really deter-
mine its interestingness. In the method CWIN, the support of a sequence is equal
to the number of span-size windows it appears in. Each span-size window has a
duration of ms, and consecutive windows have an overlap of ms — 1 units. Win-
dows can span across a single object; i.e., no window can span across multiple
objects. The support is added over all objects to get final support for a sequence.
As shown in Figure 11(b), sequence (1)(2) has support of 3 for Object A, because
it occurs in windows starting at time-points 0, 1, and 2. For object B, it occurs
in 5 windows, hence the total support is 8. In other counting methods, instead of
counting the span-windows, actual occurrences of a sequence are counted. Two

30 Joshi, Han, Karypis, and Kumar

options CDIST and CDIST_O are illustrated in Figure 11(c) and Figure 11(d),
respectively. In CDIST, an event-timestamp pair is considered at most once in
counting occurrences of a given sequence. So, there is only 1 occurrence of (1)(2)
for Object A in the example, because there is no corresponding event 2’s oc-
currence for event 1@2, 2@4 was used up in first occurrence. In CDIST_O, the
occurrences are counted such that each new occurrence found has at least one
different event-timestamp pair than previously found occurrences. So, (1)(2) has
3 occurrences for object B, and total of 5 occurrences, using this method.

The choice of which counting method to use is dependent on the problem
and the judgment of the person using the discovery tool. For the purpose of our
discussion in this paper, we will assume the method depicted in part (b), which
counts the number of span-windows, because it is fairly general in the way it
assigns interestingness to a sequence (especially when compared to method in

part (a)).

Formulation: Can add more edges and nodes

: {ng,xg} ’ filled by discovery
[ws] [ws]

| | algorithm.
! <0,ms> '
An Example of Discovered Pattern:
(A) (e) (D) (FEQG)
I < =—
<= Xg > ng <=WS

0 <=span <=ms

Fig. 10. Generalized Formulation of Sequential Patterns

The definition of sequential association presented above is a special case of
the generalized universal sequential patterns described in [20]. It combines the
notions of generalized sequential patterns (GSP) proposed in [21] and episodes
proposed in [30]. These notions are actually the special cases of the generalized
sequential associations presented above. If maximum span constraint is consid-
ered ineffective (ms — oc) and COBJ method is used for counting, then the
formulation is identical to GSP. If constraints ws < 0, xg > ms, and ng = 0
are used along with the CWIN counting method, then the formulation is equiv-

Parallel Algorithms for Discovering Associations

Object A (@) CWIN Method Object B:

\ \ [\ [\ \ [\ [

0 1 2 3 4 0 1 2 3 4

| Obecta: ~ (b)CDIST Method o bjectB:@ 77777777777777777

I I I I I I I I I |

0 1 2 3 4 0 1 2 3 4
\ \ [\ [
0 1 2 3 4

Object A (c) CDIST_O Method Object B @

\ \ \ \ [\ \ [\ \

0 1 2 3 4 0 1 2 3 4

I I I I I I I I I I

0 1 2 3 4 0 1 2 3 4
I I I I I
0 1 2 3 4

Fig. 11. Tllustration of Methods of Counting Support

31

32 Joshi, Han, Karypis, and Kumar

alent to the serial episodes of [30]. If constraints ws == ms, xg > ms, and
ng > ms are used along with the CWIN counting method, then the formulation
is equivalent to the parallel episodes of [30]. In summary, the formulation of gen-
eralized sequential associations given above is fairly general for a wide variety of
sequential data.

4.2 Serial algorithms for Sequential Associations

The complexity of discovering frequent sequences is much more than the com-
plexity of mining non-sequential associations. To get an idea, the maximum num-
ber of sequences having k events is O(m*2¥~1), where m is the total number of
events in the input data. Compare this to the (') possible item-sets of size k.
Using the definition of interestingness of a sequence, and the timing constraints
imposed on the events occurring in a sequence, many of these sequences can be
pruned. But in order to contain the computational complexity, the search space
needs to be traversed in a manner that searches only those sequences that would
potentially satisfy both the support and timing constraints. The GSP algorithm
given in [21] addresses this issue by building frequent sequences level-wise. Like
apriori, it makes use of the monotonicity property of the support. The frequent
sequences having k — 1 events can be used to build a candidate sequence having
k events, such that all its (k — 1)-subsequences are frequent. The algorithm also
takes into account the timing constraints relevant to the formulation of [21]. This
algorithm has been modified in [31] to handle the generalized sequential associa-
tions described in section 4.1. The main modification is to take into account the
multiple counting strategies which are driven primarily by the maximum span
(ms) constraint. Especially when counting strategies other than COBJ are used,
entire timeline of each object needs to be scanned to count all occurrences of ev-
ery candidate. Data structures such as hash tree can be used to quickly find the
candidates that may exist in a given timeline, but such structures will be helpful
only for the first occurrence of a candidate. The rest of the occurrences need to
be found by scanning the entire remaining timeline. A detailed description of
how the algorithm works using hash tree structures is given in [31].

4.3 Parallel Formulation: Issues, Challenges, and Some Solutions

If the input sequence data has following features, then serial! algorithms briefly
described in previous subsection face severe limitations.

— Enormity; i.e., large number of objects and/or large time-lines for many
objects. Serial algorithms would take a very long time to in the counting
phase for such datasets.

! The terms serial and sequential should not be confused. Traditionally, sequential and
serial are both used to describe algorithms that would run on single processor ma-
chines. Here, we use the term serial to represent such algorithms, and reserve the
term sequential to indicate the temporal or sequential nature of the input data

Parallel Algorithms for Discovering Associations 33

— High dimensionality; i.e., large number of events. The number of candidates
generated for such datasets will be very large; hence, either they may not
fit in the memory available for a single processor, or they would make the
hash tree data structures act counter-productively if their size and structure
is not optimally managed.

This motivates the need for parallel formulations. In this section, we will
briefly discuss the issues and research challenges involved in developing effective
parallel formulations of sequential pattern discovery algorithm.

The parallel formulation should be able to divide two entities among pro-
cessors. One is the computational work and other is the memory requirement.
These should be divided such that the time and memory limitations faced by
serial algorithms could be minimized, and it should be possible to achieve this
with as little overhead as possible. In parallel formulations, the overheads come
mainly from load imbalance (causing idling of processors) and the communica-
tion required to co-ordinate the computations performed by different processors.

The computational load in sequential pattern discovery algorithm consists
of candidate generation and counting of candidates. The memory requirements
come from storing the input datasets and the candidates generated. Depending
on how the candidates and object time-lines are distributed among processors,
different parallel algorithms are possible.

In the following, we describe several parallel formulations given in [31] that
take into account the generalized nature of sequential patterns. The intention is
to bring out the challenges involved in designing effective parallel formulations.
In the first category of algorithms, called EVE (event distribution), input data is
distributed among processors and the candidate set is replicated on all the pro-
cessors. The candidate generation phase is done serially on all the processors.
Three different variations of EVE algorithm are discussed to cater to different
scenarios emerging depending on the number of objects, the length of the time-
lines in terms of the number of events happening on them, and the value of ms.
The second category of algorithms, called EVECAN (event and candidate distri-
bution), distributes events as well as candidates among processors, to overcome
some of the problems that EVE might face.

EVE-S: Simple Event Distribution Algorithm For shorter time-lines and
relatively large number of objects, the input data is distributed such that the
total number of event points is as evenly distributed as possible within the
constraint that a processor gets the entire timeline of every object allocated to
it. It is embarrassingly parallel as far as counting phase is concerned, except for
the final communication operation required to accumulate the candidate counts.
EVE-S is illustrated in Figure 12. This algorithm is essentially an extension of
the CD algorithm for discovering non-sequential associations, except that the
transactions are replaced with more generic objects?. A similar algorithm called
NPSPM (non-partitioned sequential pattern mining) is proposed by [15]. They

2 objects can be thought of as a time-ordered collection of transactions

34 Joshi, Han, Karypis, and Kumar

assume the restricted GSP[21] formulation of sequential patterns. Also, they
cater only to the supermarket transaction scenario, which indeed is fitting for the
EVE-S algorithm also, because usually object timelines contain small number of
transactions, each in turn consisting of small number of events (which are items
in this case).

Local Obj écts
Count

<Global Reduction of Candidate Counts>

Fig. 12. Illustration of EVE-S algorithm.

EVE-R: Event distribution with partial data replication This formula-
tion is designed for the scenario in which there are relatively small number of
objects (less than the number of processors), each object has a large timeline,
and the span value (ms) is relatively small. The input data is distributed as
follows. The timeline for each object is split across different processors such that
the total number of events assigned to different processors is similar. Note that
the sequence occurrences are computed in span-size windows. We assume that
the span value is small such that no span window spans across more than two
processors. But, still each processor will have some span-windows that do not
have sufficient data to declare the occurrence of an sequence in them. This is
resolved in EVE-R by gathering such missing data from neighboring processors.
Each processor gathers data that is required to process the last span-window
beginning on that processor. This is illustrated in Figure 13. Since we assume
that span-windows do not straddle more than two processors, just the neighbor-
to-neighbor communication is sufficient. Once every span-window is complete on
all processors, each processor processes only those span-windows which begin at

Parallel Algorithms for Discovering Associations 35

the events points originally assigned to it. For example, processor PO processes
windows that begin at time instances 0, 1, 2, and 3, whereas processor P1 will
process windows that begin at 4, 5, 6, and 7. By distributing the event points
equitably, load balance can be achieved. As in EVE-S algorithm, the occurrences
are collected by a global communication (reduction) operation, in the end.

PO P1 P2

span-window
T T T T 1T T 1 R ——
0 1 2 3 4 5 6 7 DY

Fig. 13. Tllustration of EVE-R algorithm.

EVE-C: Complex Event Distribution Algorithm This formulation depicts
the most complex scenario as far as distribution of the counting workload is
concerned. This happens when there are small number of objects, each object
has a large timeline, and the span value is large such that after splitting the
object time-lines across processors, the span-windows straddle more than two
processors. There are two ways to handle this.

One way is to replicate the data across processors such that no processor has
any incomplete or partial span-window. This is the same idea used in EVE-R,
what makes it different is the fact that the amount of replication can become
very large in this case. So, if processors do not have enough disk space to hold
the entire replicated information, this approach may not be feasible. Even when
there is enough disk space available on each processor, the replication of data
may result in a lot of replication of work. The details are given in [31], but to
summarize, when data is replicated, there is trade-off between the approach of
replicating the work with no communication cost (except for the data replication
cost), and the approach of avoiding work replication by paying the extra cost of
communicating the candidate occurrences.

The second way to handle this is not to replicate the data. Now, two kinds of
situations need to be handled. In first situation, those occurrences that are found

36 Joshi, Han, Karypis, and Kumar

completely on a single processor might contribute to span-windows that begin
on other processors. Care should be taken to avoid the double counting, which as
shown in [31] requires communication of ranges of occurrences of candidates be-
tween processors. Second situation is when some occurrences cannot be declared
to occur in some span-windows because there may not be sufficient data avail-
able on a single processor. This scenario actually gives rise to the most complex
method of parallelizing the counting process. The details are given in [31], but
the key idea is that only partial occurrences of candidates can be found by each
processor. This partial work needs to be communicated to other processors to
search for complete occurrences. First issue is amount of concurrency that can be
achieved in this process. This can be handled by breaking down the granularity
of computation and doing asynchronous communications. The second and more
serious issue comes from the nature sequential association discovery problem, in
which each span-size window has a potential to support exponential number of
sequences. Hence, the amount of partial work that needs to be transferred can
quickly become large. In summary, this approach of avoiding replication of data
can become very expensive.

Thus depending on the scenario, there is a trade-off between the cost of
replicating and storing the data and the cost of communicating large amount
partial work among processors. A detailed discussion is given in [31].

Event and Candidate Distribution (EVECAN) Algorithm In the set of
EVE algorithms described above, it is assumed that the candidates are replicated
over all the processors. This may not be desirable when the number of candi-
dates is very large, and for the complexity of sequential patterns, such scenarios
are not uncommon. Large number of candidates results in two things. The set of
candidates may not fit in the memory of a processor, in which case they need to
be counted in parts. This involves multiple I/O passes over the disk for count-
ing the candidates. Secondly, EVE algorithm builds candidates serially on all
processors, thus losing out on extracting the possible concurrency. The amount
of time spent in generating the large number of candidates can be significantly
large.

These issues are addressed in the second formulation, called EVECAN (event
and candidate distribution) [31]. In this algorithm, the input data is partitioned
similar to EVE. But, now the candidates are also distributed. They are stored
in a distributed hash table. The hashing criterion is designed to maintain equal
number of candidates on all processors. One simple hash function can be based
on the lexicographical ordering of candidates and splitting them among proces-
sors such that all candidates assigned to one processor have a common prefix
sequence. The non-local candidates required for the join-and-prune phase are
obtained using the scalable communication structure of the parallel hashing
paradigm introduced in [32]. Now since all the processors must count all the
candidates, there are two options. In the first option, the candidates are kept
stationary at processors and a local hash tree access structure is built for these
candidates. The input data is circulated among processors in a fashion similar

to that of the round-robin scheme proposed for IDD algorithm of [28]. But this
option may work only when the span value is small, in which case we will circu-
late the span-windows. For large span-values, it could be very expensive to send
all the span-windows to all the processors. In such cases, second option can be
used, which is to move around the candidates in a round robin fashion. In both
the options, a hash function is used to do a relatively quick search of whether
a span-window can contain the candidates stored at that processor. Figure 14

Parallel Algorithms for Discovering Associations

pictorially depicts the EVECAN algorithm.

EITHER @

- bn S o b1 S o 5y T
0 PO 4 P 4~ P2
‘
T ST T —
Ob‘j;cts
Count Count Count

Rotate Objectsin
Round-Robin Manner

4

Fig. 14. Illustration of EVECAN algorithm for parallel discovery of generalized se-

quential associations.

Another set of parallel algorithms SPSPM (simple partitioned sequential pat-
tern mining) and HPSPM (hash partitioned sequential pattern mining) are given
in [33]. These are also based on distribution of objects as well as candidates. How-
ever, these algorithms assume the sequential pattern format given in [21]; hence,
their algorithms do not have notion of span (ms), and they count only one oc-
currences of a sequence in a given object’s timeline (COBJ counting method).
Also they assume a market transaction type of dataset, in which the object time-

i
OR@

Rotate Candidatesin
Round-Robin Manner

38 Joshi, Han, Karypis, and Kumar

lines are usually very short. SPSPM algorithm distributes the candidates in a
simple round-robin manner, whereas HPSPM distributes candidates in a more
intelligent manner using hash functions. These are straight-forward extensions
of the SPA and HPA algorithms [15] for parallel discovery of non-sequential as-
sociations. The counting in SPSPM is performed in a way similar to the DD
algorithm for non-sequential associations, where every object’s timeline is sent
to every processor. HPSPM, in k' iteration, generates all k-sequences present
in each object’s timeline and hashes them using the same hash function as was
used for hashing the candidates to distribute them among processors. Each se-
quence is sent to the processor it hashes to, and is used to search for the list
of candidates stored there. The HPSPM algorithm is shown to perform better
than the rest two, but it also faces severe limitations when the object time-lines
are very large, and when it is extended to use the counting method used in the
generalized sequential pattern formulation. These are precisely the issues that
the EVE and EVECAN formulations take into account.

5 Summary

In this chapter, we presented a evolutionary and comparative review of many
existing algorithms for solving a very popular and important problem of mining
associations from data. We considered the traditional non-sequential associa-
tions which originated from the transaction or market basket kind of data as
well as the more generalized sequential association formulation which is useful
to wider variety of datasets in real world. The chapter mainly elaborates on
various design issues involved in parallel formulations of association discovery
algorithms, and how existing parallel algorithms map to only a few categories
of formulations. In the process, a comprehensive survey of many existing serial
algorithms is also given. Although many parallel (and serial) algorithms exist
today, no single algorithm is superior to all the rest, and the research in the dis-
covery of associations remains active. Overall, this chapter is intended to serve as
a comprehensive account of existing parallel methods of mining non-sequential
as well as sequential associations with respect to the design issues and different
parallelization strategies.

References

1. Chen, M., Han, J., Yu, P.: Data mining: An overview from database perspective.
IEEE Transactions on Knowledge and Data Eng. 8 (1996) 866-883

2. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of
items in large databases. In: Proc. of 1993 ACM-SIGMOD Int. Conf. on Manage-
ment of Data, Washington, D.C. (1993)

3. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc.
of the 20th VLDB Conference, Santiago, Chile (1994) 487 499

4. Park, J., Chen, M., Yu, P.: An effective hash-based algorithm for mining association
rules. In: Proc. of 1995 ACM-SIGMOD Int. Conf. on Management of Data. (1995)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Parallel Algorithms for Discovering Associations 39

Savasere, A., Omiecinski, E., Navathe, S.: An efficient algorithm for mining asso-
ciation rules in large databases. In: Proc. of the 21st VLDB Conference, Zurich,
Switzerland (1995) 432-443

. Toivonen, H.: Sampling large databases for association rules. In: Proc. of the 22nd

VLDB Conference. (1996)

Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New algorithms for fast dis-
covery of association rules. In: Proc. of the Third Int’] Conference on Knowledge
Discovery and Data Mining. (1997)

Brin, S., Motwani, R., Ullman, J.D., Tsur, S.: Dynamic itemset counting and
implication rules for market basket data. In: Proc. of 1997 ACM-SIGMOD Int.
Conf. on Management of Data, Tucson, Arizona (1997) 255 264

Agarwal, R.C., Aggarwal, C., Prasad, V.V.V.: A tree projection algorithm for
generation of frequent itemsets. Journal of Parallel and Distributed Computing
(Special Issue on High Performance Data Mining) (2000)

Agarwal, R.C., Aggarwal, C., Prasad, V.V.V.: Depth-first generation of large item-
sets for association rules. Technical Report RC-21538, IBM Research Division
(1999)

Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate genera-
tion. Technical Report CMPT99-12, School of Computing Science, Simon Fraser
University (1999)

Agrawal, R., Shafer, J.: Parallel mining of association rules: Design, implementa-
tion and experience. Technical Report RJ10004, IBM Research Division, Almaden
Research Center (1996)

Han, E., Karypis, G., Kumar, V.: Scalable parallel data mining for association
rules. IEEE Transactions on Knowledge and Data Eng. (1999)

Park, J., Chen, M., Yu, P.: Efficient parallel data mining for association rules. In:
Proceedings of the 4th Int’l Conf. on Information and Knowledge Management.
(1995)

Shintani, T., Kitsuregawa, M.: Hash based parallel algorithms for mining associ-
ation rules. In: Proc. of the Conference on Parallel and Distributed Information
Systems. (1996)

Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New parallel algorithms for
fast discovery of association rules. Data Mining and Knowledge Discovery: An
International Journal 1 (1997)

Cheung, D., Ng, V., Fu, A., Fu, Y.: Efficient mining of association rules in dis-
tributed databases. IEEE Transactions on Knowledge and Data Eng. 8 (1996)
911 922

Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proc. of the Int’l Con-
ference on Data Engineering (ICDE), Taipei, Taiwan (1996)

Mannila, H., Toivonen, H., Verkamo, A.I.: Discovering frequent episodes in se-
quences. In: Proc. of the First Int’l Conference on Knowledge Discovery and Data
Mining, Montreal, Quebec (1995) 210 215

Joshi, M.V., Karypis, G., Kumar, V.: Universal formulation of sequential pat-
terns. Technical Report TR 99-021, Department of Computer Science, University
of Minnesota, Minneapolis (1999)

Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and per-
formance improvements. In: Proc. of the Fifth Int’l Conference on Extending
Database Technology, Avignon, France (1996)

Bettini, C., Wang, X.S., Jajodia, S.: Testing complex temporal relationships in-
volving multiple granularities and its application to data mining. In: Proc. of ACM
PODS’96, Montreal (1996) 68 78

40

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Joshi, Han, Karypis, and Kumar

Houtsma, M.A.W., Swami, A.N.: Set-oriented mining for association rules in re-
lational databases. In: Proc. of the 11th Int’l Conf. on Data Eng., Taipei, Taiwan
(1995) 25-33

Amir, A.] Feldman, R., Kashi, R.: A new and versatile method for association
generation. In Komorowski, H.J., Zytkow, J.M., eds.: Proceedings of Principles of
Data Mining and Knowledge Discovery, First European Symposium (PKDD’97).
Lecture Notes in Computer Science. Volume 1263. Springer, Trondheim, Norway
(1997) 221 231

Sedgewick, R.: Algorithms. Second edn. Addison-Wesley (1988)

Agrawal, R., Shafer, J.: Parallel mining of association rules. IEEE Transactions
on Knowledge and Data Eng. 8 (1996) 962 969

Kumar, V., Grama, A., Gupta, A., Karypis, G.: Introduction to Parallel Com-
puting: Algorithm Design and Analysis. Benjamin Cummings/ Addison Wesley,
Redwod City (1994)

Han, E., Karypis, G., Kumar, V.: Scalable parallel data mining for association
rules. In: Proc. of 1997 ACM-SIGMOD Int. Conf. on Management of Data, Tucson,
Arizona (1997)

Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall, Englewood Cliffs, NJ (1982)

Mannila, H., Toivonen, H.; Verkamo, A.I.: Discovery of frequent episodes in event
sequences. Technical Report C-1997-15, Department of Computer Science, Uni-
versity of Helsinki, Finland (1997)

Joshi; M.V., Karypis, G., Kumar, V.: Parallel algorithms for mining sequential as-
sociations: Issues and challenges. Technical Report under preparation, Department
of Computer Science, University of Minnesota, Minneapolis (1999)

Joshi, M.V., Karypis, G., Kumar, V.: ScalParC: A new scalable and efficient
parallel classification algorithm for mining large datasets. In: Proc. of the 12th
International Parallel Processing Symposium, Orlando, Florida (1998)

Shintani, T., Kitsuregawa, M.: Mining algorithms for sequential patterns in paral-
lel: Hash based approach. In: Research and Development in Knowledge Discovery
and Data Mining: Second Pacific-Asia Conference (PAKDD’98), Melbourne, Aus-
tralia (1998) 283-294

