
Efficient Parallel Algorithms for Mining Associations

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 EECS Building

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 01-002

Efficient Parallel Algorithms for Mining Associations

Mahesh Joshi, Euihong (sam) Han, George Karypis, and Vipin Kumar

January 26, 2001

E�cient Parallel Algorithms for MiningAssociations ?Mahesh V. Joshi, Eui-Hong (Sam) Han, George Karypis, and Vipin KumarDepartment of Computer Science, University of Minnesota,Minneapolis, MN 55455, USAfmjoshi,han,karypis,kumarg@cs.umn.eduAbstract. The problem of mining hidden associations present in thelarge amounts of data has seen widespread applications in many practi-cal domains such as customer-oriented planning and marketing, telecom-munication network monitoring, and analyzing data from scienti�c ex-periments. The combinatorial complexity of the problem has fascinatedmany researchers. Many elegant techniques, such as Apriori, have beendeveloped to solve the problem on single-processor machines. However,most available datasets are becoming enormous in size. Also, their highdimensionality results in possibly large number of mined associations.This strongly motivates the need for e�cient and scalable parallel algo-rithms. The design of such algorithms is challenging. In the chapter, wegive a evolutionary and comparative review of many existing represen-tative serial and parallel algorithms for discovering two kinds of asso-ciations. The �rst part of the chapter is devoted to the non-sequentialassociations, which utilize the relationships between events that happentogether. The second part is devoted to the more general and poten-tially more useful sequential associations, which utilize the temporal orsequential relationships between events. It is shown that many existingalgorithms actually belong to a few categories which are decided by thebroader design strategies. Overall the focus of the chapter is to serve as acomprehensive account of the challenges and issues involved in e�ectiveparallel formulations of algorithms for discovering associations, and howvarious existing algorithms try to handle them.
? This work was supported by NSF grant ACI-9982274, by Army Research O�ce grantDA/DAAG55-98-1-0441, by Army High Performance Computing Research Centercooperative agreement number DAAH04-95-2-0003/contract number DAAH04-95-C-0008, the content of which does not necessarily reect the position or the policy ofthe government, and no o�cial endorsement should be inferred. Access to computingfacilities was provided by AHPCRC, Minnesota Supercomputer Institute. Relatedpapers are available via WWW at URL: http://www.cs.umn.edu/~kumar.

Parallel Algorithms for Discovering Associations 11 IntroductionOne of the important problems in data mining [1] is discovering associationspresent in the data. Such problems arise in the data collected from scienti�cexperiments, or monitoring of physical systems such as telecommunications net-works, or from transactions at a supermarket. The problem was formulated orig-inally in the context of the transaction data at supermarket. This market basketdata, as it is popularly known, consists of transactions made by each customer.Each transaction contains items bought by the customer. The goal is to see ifoccurrence of certain items in a transaction can be used to deduce occurrence ofother items, or in other words, to �nd associative relationships between items.If indeed such interesting relationships are found, then they can be put to vari-ous pro�table uses such as shelf management, inventory management, etc. Thus,association rules were born [2]. Simply put, given a set of items, associationrules predict the occurrence of some other set of items with certain degree ofcon�dence. The goal is to discover all such interesting rules. This problem isfar from trivial because of the exponential number of ways in which items canbe grouped together and di�erent ways in which one can de�ne interestingnessof a rule. Hence, much research e�ort has been put into formulating e�cientsolutions to the problem.It is commonly agreed upon that the number of occurrences of a set of itemsin a given transaction database, called support, can be used to formulate theinterestingness of association rules derived from it. A more formal de�nition ofassociation rules will follow later in the chapter, but informally, the associationrule discovery problem usually translates into �nding all sets of items that satisfya pre-speci�ed minimum threshold on support, and then postprocessing themto �nd the interesting rules. Such itemsets are called frequent. In this chapter,we concentrate on the most time consuming operation in this discovery pro-cess, which is the discovery of frequent itemsets. Since usually the number ofdistinct items is large in transaction-based databases, the total number of po-tential itemsets satisfying the support threshold can be prohibitively large. The�rst algorithm that handled this problem of exponential explosion elegantly wasthe Apriori algorithm [3] . This algorithm used a very fundamental property ofthe support of itemsets: an itemset of size k can meet the minimum level ofsupport only if all of its subsets also meet the minimum level of support. Thisproperty is used to systematically prune the search space of desired itemsets, byprogressively increasing the length of the itemsets being discovered. Briey, inan iteration k, all candidate k-itemsets (of length k) are formed such that all its(k� 1)-subsets are frequent. The number of occurrences of these candidates arethen counted in the transaction database. E�cient data structures are used toperform fast counting. Overall, the algorithm has been successful on a wide vari-ety of transaction databases. Since its conception, many other algorithms [4{11]have emerged that improve upon the runtime, I/O, and scalability performanceof the Apriori algorithm by various e�cient means of pruning the itemset searchspace and counting the candidate occurrences in large databases. We describe

2 Joshi, Han, Karypis, and Kumarserial Apriori algorithm in detail, and give a comparative review of many otherrepresentative serial algorithms.Many practical applications of association rules involve huge transactiondatabases which contain a large number of distinct items. In such situations,the serial algorithms like Apriori running on single-processor machines may takeunacceptably large times. This is despite of the algorithmic improvements pro-posed in many serial algorithms. The primary reasons are the memory, CPUspeed, and I/O bandwidth limitations faced by single-processor machines. As anexample, in the Apriori algorithm, if the number of candidate itemsets becomestoo large, then they might not all �t in the main memory, and multiple databasepasses would be required within each iteration, incurring expensive I/O cost.This implies that, even with the highly e�ective pruning method of Apriori, thetask of �nding all association rules can require a lot of computational and mem-ory resources, especially when the data is enormous and high dimensional (largenumber of distinct items). This is true of most of the other serial algorithms aswell. This motivates the development of parallel formulations.Computational work in association rule discovery consists of candidate gen-eration and counting their occurrences, and the memory requirements come fromstoring the candidates generated. In order to extract concurrency, the compu-tational work and the memory requirements need to distributed among all theavailable processors. In this chapter, we discuss the pros and cons of di�erentwork and memory distribution approaches by studying various parallel formu-lations of the Apriori-like algorithms in an evolutionary manner. Most existingparallel algorithms can be classi�ed based on how the candidates are distributedamong processors. We give details of the representative algorithms [12, 13, 5, 14,15, 9], and briey review few other parallelization strategies [16, 17].The concept of association rules can be generalized and made more useful byobserving another fact about transactions. All transactions have a timestampassociated with them; i.e. the time at which the transaction occurred. If thisinformation can be put to use, one can �nd relationships such as "if an itemA was bought by a customer, then he/she is likely to buy an item B in a fewdays time". The usefulness of this kind of rules gave birth to the problem ofdiscovering sequential patterns or sequential associations.In general, the data can be characterized in terms of objects and events hap-pening on these objects. As an example, a customer can be an object and itemsbought by him/her can be the events. In experiments from molecular biology, anorganism or its chromosome can be an object and its behavior observed undervarious conditions can form events. In a telecommunication network, switchescan be objects and alarms happening on them can be events. The events hap-pening in such data are related to each other via the temporal relationships oftogether and before (or after). The association rules utilize only the together partof the relationship. The concept was extended to the discovery of sequential pat-terns [18] or episodes [19], which take into account the sequential (before/after)relationship as well. The formulation in [18] was motivated by the supermarkettransaction data, and the one in [19] was motivated by the telecommunication

Parallel Algorithms for Discovering Associations 3alarm data. A uni�ed and generalized formulation of sequential associations isproposed in [20].The sequential nature of the data, depicted by the before/after relationships,is important from the discovery point of view as it can be used to discover morepowerful and predictive associations, but it is also important from the algorith-mic point of view as it increases the complexity of the problem enormously.The total number of possible sequential associations is much larger than non-sequential associations. Various formulations and algorithms proposed so far [18,19, 21, 22, 20], try to contain the complexity by imposing various temporal con-straints, and by using the monotonicity of the support criterion as the numberof events in the association increases. The enormity and high dimensionalityof data can make these algorithms computationally very expensive, especiallybecause of the more complex nature of sequential associations; and hence, theneed for e�cient parallel algorithms is even more as compared non-sequentialassociations. In many situations, the techniques used in parallel algorithms fordiscovering standard non-sequential associations can be extended easily to dis-cover sequential associations. However, di�erent issues and challenges arise dueto the sequential nature of the associations and the way in which interestingassociations are de�ned (counting strategies). In the �nal part of this chapter,we discuss all these issues and challenges, and a few parallel formulations forresolving them.The rest of this chapter is organized as follows. Section 2 provides an overviewof the serial algorithms for mining association rules. Section 3 describes paral-lel algorithms for �nding association rules. Section 4 contains a description ofa generalized formulation of sequential associations and parallel algorithms todiscover them. Section 5 summarizes the chapter.2 Serial algorithms for association rule discovery2.1 Apriori AlgorithmLet T be the set of transactions where each transaction is a subset of the itemsetI . Let C be a subset of I , then we de�ne the support count of C with respect toT to be: �(C) = jftjt 2 T;C � tgj:Thus �(C) is the number of transactions that contain C. For example, considera set of transactions from supermarket as shown in Table 1. The items set I forthese transactions is fBread, Beer, Coke, Diaper, Milkg. The support count offDiaper, Milkg is �(Diaper;Milk) = 3, whereas �(Diaper;Milk;Beer) = 2.An association rule is an expression of the form X s;�=) Y , where X � Iand Y � I . The support s of the rule X s;�=) Y is de�ned as �(X [Y)=jT j,and the con�dence � is de�ned as �(X [Y)=�(X). For example, consider arule fDiaper, Milkg =) fBeerg, i.e. presence of diaper and milk in a trans-action tends to indicate the presence of beer in the transaction. The supportof this rule is �(Diaper;Milk;Beer)=5 = 40%. The con�dence of this rule is

4 Joshi, Han, Karypis, and KumarTable 1. Transactions from supermarket.TID Items1 Bread, Coke, Milk2 Beer, Bread3 Beer, Coke, Diaper, Milk4 Beer, Bread, Diaper, Milk5 Coke, Diaper, Milk�(Diaper;Milk;Beer)=�(Diaper;Milk) = 66%. A rule that has a very highcon�dence (i.e., close to 1.0) is often very important, because it provides an ac-curate prediction on the association of the items in the rule. The support of arule is also important, since it indicates how frequent the rule is in the transac-tions. Rules that have very small support are often uninteresting, since they donot describe signi�cantly large populations. This is one of the reasons why mostalgorithms [3, 23, 5] disregard any rules that do not satisfy the minimum sup-port condition speci�ed by the user. This �ltering due to the minimum requiredsupport is also critical in reducing the number of derived association rules toa manageable size. Note that the total number of possible rules is proportionalto the number of subsets of the itemset I , which is 2jIj. Hence the �ltering isabsolutely necessary in most practical settings.The task of discovering an association rule is to �nd all rules X s;�=) Y , suchthat s is greater than or equal to a given minimum support threshold and � isgreater than or equal to a given minimum con�dence threshold. The associationrule discovery is composed of two steps. The �rst step is to discover all thefrequent itemsets (candidate sets that have more support than the minimumsupport threshold speci�ed). The second step is to generate association rulesfrom these frequent itemsets. The computation of �nding the frequent itemsetsis much more expensive than �nding the rules from these frequent itemsets.Hence in this chapter, we only focus on the �rst step.A number of serial algorithms have been developed for discovering frequentitemsets. We will give a brief review of many of them later in section 2.2. Theprimary parallel algorithms discussed in this chapter are based on the Apriorialgorithm [3]. We describe it briey in the remainder of this section.The high level structure of the Apriori algorithm is given in Figure 1. TheApriori algorithm consists of a number of passes. Initially F1 contains all theitems (i.e., item set of size one) that satisfy the minimum support requirement.During pass k, the algorithm �nds the set of frequent itemsets Fk of size k thatsatisfy the minimum support requirement. The algorithm terminates when Fk isempty. In each pass, the algorithm �rst generates Ck, the candidate itemsets ofsize k. Function apriori gen(Fk�1) constructs Ck by extending frequent itemsetsof size k � 1. This ensures that all the subsets of size k � 1 of a new candidateitemset are in Fk�1. Once the candidate itemsets are found, their frequencies arecomputed by counting how many transactions contain these candidate itemsets.

Parallel Algorithms for Discovering Associations 5Finally, Fk is generated by pruning Ck to eliminate itemsets with frequenciessmaller than the minimum support. The union of the frequent itemsets, SFk,is the frequent itemsets from which we generate association rules.1. F1 = f frequent 1-itemsetsg ;2. for (k = 2; Fk�1 6= �; k++) f3. Ck = apriori gen(Fk�1)4. for all transactions t 2 T f5. subset(Ck, t)6. g7. Fk = fc 2 Ck j c.count � minsupg8. g9. Answer = S FkFig. 1. Apriori AlgorithmComputing the counts of the candidate itemsets is the most computationallyexpensive step of the algorithm. One naive way to compute these counts is toperform string-matching of each transaction against each candidate itemset. Afaster way of performing this operation is to use a candidate hash tree in whichthe candidate itemsets are hashed [3]. Here we explain this via an example tofacilitate the discussions of parallel algorithms and their analysis.Figure 2 shows one example of the candidate hash tree with candidates of size3. The internal nodes of the hash tree have hash tables that contain links to childnodes. The leaf nodes contain the candidate itemsets. A hash tree of candidateitemsets is constructed as follows. Initially, the hash tree contains only a rootnode, which is a leaf node containing no candidate itemset. When each candidateitemset is generated, the items in the set are stored in sorted order. Note thatsince C1 and F1 are created in sorted order, each candidate set is generatedin sorted order without any need for explicit sorting. Each candidate itemsetis inserted into the hash tree by hashing each successive item at the internalnodes and then following the links in the hash table. Once a leaf is reached, thecandidate itemset is inserted at the leaf if the total number of candidate itemsetsare less than the maximum allowed. If the total number of candidate itemsets atthe leaf exceeds the maximum allowed and the depth of the leaf is less than k,the leaf node is converted into an internal node and child nodes are created forthe new internal node. The candidate itemsets are distributed to the child nodesaccording to the hash values of the items. For example, the candidate item setf1 2 4g is inserted by hashing item 1 at the root to reach the left child node ofthe root, hashing item 2 at that node to reach the middle child node, hashingitem 3 to reach the left child node which is a leaf node.

6 Joshi, Han, Karypis, and Kumar
2,5,8

1,4,7 3,6,9

Hash Function

1 2 3 5 6

3 4 5 3 5 6

2 3 5 6

3 5 6

5 6

1 +

2 +

3 +

2 3 4

Transaction

Candidate Hash Tree

3 6 71 3 61 4 5

1 2 4 1 2 5 1 5 9

6 8 9

3 5 7

4 5 7 4 5 8

3 6 8

5 6 7

Fig. 2. Subset operation on the root of a candidate hash tree.

Parallel Algorithms for Discovering Associations 7
1 2 3 5 6

3 4 5 3 5 6

3 5 61 2 +

1 3 + 5 6

1 5 + 6

2 3 5 6

3 5 6

5 6

1 +

2 +

3 +

2 3 4

Transaction

3 6 71 3 61 4 5

1 2 4 1 2 5 1 5 9

6 8 9

3 5 7

4 5 7 4 5 8

3 6 8

5 6 7

Candidate Hash Tree

Fig. 3. Subset operation on the left most subtree of the root of a candidate hash tree.The subset function traverses the hash tree from the root with every itemin a transaction as a possible starting item of a candidate. In the next level ofthe tree, all the items of the transaction following the starting item are hashed.This is done recursively until a leaf is reached. At this time, all the candidatesat the leaf are checked against the transaction and their counts are updatedaccordingly. Figure 2 shows the subset operation at the �rst level of the treewith transaction f1 2 3 5 6g. The item 1 is hashed to the left child node of theroot and the following transaction f2 3 5 6g is applied recursively to the leftchild node. The item 2 is hashed to the middle child node of the root and thewhole transaction is checked against two candidate itemsets in the middle childnode. Then item 3 is hashed to the right child node of the root and the followingtransaction f5 6g is applied recursively to the right child node. Figure 3 showsthe subset operation on the left child node of the root. Here the items 2 and 5are hashed to the middle child node and the following transactions f3 5 6g andf6g respectively are applied recursively to the middle child node. The item 3 ishashed to the right child node and the remaining transaction f5 6g is appliedrecursively to the right child node.As stated earlier, the runtime for the entire algorithm is dominated by thecounting process encoded in the subset function. More precisely, according tothe analysis presented in [13], at level k of the algorithm, the computation timerequired per transaction for visiting the hash tree is proportional to NCk , thenumber of candidate k-itemsets present in a transaction, and the expected num-ber of distinct leaf nodes visited by the transaction. It is shown that as the

8 Joshi, Han, Karypis, and Kumarnumber of leaf nodes in hash tree grows larger, the runtime gets dominatedmore by NCk .2.2 Other Serial AlgorithmsIn the previous subsection, we described Apriori, one of the �rst and most popu-lar algorithms for generating frequent itemsets. There are many other algorithmsproposed after the conception of Apriori. We will briey describe some represen-tative algorithms from the lot, namely DHP [4], Tree Projection algorithms [9,10], PARTITION [5], the sampling-based algorithms [6], a family of algorithmsproposed in [7], the DIC algorithm [8], and the FP-tree based algorithm [11].All the algorithms use the monotone property of the itemset support in someway. As stated earlier, this property implies that a k-itemset is frequent only if allof its (k�1)-subitemsets are frequent. The sets of items can be visualized to forma lattice. Essentially, all the algorithms traverse this itemset lattice. Di�erentways of using the monotone property result in di�erent ways of traversal, andthat reects in the performance. Another dimension where algorithms di�er isthe way they handle the transaction database; i.e. how many passes they makeover the entire database and how they reduce the size of the processed databasein each pass. With these points in mind, we present a comparative summary ofall the algorithms.A class of algorithms generate candidate k-itemsets from frequent (k � 1)-itemsets. These are called level-wise algorithms. The Apriori, DHP, and breadth-�rst Tree Projection algorithms make a pass over the entire database at everylevel of the algorithm. They di�er in the ways they optimize on the number ofcandidates generated, and the ways that make the counting phase e�cient.DHP (direct hashing and pruning) algorithm improves upon the Apriori algo-rithm in two ways. First, it reduces the candidate space by looking ahead in thetransactions for potentially frequent (k + 1)-itemsets while counting candidatek-itemsets. This is achieved by hashing all potentially frequent (k + 1)-subsetsof each transaction to a common hash table, and using this hash table to prunesome (k + 1) candidates without counting them. The algorithm, however, mustbalance the trade-o� between the size of the hash table and its e�ectiveness inaggressive pruning. The second factor which allows DHP to improve upon Apri-ori, is its idea of transaction trimming. While counting at level k, each item ina transaction is checked for whether it appears in at least k di�erent candidatek-itemsets. If it does not, then it will not be present in any subsequent candidatej-itemsets (j > k), and hence it can be removed from the transaction. Similarly,while preparing the hash table at level k, if an item does not appear in any ofthe (k+1)-itemsets being hashed, then it can be removed from the transaction.If the hashing scheme is e�ective in pruning many candidates at an early level,then this transaction trimming scheme reduces the active transaction databasesize substantially, which in turn can reduce the computation time spent pertransaction.Tree Projection algorithms achieve candidate space pruning as well as count-ing e�ciency by combining a novel idea of representing the candidates in a lex-

Parallel Algorithms for Discovering Associations 9icographic tree structure with a way of reducing the transaction database sizein every pass by projecting the transactions onto this lexicographic tree. Thelexicographic tree is an alternative systematic representation of the itemset lat-tice. Each node in the tree is associated with an itemset and a set of its possibleextensions. A node can be extended only by an item that is lexicographicallylarger and appears as an extension of the its parent. A list of active items is keptat each node. Also, the extensions of each node are marked active or inactive.The active item list is used to project a transaction onto the node, and thisprojected transaction needs to ow down only the active extensions. The idea is,only those items in a transaction percolate down the tree that can potentially beuseful in extending the tree by one more level. With every pass of the algorithm,many extensions become progressively inactive, which in turn results in reduc-tion of active item list sizes at all nodes. This yields the algorithm its e�ciencyin counting phase as well as helps it in possibly pruning the candidate spacemore aggressively as compared to Apriori or DHP. The concept of projectioncan be thought of as a more generalized form of transaction trimming used inDHP. Also, the concept of active items and active extensions e�ectively renderthe lexicographic tree as a compact, dynamic version of the hash-tree structuresused in Apriori.The PARTITION and sampling-based algorithms [6] are level-wise, but onlyon a small portion of the entire database. In fact, use of smaller subsets ofdatabase allows them to optimize the database performance by making at mosttwo passes over the entire database.PARTITION algorithm takes the idea of support monotonicity further. Itpartitions the database into multiple parts, and observes that if an itemset isfrequent in the entire database then it is frequent in at least one of the partitions,when the frequency is computed relative to the partition size. This observationis used to prune the potential frequent itemsets by counting the candidates insmaller local partitions. A level-wise algorithm is employed to generate all lo-cally frequent itemsets. All such itemsets are gathered and their global countsare collected in a second pass over the database. Thus, only two database passesare needed. In order to achieve true gain in performance, the algorithm has tominimize the e�ect of data skew across partitions by randomizing the partition-ing scheme. It also has to take care of the trade-o� between the partition sizeand number of partitions. Finding locally large itemsets in smaller partitions isquick, but the lower amount of information available in smaller partitions alsotends to give rise to many false positives because the support is counted withrespect their small size. The PARTITION algorithm has one more novel featureas compared to Apriori, which can potentially accelerate the counting phase. Ituses vertical data layout in which instead of storing a list of items for each trans-action (horizontal layout as used in Apriori), it stores the tid-list of transactionids for each item. It is made sure that the size of each partition is such thatall the required tid-lists in a partition �t in the main memory. This allows theitemset support counting to be performed e�ciently by intersecting the tid-listsof its individual items.

10 Joshi, Han, Karypis, and KumarThe sampling-based algorithms proposed in [6] use a randomly sampled par-tition of the database to �nd locally frequent itemsets in that partition. The gainin performance is possible due to the less amount of data that the algorithmswork on, making it attractive for large databases. However, in order to ensurethe completeness of the frequent itemsets discovered, the algorithm has to doseveral things. First, it has to reduce the support threshold used for discoveringfrequent sets in the sampled data. This is done with the hope of capturing mostof the actual frequent itemsets. Despite of this reduction in support threshold(which cannot be reduced below certain level), some itemsets will be missing.The algorithm has a novel systematic strategy of checking for all the missingitemsets. It introduces a concept of negative border of the locally frequent item-sets. This border is formed by all minimal small itemsets; i.e., the sets whichare infrequent but all their subsets are frequent. Locally frequent sets and thesets in their negative border are counted in the entire database, and these globalcounts are used to see if any true frequent itemsets are lost by sampling. Sincethe algorithm is based on a random sample, the authors present a probabilisticanalysis that relates the sample size, the limit on lowering support threshold,and accuracy that can be achieved.The class of non-level-wise algorithms consists of the hybrid lattice traver-sal technique proposed in [7], the DIC algorithm, and the depth-�rst versionof the tree projection algorithm [10]. Like PARTITION and sampling-based al-gorithms, the design goal for these algorithms is reduction in the number ofpasses made over the entire database. However, the major point of di�erenceis their itemset lattice traversal technique. Instead of a level-wise (or breadth-�rst) traversal, they interleave the depth-�rst and breadth-�rst searches withthe database passes. In other words, the candidate generation and candidatecounting phases are interleaved. The guiding factor is the search for either themaximal frequent itemsets [7] or the minimal infrequent itemsets [8].The lattice traversal algorithms proposed in [7] use a vertical layout (simi-lar to PARTITION). One pass is made over the database to generate the itemtid-lists. After that, no more passes are required over the database. Only the tid-lists need to be scanned. A novel feature of all their algorithms is that they areseeded by an itemset clustering method. The clustering allows them to identifyclose approximations to the potentially maximal itemsets. This may substan-tially prune the candidate search space by dividing the original itemset latticeinto smaller sublattices formed only by items belonging to same cluster. Theypropose three di�erent approaches to traverse these smaller itemset sublattices.The bottom-up approach does a breadth-�rst traversal of the lattice startingwith the 2-itemsets. This is similar to the level-wise algorithms. But it faces aproblem of generating all the subsets of frequent itemsets. The top-down ap-proach starts with potentially maximal itemsets given by the clustering, andgoes down the lattice until all the maximal frequent itemsets are found. Thisapproach faces the problem of costly multi-way intersections of tid-lists as wellas it su�ers from the approximate nature of clusters. A hybrid approach com-bines the good features of both approaches, and is shown to be better than

Parallel Algorithms for Discovering Associations 11the two. Although it is true that the entire database is scanned once, there areseveral passes made over the individual tid-lists. The main performance gainachieved may be attributed to their clustering scheme to prune the search spaceclubbed with an underlying assumption that the tid-lists for individual items or2-itemsets are not very large.The DIC algorithm is a recent non-level-wise algorithm which is actuallycloser to the sampling-based algorithms. Instead of using a random sample of thedatabase and potentially losing some frequent item-sets, it proposes a systematicsearch of the database that reduces the number of database passes to somenumber between 1 and the total number of passes that would be made by alevel-wise algorithm. Unlike level-wise algorithms which count only k-itemsets inone pass of the algorithm, DIC starts counting longer itemsets after some �xedintervals during a given database pass. For example, in a database of 10000transactions, it starts computing 1-itemsets at �rst transaction, then some 2-itemsets start getting counted after M=1000 transactions, some 3-itemsets startgetting counted after 2*M=2000 transactions, and so on. The value of M canbe changed. Each itemset that the algorithm decides to count, gets counted ineach transaction. The algorithm keeps track of potential frequent itemsets andpotential minimal small itemsets. The counting starts only for those itemsetswhose subsets have been found frequent in the data visited so far. Essentiallythe amount of lattice traversed by the algorithm is same as that by a level-wisealgorithm, but the dynamic nature of counting the itemsets gives the algorithma exibility to reduce database passes. The crucial factor for its performance isthe ability to identify frequent subsets of a given itemset early enough so that theitemset starts getting counted early. Ideally if the probability of seeing a givenitemset in any fraction of transactions is the same, then DIC performs very well.However, if the dataset is not homogeneous, then the performance would su�er.The authors of DIC identify this problem and propose some remedies such asrandomization and relaxing the support threshold.The depth-�rst version of the tree projection algorithm [10] generates thelexicographic tree in a depth-�rst manner. The crucial factor for its performanceis that the entire transaction database needs to �t in the memory, which is notvery practical for many transaction databases. Hence, we will not review it indetail here.Finally, we briey review a class of algorithms [24, 11] that choose a radicallydi�erent approach to discover frequent itemsets. These algorithms do not involvegeneration of potential candidates. The algorithm based on FP-trees [11] usesa compact trie-like representation of the transaction database that is used todirectly infer the frequent itemsets involving a given frequent item. This com-pact representation is achieved using the data structure called frequent patterntree (FP-tree), which is a data structure based on set-enumeration tree formedusing frequency-ordered 1-itemsets. It is constrained using the given transac-tion database in the following manner. Each transaction is transformed to afrequency-ordered set of items and is mapped to the set-enumeration tree. Thecounts of items on the path it gets mapped to are incremented by one. All the

12 Joshi, Han, Karypis, and Kumaroccurrences of a given item are linked across the tree. Once FP-tree is con-structed, for each item, the algorithm �nds all the frequent itemsets having thatitem as the last item (in frequency-order). This is achieved by using the pre�xpaths to all the occurrences of that item in the tree. A systematic recursive de-composition of the pre�x paths yields all the desired frequent itemsets. If thisprocess is mapped to a lattice traversal process, then the algorithm essentiallytraverses the lattice in a top-down fashion (i.e. going from longer itemsets downto smaller itemsets), starting with the itemset formed by all the frequent itemsin the union of the items occurring in the pre�x paths. However, its recursionprocess breaks the lattice down into only the interesting sublattices driven bythe increasingly smaller FP-trees. This authors show their algorithm to be anorder of magnitude faster than the Apriori algorithm and considerably fasterthan the Tree Projection algorithm.A related algorithm proposed in [24], also uses the compact trie [25] repre-sentation of the transaction database, to directly infer the frequent associations.However, unlike FP-tree, which encodes the entire transaction database into atrie-like structure, their algorithm constructs a trie only out of those subsets ofa transaction that contains less than a pre-speci�ed number of items. This wasmotivated by their observation that the largest frequent itemsets do not con-tain more than 8-10 items. Once the trie is constructed, they use all the subsetspresent in the trie as potential frequent sets. However, unlike FP-tree based al-gorithm, they do not give a systematic algorithm for inferring actual frequentitemsets based on support.This concludes our survey of the representative serial algorithms for comput-ing frequent itemsets.3 Parallel FormulationsThe enormity and high dimensionality of datasets typically available as input tothe problem of association rule discovery, makes it an ideal problem for solvingon multiple processors in parallel. The primary reasons are the memory and CPUspeed limitations faced by single processors. Despite of many recent improvedapproaches to compute all frequent itemsets, the sheer amount of computationalwork that needs to be done for large and high dimensional problems results inprohibitively large runtimes on single processors. Thus, it is critical to designe�cient parallel algorithms to do the task. Another reason for designing parallelalgorithms comes from the fact that many transaction databases are alreadyavailable in parallel databases or they are distributed at multiple sites to beginwith. The cost of of bringing them all to one site or one computer for serialdiscovery of association rules can be prohibitively expensive.In the process of association rule discovery, the �rst part of �nding frequentitemsets is much more expensive as compared to the second part of �nding rulesfrom these frequent itemsets. Hence, we concentrate on parallel algorithms forfrequent itemset discovery. We reviewed many di�erent serial algorithms in pre-vious subsection. Except for a few, most of these algorithms involve generation

Parallel Algorithms for Discovering Associations 13of candidate itemsets and counting them in the transaction database, especiallythe level-wise algorithms such as Apriori. First, we present possible parallel for-mulations of such algorithms and map the existing parallel algorithms to theseformulations. In the end, we review parallel formulations of some non-level-wisealgorithms.3.1 Parallel Formulations of level-wise AlgorithmsThe computational work in level-wise algorithms can be viewed to consist oftwo parts: the e�ort spent in generating the candidates and the e�ort spentin counting them. In order to distribute this work among processors, multiplepossibilities emerge depending on how the transactions and candidate itemsetsare assigned to processors. The need for parallel algorithms comes from thetransaction database being too large (enormity of the database), or possiblenumber of frequent itemsets being too large (because of high dimensionality ofthe database), or both. Correspondingly, in order to achieve concurrency, eitherthe candidates need to be counted in parallel, or they need to be generated inparallel, or both phases need to be done in parallel.We assume that the transaction database is too large to be replicated amongall processors. For most practical problems in data mining, this is a fair orrather necessary assumption. Usually, the transactions are distributed amongprocessors equally. Given this, the issue becomes how to distribute the candi-dates among processors such that their counting and generation is e�ectivelyparallelized. There are two possibilities. One is to replicate the candidates on allprocessors and the other is to avoid replication. In the following we review indetail various algorithms based on these possibilities. The discussion takes intoaccount the issues of minimizing parallelization overheads, extracting concur-rency, and utilizing the total available memory e�ectively.Replicating Candidate Itemsets One possible way to parallelize is to simplyreplicate the candidate generation process on all the processors, and parallelizethe counting process. Here are a few representative algorithms that take thisapproach.{ Count Distribution (CD): In this parallel formulation of Apriori algo-rithm, proposed in [26], each processor computes how many times all thecandidates appear in the locally stored transactions. This is done by build-ing the entire hash tree that corresponds to all the candidates and thenperforming a single pass over the locally stored transactions to collect thecounts. The global counts of the candidates are computed by summing theseindividual counts using a global reduction operation [27]. This algorithm isillustrated in Figure 4. Note that since each processor needs to build a hashtree for all the candidates, these hash trees are identical at each processor.Thus, excluding the global reduction, each processor in the CD algorithmexecutes the serial Apriori algorithm on the locally stored transactions. The

14 Joshi, Han, Karypis, and KumarNPA (Non-Partitioned Apriori) algorithm, proposed in [15], is also identicalto this CD algorithm.This algorithm has been empirically shown to scale linearly with the num-ber of transactions [26]. A detailed scalability analysis is presented by [13].Given N number of transactions and P number of processors, if M is the totalnumber of candidates that get generated, then they show that the parallelruntime of the algorithm is Ts=P + O(M), where Ts is the serial runtimeof the algorithm. The O(M) term comes from the hash tree constructionand global reduction of counts. This indicates that the algorithm is scalablein number of transactions, however it does not parallelize the computationof building the candidate hash tree. This step becomes a bottleneck withlarge number of processors. Furthermore, if the number of candidates islarge, then the hash tree does not �t into the main memory. In this case,this algorithm has to partition the hash tree and compute the counts byscanning the database multiple times, once for each partition of the hashtree. The cost of extra database scanning can be expensive in the machineswith slow I/O system. Note that the number of candidates increases if eitherthe number of distinct items in the database increases or if the minimumsupport level of the association rules decreases. Thus the CD algorithm is ef-fective for small number of distinct items and a high minimum support level.

2{1, 2}

{1, 3}

{2, 3}

{2, 4}

{3, 4}

{4, 5}

5

3

7

6

2

N/P

Data

Count

N/P

Data

Count

N/P

Data

Count

Candidate Hash Tree Candidate Hash Tree Candidate Hash Tree

7{1, 2}

{1, 3}

{2, 3}

{2, 4}

{3, 4}

{4, 5}

3

1

1

3

9

0{1, 2}

{1, 3}

{2, 3}

{2, 4}

{3, 4}

{4, 5}

2

8

2

6

6

M M M

Global Reduction

N: number of data items M: size of candidate set P: number of processors

Proc 0 Proc 1 Proc 2

Fig. 4. Count Distribution (CD) Algorithm

Parallel Algorithms for Discovering Associations 15{ Parallel PARTITION algorithm: The parallel formulation of the serialPARTITION algorithm has been given in [5]. The serial algorithm has in-herent parallelism in it as far as processing of each partition is concerned.The algorithm is very similar to the count distribution algorithm, in that thedata is distributed and the candidate set is replicated among processors. Thedi�erence is that the frequent itemsets are counted in four stages. In the �rststage, each processor discovers locally frequent itemsets assuming that its lo-cal data is the entire database. Next, these itemsets are exchanged amongprocessors, forming the global candidate set. In the third stage, local countsfor these candidates are computed by scanning the local data again. Finally,a communication operation is performed to add up the local counts to getthe global counts for the candidates, from which globally frequent itemsetscan be determined. In this algorithm, the size of the candidate set generatedin second stage is dependent on the size of local datasets and skew in thedata. It could potentially be bigger than the candidate set in CD because offalse positives, and hence can cause the algorithm to lose its main purpose ofachieving e�ciency by pruning based on local counts. As in the serial case,the vertical data layout used in parallel PARTITION can make the count-ing phase e�cient, and allows it to avoid multiple scans of the local database.{ PDM Algorithm: Another parallel algorithm which is based on the serialApriori-like algorithm is PDM [14], which is a parallel formulation of theDHP [4] algorithm. The approach to parallelization is very much similar tothe CD algorithm. The di�erence is in the fact that DHP di�ers from Apri-ori in its use of hash tables to look ahead into the potential candidates ofnext phase. The phase of candidate generation from frequent k-itemsets inparallelized in PDM by using a parallel nested loop join algorithm, whereeach processor generates only a small subset of entire candidate set. Thesesets are exchanged by all nodes to generate global candidate set similar toCD. The crucial point in the parallel formulation of DHP is the constructionof the hash table in parallel. Since the hash table is used in the subsequentcandidate generation pass to prune the candidates, a global copy of the hashtable should be available to all the processors. While counting k-itemsets,the hash table stores the counts of k+1-itemsets appearing in transactions.Since the transactions are partitioned across processors, each processor willhave the counts due to local transactions. A simple approach of gatheringglobal counts for each location in the hash table is to do a global exchangeof all local hash tables. The potential of requiring a large hash table size,especially for 2-itemsets, makes this simple approach ine�cient. The paperproposes an optimization over this by simply observing the fact that not allentries in the local hash tables need to be exchanged with other processors.An entry in the global hash table will be greater than support threshold, s,only if at least one processor has its corresponding local entry greater thans=p, where p is the number of processors. This fact is used to determine whichentries should be exchanged using global broadcast. Rest of the entries in thehash table are exchanged using a clue-and-poll procedure which reduces the

16 Joshi, Han, Karypis, and Kumaramount of communication. Since the same hash table and the entire candi-date set is available to all the processors, the transaction trimming feature ofDHP algorithm is easily maintained in PDM as well. Each processor tries toreduce the size of transactions in its local partition. Overall, PDM is muchsimilar to CD. But, e�ective parallelization of hash table construction, thepossible advantages gained by a good hashing function, and the transactiontrimming might give PDM an edge over CD.{ Count Distributed Tree Projection algorithm: This formulation pro-posed in [9] is based on the CD algorithm described above. Identical lexico-graphic tree, upon which the tree projection algorithms are based, is built oneach processor and counts are communicated at every level. As with CD, thisparallel formulation works well only if the lexicographic tree �ts in memory,and its scalability with number of candidates is poor.Partitioning Candidate Itemsets Given the problems possibly encounteredbecause of replication of candidates, an alternative approach would be to par-tition the candidates among processors. However, many issues arise regardinghow to partition them and how to e�ectively parallelize counting for given par-titioning. Following algorithms handle these issues. DD algorithm discussed �rstmakes a simple yet weak e�ort to parallelize. The next algorithm, IDD, improvesupon it greatly. A few other algorithms, inspired by IDD, are also described inthe end.{ Data Distribution (DD): This algorithm [26] addresses the memory prob-lem of the CD algorithm by partitioning the candidate item-sets among theprocessors. This partitioning is done in a round robin fashion. Each proces-sor is responsible for computing the counts of its locally stored subset of thecandidate item-sets for all the transactions in the database. In order to dothat, each processor needs to scan the portions of the transactions assignedto the other processors as well as its locally stored portion of the transac-tions. In the DD algorithm, this is done by having each processor receive theportions of the transactions stored in the other processors as follows. Eachprocessor allocates P bu�ers (each one page long and one for each proces-sor). At processor Pi, the ith bu�er is used to store transactions from thelocally stored database and the remaining bu�ers are used to store transac-tions from the other processors. Now each processor Pi checks the P bu�ersto see which one contains data. Let l be this bu�er (ties are broken in favorof bu�ers of other processors and ties among bu�ers of other processors arebroken arbitrarily). The processor processes the transactions in this bu�erand updates the counts of its own candidate subset. If this bu�er correspondsto the bu�er that stores local transactions (i.e., l = i), then it is sent to allthe other processors (via asynchronous sends), and a new page is read fromthe local database. If this bu�er corresponds to a bu�er that stores transac-tions from another processor (i.e., l 6= i), then it is cleared and this bu�er ismarked available for next asynchronous receive from any other processors.

Parallel Algorithms for Discovering Associations 17This continues until every processor has processed all the transactions. Hav-ing computed the counts of its candidate item-sets, each processor �nds thefrequent item-sets from its candidate item-set and these frequent item-setsare sent to every other processor using an all-to-all broadcast operation [27].Figure 5 shows the high level operations of the algorithm. Note that eachprocessor has a di�erent set of candidates in the candidate hash tree.The SPA (Simply Partitioned Apriori) algorithm, proposed in [15], is iden-tical to DD. It partitions the candidates among processors in a round robinmanner. Each transaction is broadcast to all the processors so as to generatea global count for all the candidates.
N/P N/P N/P

M/P M/P M/P

Local Data Remote Data

CountCount

Local Data Remote Data

CountCount

Local Data Remote Data

CountCount

Data Data

Broadcast Broadcast Broadcast

Data

Broadcast

Candidate Hash Tree Candidate Hash Tree Candidate Hash Tree

{1, 3}

{3, 4}

{4, 7}

9

2

3

{1, 4}

{3, 5}

{5, 6}

5

1

2

{1, 2}

{2, 5}

{4, 6}

3

7

5

All-to-all Broadcast

N: number of data items M: size of candidate set P: number of processors

Data

Proc 0 Proc 1 Proc 2

Fig. 5. Data Distribution (DD) AlgorithmThe DD algorithm exploits the total available memory better than CD, asit partitions the candidate set among processors. As the number of proces-sors increases, the number of candidates that the algorithm can handle alsoincreases. However, as reported in [26], the performance of this algorithm issigni�cantly worse than the CD algorithm. The run time of this algorithmis 10 to 20 times more than that of the CD algorithm on 16 processors [26].The problem lies with the communication pattern of the algorithm and theredundant work that is performed in processing all the transactions.The communication pattern of this algorithm causes three problems. First,during each pass of the algorithm each processor sends to all the other pro-cessors the portion of the database that resides locally. In particular, each

18 Joshi, Han, Karypis, and Kumarprocessor reads the locally stored portion of the database one page at a timeand sends it to all the other processors by issuing P � 1 send operations.Similarly, each processor issues a receive operation from each other proces-sor in order to receive these pages. If the interconnection network of theunderlying parallel computer is fully connected (i.e., there is a direct linkbetween all pairs of processors) and each processor can receive data on allincoming links simultaneously, then this communication pattern will lead toa very good performance. In particular, if O(N=P) is the size of the databaseassigned locally to each processor, the amount of time spent in the commu-nication will be O(N=P). However, even on the parallel computer with fullyconnected network, if each processor can receive data from (or send data to)only one other processor at a time, then the communication will be O(N).On all realistic parallel computers, the processors are connected via a sparsernetworks (such as 2D, 3D or hypercube) and a processor can receive datafrom (or send data to) only one other processor at a time. On such ma-chines, this communication pattern will take signi�cantly more than O(N)time because of contention within the network.Second, in architectures without asynchronous communication support andwith �nite number of communication bu�ers in each processor, the proposedall-to-all communication scheme causes processors to idle. For instance, con-sider the case when one processor �nishes its operation on local data andsends the bu�er to all other processors. Now if the communication bu�er ofany receiving processors is full and the outgoing communication bu�ers arefull, then the send operation is blocked.Third, if we look at the size of the candidate sets as a function of the numberof passes of the algorithm, we see that in the �rst few passes, the size of thecandidate sets increases and after that it decreases. In particular, during thelast several passes of the algorithm, there are only a small number of itemsin the candidate sets. However, each processor in the DD algorithm stillsends the locally stored portions of the database to all the other processors.Thus, even though the computation decreases, the amount of communicationremains the same.The redundant work is introduced due to the fact that every processor has toprocess every single transaction in the database. In CD (see Figure 4), onlyN=P transactions go through each hash tree ofM candidates, whereas in DD(see Figure 5), all N transactions have to go through each hash tree of M=Pcandidates. Although, the number of candidates stored at each processorhas been reduced by a factor of P , the amount of computation performedfor each transaction has not been proportionally reduced. According to theanalysis presented in [13], in general, the amount of work per transactionwill go down by a factor much smaller than P .The detailed analysis of parallel runtime is given in [13], according to whichthe algorithm is not scalable with respect to number of transactions, but itscales well with respect to number of candidates.

Parallel Algorithms for Discovering Associations 19{ Intelligent Data Distribution (IDD): This algorithm was proposed in[28]. It solves the problems of the DD algorithm. First, in IDD, the locallystored portions of the database are sent to all the other processors by us-ing a ring-based all-to-all broadcast described in [27]. Compared to DD,where all the processors send data to all other processors, IDD performsonly a point-to-point communication between neighbors, thus eliminatingany communication contention that DD algorithm faces. Thus, the all-to-allbroadcast operation takes O(N) time on any parallel architecture that canbe embedded in a ring. Furthermore, if the time to process a bu�er doesnot vary much, then there is little time lost in idling. Also, when it is im-plemented using asynchronous communication operations, the computationand communication operations can be overlapped.Second problem of DD that IDD improves upon is that of redundant work.In order to eliminate the redundant work due to the partitioning of the can-didate item-sets, IDD �nds a fast way to check whether a given transactioncan potentially contain any of the candidates stored at each processor. Thiscannot be done by partitioning Ck in a round-robin fashion. However, ifCk is partitioned among processors in such a way that each processor getsitem-sets that begin only with a subset of all possible items, then the itemsof a transaction can be checked against this subset to determine if the hashtree contains candidates starting with these items. The hash tree is traversedwith only the items in the transaction that belong to this subset. Thus, theredundant work problem of DD is solved by the intelligent partitioning ofCk.These points can be understood better by looking at Figure 6, which showsthe high level picture of the algorithm. In this example, Processor 0 has allthe candidates starting with items 1 and 7, Processor 1 has all the candidatesstarting with 2 and 5, and so on. Each processor keeps the �rst items ofthe candidates it has in a bit-map. In the Apriori algorithm, at the rootlevel of hash tree, every item in a transaction is hashed and checked againstthe hash tree. However, in IDD, at the root level, each processor �ltersevery item of the transaction by checking against the bit-map to see if theprocessor contains candidates starting with that item of the transaction. Ifthe processor does not contain the candidates starting with that item, theprocessing steps involved with that item as the �rst item in the candidatecan be skipped. This reduces the amount of transaction data that has to gothrough the hash tree; thus, reducing the computation. For example, let f12 3 4 5 6 7 8g be a transaction that processor 0 is processing in the subsetfunction discussed in Section 2.1. At the top level of the hash tree, processor0 will only proceed with items 1 and 7 (i.e., 1 + 2 3 4 5 6 7 8 and 7 +8). When the page containing this transaction is shifted to processor 1, thisprocessor will only process items starting with 2 and 5 (i.e., 2 + 3 4 5 6 78 and 5 + 6 7 8). Figure 7 shows how this scheme works when a processorcontains only those candidate item-sets that start with 1, 3 and 5.Thus for each transaction in the database, IDD partitions the amount ofwork to be performed among processors, thus eliminating most of the re-

20 Joshi, Han, Karypis, and Kumar
N/P N/P N/P

Local Data Remote Data Local Data Remote Data Local Data Remote Data

Data DataData

Shift Shift Shift

Data

Shift

M/P M/P M/P

2, 5 4

Count Count

1, 7

Count Count Count Count

Candidate Hash Tree Candidate Hash TreeCandidate Hash Tree

Bit Map Bit Map Bit Map

{2, 3}

{2, 5}

{5, 6}

2

6

9

{4, 5}

{4, 6}

{4, 7}

2

6

9

{1, 2}

{1, 3}

{7, 8}

2

6

9

Proc 0 Proc 1 Proc 2

N: number of data items M: size of candidate set

All-to-all Broadcast

P: number of processorsFig. 6. Intelligent Data Distribution (IDD) Algorithm

3 4 5

1 2 3 5 6

2 3 5 6

3 5 6

5 6

1 +

2 +

3 +

Candidate Hash Tree

3 6 71 3 61 4 5

1 2 4 1 2 5 1 5 9

Transaction

5 6 7

Skipped!!
bitmap

1, 3, 5

3 6 83 5 7

3 5 6Fig. 7. Subset operation on the root of a candidate hash tree in IDD.

Parallel Algorithms for Discovering Associations 21dundant work of DD. Note that both the judicious partitioning of the hashtree (indirectly caused by the partitioning of candidate item-set) and the�ltering step are required to eliminate this redundant work.The intelligent partitioning of the candidate set used in IDD brings up theissue of load balancing. One of the criteria of a good partitioning involvedhere is to have an equal number of candidates in all the processors. This givesabout the same size hash tree in all the processors and thus provides goodload balancing among processors. Note that in the DD algorithm, this wasaccomplished by distributing candidates in a round robin fashion. This doesnot give any guarantees of load balance. Even in IDD, a naive method forassigning candidates to processors can lead to a signi�cant load imbalance.For instance, consider a database with 100 distinct items numbered from 1to 100 and that the database transactions have more data items numberedwith 1 to 50. Let the candidates be partitioned between two processors. Ifall the candidates starting with items 1 to 50 are assigned to processor P0and all candidates starting with items 51 to 100 to processor P1, then therewould be more work for processor P0.To achieve an equal distribution of the candidate item-sets, the authors ofIDD use a partitioning algorithm that is based on bin-packing [29]. For eachitem, they �rst compute the number of candidate item-sets starting withthis particular item. Note that at this time they do not actually store thecandidate item-sets, but they just store the number of candidate item-setsstarting with each item. Then a bin-packing algorithm is used to partitionthese items in P buckets such that the sum of numbers of the candidateitem-sets starting with these items in each bucket are roughly equal. Once thelocation of each candidate item-set is determined, then each processor locallyregenerates and stores candidate item-sets that are assigned to this processor.Note that bin-packing is used per pass of the algorithm and the amount oftime spent on bin-packing is minor compared to the overall runtime. Figure 6shows the partitioned candidate hash tree and its corresponding bitmaps ineach processor.Note that this scheme will not be able to achieve an equal distribution ofcandidates if there are too many candidate itemsets starting with the sameitem. For example, if there are more than M=P candidates starting withthe same item, then one processor containing candidates starting with thisitem will have more than M=P candidates even if no other candidates areassigned to it. This problem gets more serious with increasing P . One wayof handling this problem is to partition candidate item sets based on morethan the �rst items of the candidate item sets. In this approach, wheneverthe number of candidates starting with one particular item is greater thanthe threshold, this item set is further partitioned using the second item ofthe candidate item sets.Note that the equal assignment of candidates to the processors does notguarantee the perfect load balance among processors. This is because thecost of traversal and checking at the leaf node are determined not only bythe size and shape of the candidate hash tree, but also by the actual items

22 Joshi, Han, Karypis, and Kumarin the transactions. However, in the experiments, authors [28] have observeda reasonably good correlation between the size of candidate sets and theamount of work done by each processor. For example, with 4 processors, theload imbalance was 1.3% in terms of the number of candidate sets, whichtranslated into 5.4% load imbalance in the actual computation time. With8 processors, load imbalance was 2.3% in the number of candidate sets,and this resulted in 9.4% load imbalance in the computation time. Since thee�ect of transactions on the work load cannot be easily estimated in advance,IDD scheme only ensures that each processor has roughly equal number ofcandidate itemsets in the local hash tree.A detailed analysis of the load balancing issues and scalability of IDD isgiven in [13]. In summary, IDD has the exibility of minimizing the datamovement cost by overlapping the counting computation with data com-munication. Moreover, it does not perform any redundant computation asin DD, which makes it more scalable than DD with respect to number oftransactions, and it is scalable with respect to the number of candidates.{ HPA Algorithm: The HPA (Hash Partitioned Apriori) algorithm, given in[15], is similar in spirit to the IDD algorithm. It tries to reduce the commu-nication overhead of sending each transaction to every processor. It assignsthe candidates to processors using a hash function, which determines whichprocessor the candidate would go to. In the counting phase, if candidatek-itemsets are being counted, then each transaction in local database is �rstprocessed to �nd all the k-itemsets present in the transaction. Each suchitemset is hashed using the same hash function as used for partitioning thecandidates to derive the destination processor, and is sent to that processor.This partitioning due to hashing function can be considered similar to themechanism of partitioning candidates in IDD, but unlike IDD, HPA does notgive any guarantees of load balance achieved because of its hashing-basedcandidate distribution.{ Intelligent Data Distributed Tree Projection algorithm: This formu-lation proposed in [9] is based on the IDD algorithm described above. Thelexicographic tree, upon which the tree projection algorithms are based, isdistributed among di�erent processors based on the �rst item in the tree.Using the active item lists at the root of each of the processor's lexicographictree, only relevant transactions can be communicated to a given processor.This can further save on the communication overhead.Hybrid Approach: Partial Replication of Candidate Itemsets We sawtwo approaches: pure replication of candidates and pure partitioning with noreplication. However, according to analyses of these approaches, especially forCD and IDD, it can be seen that each approach has some issues regardingscalability. In particular, CD is scalable with respect to number of transactionbecause of replicated candidate sets, whereas IDD is scalable with respect to

Parallel Algorithms for Discovering Associations 23number of candidates. This hybrid approach is essentially an attempt to see iftwo approaches can be combined via partial replication of candidates, to achievebetter scalability than both. In the following, we discuss some algorithms thathave been able to do this successfully.{ HD (Hybrid Distribution) Algorithm: The IDD algorithm exploits thetotal system memory by partitioning the candidate set among all proces-sors. The average number of candidates assigned to each processor is M=P ,whereM is the number of total candidates. As more processors are used, thenumber of candidates assigned to each processor decreases. This has two im-plications. First, with fewer number of candidates per processor, it is muchmore di�cult to balance the work. Second, the smaller number of candidatesgives a smaller hash tree and less computation work per transaction. Even-tually the amount of computation may become less than the communicationinvolved. This would be more evident in the later passes of the algorithm asthe hash tree size further decreases dramatically. This reduces overall e�-ciency of the parallel algorithm. This will be an even more serious problemin a system that cannot perform asynchronous communication.The Hybrid Distribution (HD) algorithm addresses the above problem bycombining the CD and the IDD algorithms in the following way. Considera P -processor system in which the processors are split into G equal sizegroups, each containing P=G processors. In the HD algorithm, we executethe CD algorithm as if there were only P=G processors. That is, we partitionthe transactions of the database into P=G parts each of size N=(P=G), andassign the task of computing the counts of the candidate set Ck for eachsubset of the transactions to each one of these groups of processors. Withineach group, these counts are computed using the IDD algorithm. That is, thetransactions and the candidate set Ck are partitioned among the processorsof each group, so that each processor gets roughly jCkj=G candidate item-sets and N=P transactions. Now, each group of processors computes thecounts using the IDD algorithm, and the overall counts are computing byperforming a reduction operation among the P=G groups of processors.The HD algorithm can be better visualized if we think of the processorsas being arranged in a two dimensional grid of G rows and P=G columns.The transactions are partitioned equally among the P processors. The can-didate set Ck is partitioned among the processors of each column of thisgrid. This partitioning of Ck is identical for each column of processors; i.e.,the processors along each row of the grid get the same subset of Ck . Figure 8illustrates the HD algorithm for a 3 � 4 grid of processors. In this exam-ple, the HD algorithm executes the CD algorithm as if there were only 4processors, where the 4 processors correspond to the 4 processor columns.That is, the database transactions are partitioned in 4 parts, and each oneof these 4 hypothetical processors computes the local counts of all the candi-date item-sets. Then the global counts can be computed by performing theglobal reduction operation discussed in Section 3.1. However, since each oneof these hypothetical processors is made up of 3 processors, the computation

24 Joshi, Han, Karypis, and Kumarof local counts of the candidate item-sets in a hypothetical processor requiresthe computation of the counts of the candidate item-sets on the databasetransactions sitting on the 3 processors. This operation is performed by ex-ecuting the IDD algorithm within each of 4 hypothetical processors. Thisis shown in the step 1 of Figure 8. Note that processors in the same rowhave exactly the same candidates, and candidate sets along the each columnpartition the total candidate set. At the end of this operation, each processorhas complete count of its local candidates for all the transactions located inthe processors of the same column (i.e., of a hypothetical processor). Now areduction operation is performed along the rows such that all processors ineach row have the sum of the counts for the candidates in the same row. Atthis point, the count associated with each candidate item-set corresponds tothe entire database of transactions. Now each processor �nds frequent item-sets by dropping all those candidate item-sets whose frequency is less thanthe threshold for minimum support. These candidate item-sets are shown asshaded in Figure 8(b). In the next step, each processor performs all-to-allbroadcast operation along the columns of the processor mesh. At this point,all the processors have the frequent sets and are ready to proceed to the nextpass.The HD algorithm determines the con�guration of the processor grid dy-namically. In particular, the HD algorithm partitions the candidate set intoa big enough section and assign a group of processors to each partition. Letm be a user speci�ed threshold. If the total number of candidates M is lessthan m, then the HD algorithm makes G equal to 1, which means that theCD algorithm is run on all the processors. Otherwise G is set to dM=me.The HD algorithm inherits all the good features of the IDD algorithm. Italso provides good load balance and enough computation work by maintain-ing minimum number of candidates per processor. At the same time, theamount of data movement in this algorithm has been cut down to 1=G ofthe IDD. A detailed parallel runtime analysis of HD is given in [13]. It showsthat HD is scalable with respect to both number of transactions and numberof candidates. The analysis also proves the necessary conditions under whichHD can outperform CD. Detailed experimental results which compare CD,DD, IDD, and HD formulations of Apriori algorithm are given in [28]. HDis shown to be faster and more scalable as compared to the other algorithms.{ HPA-ELD algorithm: The paper [15] that proposed the HPA algorithm,proposes another algorithm called HPA-ELD (Hash-Partitioned Apriori withExtremely Large Itemsets Duplication). This algorithm reduces the commu-nication required by HPA, by using partial replication of candidates. It �rstsorts the itemsets based on their frequency of appearance and replicates themost frequently occurring itemsets over all processors. For the replicatedcandidates, NPA (or CD) algorithm is used to collect global counts. Forthe rest, HPA algorithm is used. Because of the replication of most frequentitemsets, HPA-ELD is less sensitive to the data skew. Also, it also utilizes thelocal processor memory e�ciently in case of relatively small size of candidate

Parallel Algorithms for Discovering Associations 25
1, 2

4, 5

7, 8

1

0

3

2, 3

8, 9

5, 6

3

1

2

6, 8

6, 7

3, 4 0

2

3

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

All-to-all
Broadcast

All-to-all
Broadcast

All-to-all
Broadcast

All-to-all
Broadcast

Shift
Data

Shift
Data

Shift
Data

Shift
Data

Step 2: Reduction Operation Along the Rows

Step 3: All-to-all Broadcast Operation Along the Columns

Step 1: Partitioning of Candidate Sets and Data Movement Along the Columns

Data Shift

Data Shift

Data Shift

Data Shift

Data Shift

Data Shift

Candidate Hash Tree

Candidate Hash Tree

Candidate Hash Tree

Data Shift

Data Shift

Candidate Hash Tree

Candidate Hash Tree

Candidate Hash Tree

Candidate Hash Tree

Candidate Hash Tree

Candidate Hash Tree

Candidate Hash Tree

Candidate Hash Tree

Candidate Hash Tree

1, 2

4, 5

7, 8

0

1

2

2, 3

8, 9

5, 6

0

1

2

6, 8

6, 7

3, 4 1

4

0

1, 2

4, 5

7, 8

2

3

1

2, 3

8, 9

5, 6

0

0

2

6, 8

6, 7

3, 4 0

1

1 6, 8

6, 7

3, 4 1

0

1

2, 3

8, 9

5, 6

1

1

2

1, 2

4, 5

7, 8

0

2

3

Candidate Hash Tree Candidate Hash TreeCandidate Hash TreeCandidate Hash Tree

Candidate Hash Tree Candidate Hash TreeCandidate Hash TreeCandidate Hash Tree

Candidate Hash Tree Candidate Hash TreeCandidate Hash TreeCandidate Hash Tree

6, 8

6, 7

3, 4 2

7

5 6, 8

6, 7

3, 4 2

7

5 6, 8

6, 7

3, 4 2

7

5 6, 8

6, 7

3, 4 2

7

5

1, 2

4, 5

7, 8

3

6

9

1, 2

4, 5

7, 8

3

6

9

1, 2

4, 5

7, 8

3

6

9

1, 2

4, 5

7, 8

3

6

9

2, 3

8, 9

5, 6

4

3

8

2, 3

8, 9

5, 6

4

3

8

2, 3

8, 9

5, 6

4

3

8

2, 3

8, 9

5, 6

4

3

8

Fig. 8. Hybrid Distribution (HD) Algorithm in 3� 4 Processor Mesh (G = 3; P = 12)

26 Joshi, Han, Karypis, and Kumaritemsets. This replication of highly frequent itemsets to all processors is sim-ilar in spirit to the HD algorithm. However, HD replicates some candidateson a small number of processors, instead of on all processors. According tothe performance comparisons presented in [15], HPA-ELD performs betterfor the smaller support thresholds, whereas NPA performs better for largesupport thresholds. However, as with HPA, the performance of HPA-ELD iscritically dependent on the hashing scheme, and the paper does not provideany theoretical results regarding the scalability of the algorithm.3.2 Other Parallel FormulationsAlong with the parallel formulations of level-wise algorithms, presented in pre-vious subsections, many other schemes have been proposed in the literature sofar[5, 14, 16, 17, 15]. This section reviews these formulations in a comparativemanner.Parallel formulation, DMA, designed speci�cally for distributed databases isdescribed in [17]. It uses an idea of pruning based on local count. The foundingprinciple of DMA is similar to that of PARTITION: a globally frequent itemset(when support is counted with respect to the entire database) has to be frequentin at least one of the processors (when support is counted with respect to thelocal database). DMA uses this principle to compute heavy itemsets at eachsite. These are the itemsets which are frequent locally as well as globally. Thek+1-candidates are locally generated using the local heavy k-itemsets instead ofusing the globally frequent k-itemsets. Use of heavy itemsets can generate muchsmaller number of candidates overall, when compared to the CD algorithm whichuses global frequent k-itemsets. Local counts for these candidates are measuredby scanning the database once. The candidates which are not locally frequentare pruned away and the remaining candidates are communicated to all otherprocessors. Each processor measures the local count for each candidate receivedfrom remote processors, and sends it back to the processor who requested it.Adding up local and remote counts, each processor determines which of thecandidates are globally frequent and forms the local heavy set. Local heavysets are exchanged by a broadcast operation to �nd global frequent sets. Thealgorithm proposes communication optimizations by assigning each candidate ahost site for the purpose of collecting its remote counts. In this form, DMA issimilar in nature to the DD algorithm where candidates as well as the data aredistributed across processors.It should be noted that DMA uses horizontal data layout similar to CDand DD, unlike the vertical data layout used in PARTITION. If implementednaively, DMA would need to two passes over database in each iteration overk, one for counting candidates generated from local heavy itemsets, and secondfor candidates received from remote processors. The paper identi�es this andproposes an optimization for making only a single scan by generating all thecandidates that would be generated at all remote sites, and collecting counts forthese along with the locally generated candidates. This optimization brings thealgorithm closer to the CD algorithm, except that the candidate set generated

Parallel Algorithms for Discovering Associations 27in DMA could be potentially much smaller than the one in CD (because of theuse of heavy itemsets). In the performance results shown in the paper, DMAperforms better than CD, mainly because of the reduction in the number ofcandidates generated. It should be noted that although DMA uses the sameprinciple as PARTITION, its sensitivity to the problems of small partition sizeand data skew is less than PARTITION. This is because PARTITION, in ane�ort of reducing the database scans, generates all locally frequent itemsets inits �rst scan of the database. It does not have the exibility of interleaving theglobal information with local information in every iteration over k. This causesit to generate many false positives which need to be counted in the second passover the database.The last set of algorithms that we will discuss here is the parallel formula-tions of the itemset-clustering based lattice traversal algorithms given in [7]. Asdescribed in section 2.2, these algorithms try to �nd potential maximal frequentitemsets by pruning the search space of itemsets. This pruning is achieved by�nding clusters of related items, using either the equivalence class method orthe hypergraph clique method. Each cluster corresponds to a potential maximalitemset. Such itemsets form disjoint sublattices of the entire itemset lattice. Theidea behind the parallel formulations given in [16] is essentially to identify suchsublattices and assign them to di�erent processors so that the processing of eachsublattice can be done entirely independently. The algorithms try to achieve loadbalance by estimating the work needed for each sublattice and determining thenumber of sublattices going to each processor. To achieve independent processingof each sublattice, the algorithms bring all the transaction data required for thatsublattice to the processor assigned to process the sublattice. Remember thatthese algorithms use vertical data layout for e�cient counting of candidates.These parallel algorithms have the same advantages that are enjoyed by theirserial counterparts, speci�cally those of doing at most two database scans andperforming e�cient counting by simple tid-list intersection. Along with these, theparallel formulations have the advantage of reducing communication overheadinvolved in communicating candidates or counts. But, these algorithms havelimitations also. First, they have to pay the cost of replicating parts of thedatabase across multiple processors. Second, the amount of concurrency thatthe algorithm can achieve depends entirely on the quality of clusters it can �nd,and on the transaction dataset. If the number of clusters is very few, then thealgorithm may not fully utilize the total number of processors available, thusmaking it unscalable to larger number of processors. In the worst case, thealgorithm may reduce to serial algorithm with a single processor working onthe entire problem because of lack of multiple maximal potential itemsets. Thehypergraph clique based clustering can be used avoid such worst case scenarios.But, clique based techniques tend to become expensive based on how dense thehypergraph gets, which in turn depends on the nature of transactions and thesupport threshold level. Another possibility where these algorithms can becomeexpensive is when the number of clusters is such that the items appearing indi�erent clusters have a large overlap. In such cases, the algorithm may end up

28 Joshi, Han, Karypis, and Kumarreplicating a large part of the database to all the processors. As an aside, theidea of itemset clustering using equivalence classes used in these algorithms issimilar to the Candidate Distribution algorithm of[12], which assigns candidatesto processors based on their equivalence classes.4 Bringing in the Sequential RelationshipsThe data collected from scienti�c experiments, or monitoring of physical sys-tems such as telecommunications networks, or from transactions at a supermar-ket, have inherent sequential nature to them. Sequential nature means that theevents occurring in such data are related to each other by relationships of theform before (or after) and together. The concept of item-sets and associationrules discussed so far takes into account only the together part of the relation-ship, the information provided by the before/after relationships is ignored. Thisinformation could be very valuable in �nding more interesting patterns hiddenin the data, which could be useful for many purposes such as prediction of eventsor identi�cation of better sequential rules that characterize di�erent parts of thedata.In this section, we discuss the concept of sequential associations, more com-monly known as sequential patterns, and algorithms to discover them.4.1 Generalized Sequential Associations: De�nitionSequential associations are de�ned in the context of an input sequence datacharacterized by three columns: object, timestamp, and events. Each row recordsoccurrences of events on an object at a particular time. An example is shown inFigure 9(a). Alternative way to look at the input data is in terms of the time-linerepresentations of all objects as illustrated in Figure 9(b). Note that the termtimestamp is used here as a generic term to denote a measure of sequential (ortemporal) dimension.Various de�nitions of object and events can be used, depending on what kindof information one is looking for. For example, in one formulation, object can bea telecommunication switch, and event can be an alarm type occurring on theswitch. With this, the sequences discovered will indicate interesting patterns ofoccurrences of alarm types occurring at a switch. In another formulation, objectcan be a day, and event can be a switch or a pair of switch and type of the alarmoccurring on it. This will give interesting sequential relations between di�erentswitches or switch-alarm type pairs over a day.Given this input data, the goal is to discover associations or patterns of theform given in Figure 10. A pattern is essentially a sequence of sets of events,which conform to the given timing constraints. As an example, the sequentialpattern (A) (C,B) (D), encodes an interesting fact that event D occurs after anevent-set (C,B), which in turn occurs after event A. The occurrences of events ina sequential pattern are governed by the following timing constraints:

Parallel Algorithms for Discovering Associations 29
Object timestamp events

D 14 1, 8, 7

B
B
B
B

11
17
21
28

4, 5, 6
2
7, 8, 1, 2
1, 6

A
A
A

10
20
23

2, 3, 5
6, 1
1

(a)

Timeline:

10 3530252015

Obj A:

Obj B:

2
3
5

1
6 1

2
5
6

7
8
1
2

1
6

Obj D:

1

7
8

4

(b)Fig. 9. Example Input Data: (a) Flat representation, (b) Timeline Representation{ Maximum Span(ms): The maximum allowed time di�erence between thelatest and earliest occurrences of events in the entire sequence.{ Event-set Window Size(ws): The maximum allowed time di�erence be-tween the latest and earliest occurrences of events in any event-set.{ Maximum Gap(xg): The maximum allowed time di�erence between thelatest occurrence of an event in an event-set and the earliest occurrence ofan event in its immediately preceding event-set.{ Minimum Gap(ng): The minimum required time di�erence between theearliest occurrence of an event in an event-set and the latest occurrence ofan event in its immediately preceding event-set.We assume the interestingness of a sequence to be de�ned based on how manytimes it occurs in the input data; i.e. its support. If the support is greater than auser-speci�ed support threshold, then the sequence is called frequent or interest-ing. The the number of occurrences of a sequence can be computed in many ways,which are illustrated using the example shown in in Figure 11(a). The methodCOBJ counts at most one occurrence of a sequence for every object, as long asit is found within the given timing constraints. In the example, (1)(2) has twooccurrences, one for each object. This method may not capture the sequenceswhich are exhibited many times within a single object, which could really deter-mine its interestingness. In the method CWIN, the support of a sequence is equalto the number of span-size windows it appears in. Each span-size window has aduration of ms, and consecutive windows have an overlap of ms� 1 units. Win-dows can span across a single object; i.e., no window can span across multipleobjects. The support is added over all objects to get �nal support for a sequence.As shown in Figure 11(b), sequence (1)(2) has support of 3 for Object A, becauseit occurs in windows starting at time-points 0, 1, and 2. For object B, it occursin 5 windows, hence the total support is 8. In other counting methods, instead ofcounting the span-windows, actual occurrences of a sequence are counted. Two

30 Joshi, Han, Karypis, and Kumaroptions CDIST and CDIST O are illustrated in Figure 11(c) and Figure 11(d),respectively. In CDIST, an event-timestamp pair is considered at most once incounting occurrences of a given sequence. So, there is only 1 occurrence of (1)(2)for Object A in the example, because there is no corresponding event 2's oc-currence for event 1@2, 2@4 was used up in �rst occurrence. In CDIST O, theoccurrences are counted such that each new occurrence found has at least onedi�erent event-timestamp pair than previously found occurrences. So, (1)(2) has3 occurrences for object B, and total of 5 occurrences, using this method.The choice of which counting method to use is dependent on the problemand the judgment of the person using the discovery tool. For the purpose of ourdiscussion in this paper, we will assume the method depicted in part (b), whichcounts the number of span-windows, because it is fairly general in the way itassigns interestingness to a sequence (especially when compared to method inpart (a)).

(A) (C,B) (D) (F,E,G)

? ?
[ws]

{ng,xg}

<0,ms>

[ws]

An Example of Discovered Pattern:

Formulation:

<= xg <= ws> ng

0 <= span <= ms

Can add more edges and nodes

filled by discovery
algorithm.

? : Event-sets to be

Fig. 10. Generalized Formulation of Sequential PatternsThe de�nition of sequential association presented above is a special case ofthe generalized universal sequential patterns described in [20]. It combines thenotions of generalized sequential patterns (GSP) proposed in [21] and episodesproposed in [30]. These notions are actually the special cases of the generalizedsequential associations presented above. If maximum span constraint is consid-ered ine�ective (ms ! 1) and COBJ method is used for counting, then theformulation is identical to GSP. If constraints ws < 0, xg � ms, and ng = 0are used along with the CWIN counting method, then the formulation is equiv-

Parallel Algorithms for Discovering Associations 31

(b) CDIST Method

(a) CWIN Method

(c) CDIST_O Method

1

0 1 2 3 4

2

1

1

0 1 2 3 4

2

0 1 2 3 4

2
1

1

11

1 1 1

0 1 2 3 4

2

Object A:

0 1 2 3 4

Object B:

2

0 1 2 3 4

2
1

0 1 2 3 4

Object B:

2

0 1 2 3 4

2

Object A:

0 1 2 3 4

2

0 1 2 3 4

2

Object B:

1
2

Object A:

Fig. 11. Illustration of Methods of Counting Support

32 Joshi, Han, Karypis, and Kumaralent to the serial episodes of [30]. If constraints ws == ms, xg � ms, andng � ms are used along with the CWIN counting method, then the formulationis equivalent to the parallel episodes of [30]. In summary, the formulation of gen-eralized sequential associations given above is fairly general for a wide variety ofsequential data.4.2 Serial algorithms for Sequential AssociationsThe complexity of discovering frequent sequences is much more than the com-plexity of mining non-sequential associations. To get an idea, the maximum num-ber of sequences having k events is O(mk2k�1), where m is the total number ofevents in the input data. Compare this to the (mk) possible item-sets of size k.Using the de�nition of interestingness of a sequence, and the timing constraintsimposed on the events occurring in a sequence, many of these sequences can bepruned. But in order to contain the computational complexity, the search spaceneeds to be traversed in a manner that searches only those sequences that wouldpotentially satisfy both the support and timing constraints. The GSP algorithmgiven in [21] addresses this issue by building frequent sequences level-wise. Likeapriori, it makes use of the monotonicity property of the support. The frequentsequences having k� 1 events can be used to build a candidate sequence havingk events, such that all its (k� 1)-subsequences are frequent. The algorithm alsotakes into account the timing constraints relevant to the formulation of [21]. Thisalgorithm has been modi�ed in [31] to handle the generalized sequential associa-tions described in section 4.1. The main modi�cation is to take into account themultiple counting strategies which are driven primarily by the maximum span(ms) constraint. Especially when counting strategies other than COBJ are used,entire timeline of each object needs to be scanned to count all occurrences of ev-ery candidate. Data structures such as hash tree can be used to quickly �nd thecandidates that may exist in a given timeline, but such structures will be helpfulonly for the �rst occurrence of a candidate. The rest of the occurrences need tobe found by scanning the entire remaining timeline. A detailed description ofhow the algorithm works using hash tree structures is given in [31].4.3 Parallel Formulation: Issues, Challenges, and Some SolutionsIf the input sequence data has following features, then serial1 algorithms brieydescribed in previous subsection face severe limitations.{ Enormity; i.e., large number of objects and/or large time-lines for manyobjects. Serial algorithms would take a very long time to in the countingphase for such datasets.1 The terms serial and sequential should not be confused. Traditionally, sequential andserial are both used to describe algorithms that would run on single processor ma-chines. Here, we use the term serial to represent such algorithms, and reserve theterm sequential to indicate the temporal or sequential nature of the input data

Parallel Algorithms for Discovering Associations 33{ High dimensionality; i.e., large number of events. The number of candidatesgenerated for such datasets will be very large; hence, either they may not�t in the memory available for a single processor, or they would make thehash tree data structures act counter-productively if their size and structureis not optimally managed.This motivates the need for parallel formulations. In this section, we willbriey discuss the issues and research challenges involved in developing e�ectiveparallel formulations of sequential pattern discovery algorithm.The parallel formulation should be able to divide two entities among pro-cessors. One is the computational work and other is the memory requirement.These should be divided such that the time and memory limitations faced byserial algorithms could be minimized, and it should be possible to achieve thiswith as little overhead as possible. In parallel formulations, the overheads comemainly from load imbalance (causing idling of processors) and the communica-tion required to co-ordinate the computations performed by di�erent processors.The computational load in sequential pattern discovery algorithm consistsof candidate generation and counting of candidates. The memory requirementscome from storing the input datasets and the candidates generated. Dependingon how the candidates and object time-lines are distributed among processors,di�erent parallel algorithms are possible.In the following, we describe several parallel formulations given in [31] thattake into account the generalized nature of sequential patterns. The intention isto bring out the challenges involved in designing e�ective parallel formulations.In the �rst category of algorithms, called EVE (event distribution), input data isdistributed among processors and the candidate set is replicated on all the pro-cessors. The candidate generation phase is done serially on all the processors.Three di�erent variations of EVE algorithm are discussed to cater to di�erentscenarios emerging depending on the number of objects, the length of the time-lines in terms of the number of events happening on them, and the value of ms.The second category of algorithms, called EVECAN (event and candidate distri-bution), distributes events as well as candidates among processors, to overcomesome of the problems that EVE might face.EVE-S: Simple Event Distribution Algorithm For shorter time-lines andrelatively large number of objects, the input data is distributed such that thetotal number of event points is as evenly distributed as possible within theconstraint that a processor gets the entire timeline of every object allocated toit. It is embarrassingly parallel as far as counting phase is concerned, except forthe �nal communication operation required to accumulate the candidate counts.EVE-S is illustrated in Figure 12. This algorithm is essentially an extension ofthe CD algorithm for discovering non-sequential associations, except that thetransactions are replaced with more generic objects2. A similar algorithm calledNPSPM (non-partitioned sequential pattern mining) is proposed by [15]. They2 objects can be thought of as a time-ordered collection of transactions

34 Joshi, Han, Karypis, and Kumarassume the restricted GSP[21] formulation of sequential patterns. Also, theycater only to the supermarket transaction scenario, which indeed is �tting for theEVE-S algorithm also, because usually object timelines contain small number oftransactions, each in turn consisting of small number of events (which are itemsin this case).

Global Reduction of Candidate Counts

Count
Local

Count
Local

Count
Local

P0 P1 P2

Objects

Fig. 12. Illustration of EVE-S algorithm.EVE-R: Event distribution with partial data replication This formula-tion is designed for the scenario in which there are relatively small number ofobjects (less than the number of processors), each object has a large timeline,and the span value (ms) is relatively small. The input data is distributed asfollows. The timeline for each object is split across di�erent processors such thatthe total number of events assigned to di�erent processors is similar. Note thatthe sequence occurrences are computed in span-size windows. We assume thatthe span value is small such that no span window spans across more than twoprocessors. But, still each processor will have some span-windows that do nothave su�cient data to declare the occurrence of an sequence in them. This isresolved in EVE-R by gathering such missing data from neighboring processors.Each processor gathers data that is required to process the last span-windowbeginning on that processor. This is illustrated in Figure 13. Since we assumethat span-windows do not straddle more than two processors, just the neighbor-to-neighbor communication is su�cient. Once every span-window is complete onall processors, each processor processes only those span-windows which begin at

Parallel Algorithms for Discovering Associations 35the events points originally assigned to it. For example, processor P0 processeswindows that begin at time instances 0, 1, 2, and 3, whereas processor P1 willprocess windows that begin at 4, 5, 6, and 7. By distributing the event pointsequitably, load balance can be achieved. As in EVE-S algorithm, the occurrencesare collected by a global communication (reduction) operation, in the end.
0 1 2 3 4 5 6 7 8 9 10 11

P2P0 P1

span-window

P0

0 1 2 3 4 5 6 7

P1

8 9 10 114 5 6 7

P2

8 9 10 11

Fig. 13. Illustration of EVE-R algorithm.EVE-C: Complex Event Distribution Algorithm This formulation depictsthe most complex scenario as far as distribution of the counting workload isconcerned. This happens when there are small number of objects, each objecthas a large timeline, and the span value is large such that after splitting theobject time-lines across processors, the span-windows straddle more than twoprocessors. There are two ways to handle this.One way is to replicate the data across processors such that no processor hasany incomplete or partial span-window. This is the same idea used in EVE-R,what makes it di�erent is the fact that the amount of replication can becomevery large in this case. So, if processors do not have enough disk space to holdthe entire replicated information, this approach may not be feasible. Even whenthere is enough disk space available on each processor, the replication of datamay result in a lot of replication of work. The details are given in [31], but tosummarize, when data is replicated, there is trade-o� between the approach ofreplicating the work with no communication cost (except for the data replicationcost), and the approach of avoiding work replication by paying the extra cost ofcommunicating the candidate occurrences.The second way to handle this is not to replicate the data. Now, two kinds ofsituations need to be handled. In �rst situation, those occurrences that are found

36 Joshi, Han, Karypis, and Kumarcompletely on a single processor might contribute to span-windows that beginon other processors. Care should be taken to avoid the double counting, which asshown in [31] requires communication of ranges of occurrences of candidates be-tween processors. Second situation is when some occurrences cannot be declaredto occur in some span-windows because there may not be su�cient data avail-able on a single processor. This scenario actually gives rise to the most complexmethod of parallelizing the counting process. The details are given in [31], butthe key idea is that only partial occurrences of candidates can be found by eachprocessor. This partial work needs to be communicated to other processors tosearch for complete occurrences. First issue is amount of concurrency that can beachieved in this process. This can be handled by breaking down the granularityof computation and doing asynchronous communications. The second and moreserious issue comes from the nature sequential association discovery problem, inwhich each span-size window has a potential to support exponential number ofsequences. Hence, the amount of partial work that needs to be transferred canquickly become large. In summary, this approach of avoiding replication of datacan become very expensive.Thus depending on the scenario, there is a trade-o� between the cost ofreplicating and storing the data and the cost of communicating large amountpartial work among processors. A detailed discussion is given in [31].Event and Candidate Distribution (EVECAN) Algorithm In the set ofEVE algorithms described above, it is assumed that the candidates are replicatedover all the processors. This may not be desirable when the number of candi-dates is very large, and for the complexity of sequential patterns, such scenariosare not uncommon. Large number of candidates results in two things. The set ofcandidates may not �t in the memory of a processor, in which case they need tobe counted in parts. This involves multiple I/O passes over the disk for count-ing the candidates. Secondly, EVE algorithm builds candidates serially on allprocessors, thus losing out on extracting the possible concurrency. The amountof time spent in generating the large number of candidates can be signi�cantlylarge.These issues are addressed in the second formulation, called EVECAN (eventand candidate distribution) [31]. In this algorithm, the input data is partitionedsimilar to EVE. But, now the candidates are also distributed. They are storedin a distributed hash table. The hashing criterion is designed to maintain equalnumber of candidates on all processors. One simple hash function can be basedon the lexicographical ordering of candidates and splitting them among proces-sors such that all candidates assigned to one processor have a common pre�xsequence. The non-local candidates required for the join-and-prune phase areobtained using the scalable communication structure of the parallel hashingparadigm introduced in [32]. Now since all the processors must count all thecandidates, there are two options. In the �rst option, the candidates are keptstationary at processors and a local hash tree access structure is built for thesecandidates. The input data is circulated among processors in a fashion similar

Parallel Algorithms for Discovering Associations 37to that of the round-robin scheme proposed for IDD algorithm of [28]. But thisoption may work only when the span value is small, in which case we will circu-late the span-windows. For large span-values, it could be very expensive to sendall the span-windows to all the processors. In such cases, second option can beused, which is to move around the candidates in a round robin fashion. In boththe options, a hash function is used to do a relatively quick search of whethera span-window can contain the candidates stored at that processor. Figure 14pictorially depicts the EVECAN algorithm.

Rotate Candidates in
Round-Robin Manner

Rotate Objects in
Round-Robin Manner

P0 P1 P2

Objects

Count Count Count

OR

EITHER

Fig. 14. Illustration of EVECAN algorithm for parallel discovery of generalized se-quential associations.Another set of parallel algorithms SPSPM (simple partitioned sequential pat-tern mining) and HPSPM (hash partitioned sequential pattern mining) are givenin [33]. These are also based on distribution of objects as well as candidates. How-ever, these algorithms assume the sequential pattern format given in [21]; hence,their algorithms do not have notion of span (ms), and they count only one oc-currences of a sequence in a given object's timeline (COBJ counting method).Also they assume a market transaction type of dataset, in which the object time-

38 Joshi, Han, Karypis, and Kumarlines are usually very short. SPSPM algorithm distributes the candidates in asimple round-robin manner, whereas HPSPM distributes candidates in a moreintelligent manner using hash functions. These are straight-forward extensionsof the SPA and HPA algorithms [15] for parallel discovery of non-sequential as-sociations. The counting in SPSPM is performed in a way similar to the DDalgorithm for non-sequential associations, where every object's timeline is sentto every processor. HPSPM, in kth iteration, generates all k-sequences presentin each object's timeline and hashes them using the same hash function as wasused for hashing the candidates to distribute them among processors. Each se-quence is sent to the processor it hashes to, and is used to search for the listof candidates stored there. The HPSPM algorithm is shown to perform betterthan the rest two, but it also faces severe limitations when the object time-linesare very large, and when it is extended to use the counting method used in thegeneralized sequential pattern formulation. These are precisely the issues thatthe EVE and EVECAN formulations take into account.5 SummaryIn this chapter, we presented a evolutionary and comparative review of manyexisting algorithms for solving a very popular and important problem of miningassociations from data. We considered the traditional non-sequential associa-tions which originated from the transaction or market basket kind of data aswell as the more generalized sequential association formulation which is usefulto wider variety of datasets in real world. The chapter mainly elaborates onvarious design issues involved in parallel formulations of association discoveryalgorithms, and how existing parallel algorithms map to only a few categoriesof formulations. In the process, a comprehensive survey of many existing serialalgorithms is also given. Although many parallel (and serial) algorithms existtoday, no single algorithm is superior to all the rest, and the research in the dis-covery of associations remains active. Overall, this chapter is intended to serve asa comprehensive account of existing parallel methods of mining non-sequentialas well as sequential associations with respect to the design issues and di�erentparallelization strategies.References1. Chen, M., Han, J., Yu, P.: Data mining: An overview from database perspective.IEEE Transactions on Knowledge and Data Eng. 8 (1996) 866{8832. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets ofitems in large databases. In: Proc. of 1993 ACM-SIGMOD Int. Conf. on Manage-ment of Data, Washington, D.C. (1993)3. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc.of the 20th VLDB Conference, Santiago, Chile (1994) 487{4994. Park, J., Chen, M., Yu, P.: An e�ective hash-based algorithm for mining associationrules. In: Proc. of 1995 ACM-SIGMOD Int. Conf. on Management of Data. (1995)

Parallel Algorithms for Discovering Associations 395. Savasere, A., Omiecinski, E., Navathe, S.: An e�cient algorithm for mining asso-ciation rules in large databases. In: Proc. of the 21st VLDB Conference, Zurich,Switzerland (1995) 432{4436. Toivonen, H.: Sampling large databases for association rules. In: Proc. of the 22ndVLDB Conference. (1996)7. Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New algorithms for fast dis-covery of association rules. In: Proc. of the Third Int'l Conference on KnowledgeDiscovery and Data Mining. (1997)8. Brin, S., Motwani, R., Ullman, J.D., Tsur, S.: Dynamic itemset counting andimplication rules for market basket data. In: Proc. of 1997 ACM-SIGMOD Int.Conf. on Management of Data, Tucson, Arizona (1997) 255{2649. Agarwal, R.C., Aggarwal, C., Prasad, V.V.V.: A tree projection algorithm forgeneration of frequent itemsets. Journal of Parallel and Distributed Computing(Special Issue on High Performance Data Mining) (2000)10. Agarwal, R.C., Aggarwal, C., Prasad, V.V.V.: Depth-�rst generation of large item-sets for association rules. Technical Report RC-21538, IBM Research Division(1999)11. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate genera-tion. Technical Report CMPT99-12, School of Computing Science, Simon FraserUniversity (1999)12. Agrawal, R., Shafer, J.: Parallel mining of association rules: Design, implementa-tion and experience. Technical Report RJ10004, IBM Research Division, AlmadenResearch Center (1996)13. Han, E., Karypis, G., Kumar, V.: Scalable parallel data mining for associationrules. IEEE Transactions on Knowledge and Data Eng. (1999)14. Park, J., Chen, M., Yu, P.: E�cient parallel data mining for association rules. In:Proceedings of the 4th Int'l Conf. on Information and Knowledge Management.(1995)15. Shintani, T., Kitsuregawa, M.: Hash based parallel algorithms for mining associ-ation rules. In: Proc. of the Conference on Parallel and Distributed InformationSystems. (1996)16. Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New parallel algorithms forfast discovery of association rules. Data Mining and Knowledge Discovery: AnInternational Journal 1 (1997)17. Cheung, D., Ng, V., Fu, A., Fu, Y.: E�cient mining of association rules in dis-tributed databases. IEEE Transactions on Knowledge and Data Eng. 8 (1996)911{92218. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proc. of the Int'l Con-ference on Data Engineering (ICDE), Taipei, Taiwan (1996)19. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovering frequent episodes in se-quences. In: Proc. of the First Int'l Conference on Knowledge Discovery and DataMining, Montreal, Quebec (1995) 210{21520. Joshi, M.V., Karypis, G., Kumar, V.: Universal formulation of sequential pat-terns. Technical Report TR 99-021, Department of Computer Science, Universityof Minnesota, Minneapolis (1999)21. Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and per-formance improvements. In: Proc. of the Fifth Int'l Conference on ExtendingDatabase Technology, Avignon, France (1996)22. Bettini, C., Wang, X.S., Jajodia, S.: Testing complex temporal relationships in-volving multiple granularities and its application to data mining. In: Proc. of ACMPODS'96, Montreal (1996) 68{78

40 Joshi, Han, Karypis, and Kumar23. Houtsma, M.A.W., Swami, A.N.: Set-oriented mining for association rules in re-lational databases. In: Proc. of the 11th Int'l Conf. on Data Eng., Taipei, Taiwan(1995) 25{3324. Amir, A., Feldman, R., Kashi, R.: A new and versatile method for associationgeneration. In Komorowski, H.J., Zytkow, J.M., eds.: Proceedings of Principles ofData Mining and Knowledge Discovery, First European Symposium (PKDD'97).Lecture Notes in Computer Science. Volume 1263. Springer, Trondheim, Norway(1997) 221{23125. Sedgewick, R.: Algorithms. Second edn. Addison-Wesley (1988)26. Agrawal, R., Shafer, J.: Parallel mining of association rules. IEEE Transactionson Knowledge and Data Eng. 8 (1996) 962{96927. Kumar, V., Grama, A., Gupta, A., Karypis, G.: Introduction to Parallel Com-puting: Algorithm Design and Analysis. Benjamin Cummings/ Addison Wesley,Redwod City (1994)28. Han, E., Karypis, G., Kumar, V.: Scalable parallel data mining for associationrules. In: Proc. of 1997 ACM-SIGMOD Int. Conf. on Management of Data, Tucson,Arizona (1997)29. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms andComplexity. Prentice-Hall, Englewood Cli�s, NJ (1982)30. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in eventsequences. Technical Report C-1997-15, Department of Computer Science, Uni-versity of Helsinki, Finland (1997)31. Joshi, M.V., Karypis, G., Kumar, V.: Parallel algorithms for mining sequential as-sociations: Issues and challenges. Technical Report under preparation, Departmentof Computer Science, University of Minnesota, Minneapolis (1999)32. Joshi, M.V., Karypis, G., Kumar, V.: ScalParC: A new scalable and e�cientparallel classi�cation algorithm for mining large datasets. In: Proc. of the 12thInternational Parallel Processing Symposium, Orlando, Florida (1998)33. Shintani, T., Kitsuregawa, M.: Mining algorithms for sequential patterns in paral-lel: Hash based approach. In: Research and Development in Knowledge Discoveryand Data Mining: Second Paci�c-Asia Conference (PAKDD'98), Melbourne, Aus-tralia (1998) 283{294

