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Abstract. In [14] there is proposed an ElGamal-type cryptosystem
based on non-maximal imaginary quadratic orders with trapdoor decryp-
tion. The trapdoor information is the factorization of the non-fundamental
discriminant ∆p = ∆1p

2. The NICE-cryptosystem (New Ideal Coset
En-cryption) [24,12] is an efficient variant thereof, which uses an ele-
ment g

k ∈ Ker(φ−1
Cl ) ⊆ Cl(∆p), where k is random and φ−1

Cl : Cl(∆p) →
Cl(∆1) is a map between the class groups of the non-maximal and max-
imal order, to mask the message in the ElGamal cryptosystem. This
mask simply ”disappears” during decryption, which essentially consists
of computing φ−1

Cl . Thus NICE features quadratic decryption time and
hence is very well suited for applications in which a central server has
to decrypt a large number of ciphertexts in a short time. In this work
we will introduce an efficient batch decryption method for NICE, which
allows to speed up the decryption by about 30% for a batch size of 100
messages.
In [17] there is proposed a NICE-Schnorr-type signature scheme. In this
scheme one uses the group Ker(φ−1

Cl ) instead of IF∗
p. Thus instead of

modular arithmetic one would need to apply standard ideal arithmetic
(multiply and reduce) using algorithms from [5] for example. Because
every group operation needs the application of the Extended Euclidean
Algorithm the implementation would be very inefficient. Especially the
signing process, which would typically be performed on a smartcard with
limited computational power would be too slow to allow practical appli-
cation. In this work we will introduce an entirely new arithmetic for
elements in Ker(φ−1

Cl ), which uses the generator and ring-equivalence for
exponentiation. Thus the signer essentially performs the exponentiation
in (O∆1/pO∆1 )∗, which turns out to be about twenty times as fast as
conventional ideal arithmetic. Furthermore in [17] it is shown, how one
can further speed up this exponentiation by application of the Chinese
Remainder Theorem for (O∆1/pO∆1 )∗. With this arithmetic the signa-
ture generation is about forty times as fast as with conventional ideal
arithmetic and more than twice as fast as in the original Schnorr scheme
[26].
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1 Introduction

The utilization of imaginary quadratic class groups in cryptography is due to
Buchmann and Williams [4], who proposed a key agreement protocol analogue
to [7] based on class groups of imaginary quadratic fields, i.e. the class group
of the maximal order. Since the computation of discrete logarithms in the class
group of the imaginary quadratic number field is at least as difficult as factoring
the corresponding discriminant (see [4,27]) these cryptosystems are very inter-
esting from a theoretical point of view. In practice however these cryptosystems
seemed to be less efficient than popular cryptosystems based on computing dis-
crete logarithms in IF∗

p, like [7,9] or factoring integers, like [25]. Furthermore the
computation of the group order, i.e. the class number, is in general almost as
hard as computing discrete logarithms itself by application of the algorithm of
Hafner / McCurley [10] or more practical variants like [8,19], which is subexpo-
nential with L[ 12 ]. Hence it seemed to be impossible to set up signature schemes
analogue to [9,22] or [25]. In [14] however it was shown how the application of
non-maximal imaginary quadratic orders may be used to construct an ElGamal-
type cryptosystem with fast decryption and that it is in principle possible to set
up ElGamal and RSA-type signature schemes.

In [24] there is proposed an ElGamal-type cryptosystem, later on called NICE
for New Ideal Coset Encryption [12], with very fast decryption. It was shown
that the decryption process only needs quadratic time, which makes NICE unique
in this sense. First implementations show that the time for decryption is com-
parable to the time for RSA-encryption with e = 216. The central idea of this
scheme is to use an element gk of the kernel Ker(φ−1

Cl ) of the surjective map
φ−1

Cl : Cl(∆p) → Cl(∆1) to mask the message in the ElGamal-type cryptosys-
tem [14]. The map φ−1

Cl is induced by the isomorphic map ϕ−1 : I∆p(p)→ I∆1(p)
which maps O∆p-ideals which are prime to the conductor p to O∆1 -ideals which
are also prime to p. Hence this mask simply ”disappears” during the trapdoor-
decryption, which just consists of applying φ−1

Cl , reducing the resulting ideal in
the maximal order (and possibly going back to the non-maximal order using ϕ).
The most time consuming step in the decryption is to compute the map φ−1

Cl ,
which is essentially the computation of a modular inverse (modulo p) using the
Extended Euclidean Algorithm, which needs O(log2(p)) bit operations.

It is clear that because of this feature NICE is very well suited for applications
where a central server has to decrypt a large number of ciphertexts in a short
time. Thus it is natural to search for an efficient batch decryption method. In
Section 4 we will introduce a simple yet efficient method for batch decryption,
which speeds up the system in this scenario even further. The timings in Section
4 show that it is possible to speed up the decryption process for 100 messages
by about 30%.

While the main application of the novel arithmetic for Ker(φ−1
Cl ) to be intro-

duced in Section 5 might be in the signing procedure of the NICE-Schnorr-type
signature scheme [17], its development was actually motivated by cryptosystems
based on totally non-maximal orders. Due to the very recent result [16] how-
ever, which reduces the DL-problem in these totally non-maximal orders to the
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DL-problem in finite fields, these cryptosystems seem to have lost much of its
attractiveness.

In [15] it was proposed to use totally non-maximal imaginary quadratic orders
O∆pq , where ∆pq = ∆1p

2q2 to set up RSA-type cryptosystems. Because one
chooses ∆1 such that h(∆1) = 1 it is easy to compute h(∆pq) = (p−(∆1/p))(q−
(∆1/q)). It is clear that a similar strategy may be used to set up DSA analogues
based on totally non-maximal imaginary quadratic orders. First implementations
however have shown that these cryptosystems using standard ideal arithmetic
are far to inefficient to be used in practice [11]. This lack of efficiency was the
motivation for developing a more efficient arithmetic for Cl(∆p), or Ker(φ−1

Cl )
which is the same in the case of totally non-maximal orders.

In Section 5 we will introduce this entirely new method for efficient exponen-
tiation of elements in Ker(φ−1

Cl ). Instead of using the standard ideal arithmetic
(multiplication and reduction of ideals) in the non-maximal order we multiply
and ”reduce” the corresponding generators in the maximal order and later on
lift the resulting principal ideal, which corresponds to the computed genera-
tor, to the non-maximal order. Thus one essentially reduces the arithmetic in
Ker(φ−1

Cl ) ⊆ Cl(∆p) to arithmetic in (O∆1/pO∆1)∗ which turns out to be much
more efficient.

The timings in Section 5 show that the naive variant of the new exponentia-
tion technique, as proposed here, is already about twenty times as fast as classical
ideal arithmetic. Very recently it was shown in [17] that one can even do twice as
good by utilizing the Chinese Remainder Theorem for (O∆1/pO∆1)∗. With this
improvement the signature generation of the proposed NICE-Schnorr-variant is
more than twice as efficient as in the original Schnorr-scheme [26].

This paper is organized as follows: In Section 2 we will provide the necessary
basics of imaginary quadratic orders. We will concentrate on the relation between
the maximal and non-maximal orders and explain the structure of Ker(φ−1

Cl ). In
Section 3 we will briefly recall the NICE cryptosystem. In Section 4 we will
introduce the new batch decryption for NICE and compare the running times of
the implementation. The new exponentiation methods for elements in Ker(φ−1

Cl )
are explained in Section 5. We will give the initially proposed method in Section
5.1 and outline the even more efficient CRT - variant from [17] in Section 5.2. In
Section 5.3 we will also provide a timing comparison between the new methods,
conventional ideal- and modular arithmetic.

2 Imaginary Quadratic Orders

The basic notions of imaginary quadratic number fields may be found in [1,13]
or [5]. For a more comprehensive treatment of the relationship between maximal
and non-maximal orders we refer to [6] or [14].

Let ∆ ≡ 0, 1 (mod 4) be a negative integer, which is not a square. The
quadratic order of discriminant ∆ is defined to be

O∆ = ZZ + ωZZ,
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where

ω =

{√
∆
4 , if ∆ ≡ 0 (mod 4),

1+
√

∆
2

, if ∆ ≡ 1 (mod 4).
(1)

The standard representation of some α ∈ O∆ is α = x+ yω, where x, y ∈ ZZ .
If ∆1 is squarefree, then O∆1 is the maximal order of the quadratic number

field Q(
√
∆1) and ∆1 is called a fundamental discriminant. The non-maximal

order of conductor f > 1 with (non-fundamental) discriminant ∆f = ∆1f
2 is

denoted by O∆f . In this work we will omit the subscripts to reference arbitrary
(fundamental or non-fundamental) discriminants. Because Q(

√
∆1) = Q(

√
∆f)

we also omit the subscripts to reference the number field Q(
√
∆). The standard

representation of an O∆-ideal is

a = q

(
ZZ +

b+
√
∆

2a
ZZ

)
= (a, b), (2)

where q ∈ Q>0, a ∈ ZZ>0, c = (b2−∆)/(4a) ∈ ZZ , gcd(a, b, c) = 1 and −a < b ≤
a. The norm of this ideal is N (a) = aq2. An ideal is called primitive if q = 1. A
primitive ideal is called reduced if |b| ≤ a ≤ c and b ≥ 0, if a = c or |b| = a. It
can be shown, that the norm of a reduced ideal a satisfies N (a) ≤ √|∆|/3 and
conversely that if N (a) ≤ √|∆|/4 then the ideal a is reduced. We denote the
reduction operator in the maximal order by ρ1() and write ρf () for the reduction
operator in the non-maximal order of conductor f .

The group of invertible O∆-ideals is denoted by I∆. Two ideals a, b are
equivalent, if there is a γ ∈ Q(

√
∆), such that a = γb. This equivalence relation

is denoted by a ∼ b. The set of principal O∆-ideals, i.e. which are equivalent
to O∆, are denoted by P∆. The factor group I∆/P∆ is called the class group of
O∆ denoted by Cl(∆). Cl(∆) is a finite abelian group with neutral element O∆.
Algorithms for the group operation (multiplication and reduction of ideals) can
be found in [5]. The order of the class group is called the class number of O∆

and is denoted by h(∆).
Our cryptosystems make use of the relation between the maximal and non-

maximal orders. Any non-maximal order may be represented as O∆f = ZZ +
fO∆1 . If h(∆) = 1 then O∆f is called a totally non-maximal imaginary quadratic
order of conductor f . An O∆-ideal a is called prime to f , if gcd(N (a), f) = 1.
It is well known, that all O∆f -ideals prime to the conductor are invertible. In
every class there is an ideal which is prime to any given number. The algorithm
FindIdealPrimeTo in [14] will compute such an ideal. If we denote the (principal)
O∆f -ideals, which are prime to f by P∆f (f) and I∆f (f) respectively then there
is an isomorphism

I∆f (f)
/
P∆f (f) ' I∆f

/
P∆f

= Cl(∆f). (3)

Thus we may ’neglect’ the ideals which are not prime to the conductor, if we are
only interested in the class group Cl(∆f ). There is an isomorphism between the
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group of O∆f -ideals which are prime to f and the group of O∆1-ideals, which
are prime to f , denoted by I∆1(f) respectively:

Proposition 1. Let O∆f be an order of conductor f in an imaginary quadratic
field Q(

√
∆) with maximal order O∆1 .

(i.) If A ∈ I∆1(f), then a = A ∩ O∆f ∈ I∆f (f) and N (A) = N (a).
(ii.) If a ∈ I∆f (f), then A = aO∆1 ∈ I∆1(f) and N (a) = N (A).
(iii.) The map ϕ : A 7→ A ∩ O∆f induces an isomorphism I∆1(f)

∼→I∆f (f).
The inverse of this map is ϕ−1 : a 7→ aO∆1 .

Proof : See [6, Proposition 7.20, page 144] . 2

Thus we are able to switch to and from the maximal order. The algorithms
GoToMaxOrder(a, f) to compute ϕ−1 and GoToNonMaxOrder(A, f) to compute
ϕ respectively may be found in [14].

It is important to note that the isomorphism ϕ is between the ideal groups
I∆1(f) and I∆f (f) and not the class groups.

If, for A,B ∈ I∆1(f) we have A ∼ B, it is not necessarily true that ϕ(A) ∼
ϕ(B).

On the other hand, equivalence does hold under ϕ−1. More precisely we have
the following:

Proposition 2. The isomorphism ϕ−1 induces a surjective homomorphism
φ−1

Cl : Cl(∆f )→ Cl(∆1), where a 7→ ρ1(ϕ−1(a)).

Proof: This immediately follows from the short exact sequence:

Cl(∆f) −→ Cl(∆1) −→ 1

(see [23, Theorem 12.9, p. 82]). 2

In the following we will study the kernel Ker(φ−1
Cl ) of the above map φ−1

Cl

and hence the relation between a class in the maximal order and the associated
classes in the non-maximal order in more detail. We start with yet another
interpretation of the class group Cl(∆f).

Proposition 3. Let O∆f be an order of conductor f in a quadratic field. Then
there are natural isomorphisms

Cl(∆f) ' I∆f (f)
/
P∆f (f) ' I∆1(f)

/
P∆1,ZZ (f),

where P∆1,ZZ (f) denotes the subgroup of I∆1(f) generated by the principal ideals
of the form αO∆1 where α ∈ O∆1 satisfies α ≡ a (mod fO∆1 ) for some a ∈ ZZ
such that gcd(a, f) = 1.

Proof: See [6, Proposition 7.22, page 145]. 2
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The following corollary is an immediate consequence.

Corollary 1. With notations as above we have the following isomorphism

Ker(φ−1
Cl ) ' P∆1(f)

/
P∆1,ZZ(f) .

The next result explains the relation between Ker(φ−1
Cl ) and (O∆1/fO∆1 )

∗.

Lemma 1. The map (O∆1/fO∆1 )∗ → Ker(φ−1
Cl ), where α 7→ ϕ (αO∆1) is a

surjective homomorphism.

Proof: This is shown in the more comprehensive proof of Theorem 7.24 in [6]
(page 147). 2

Another immediate consequence of Proposition 3 allows to decide which prin-
cipal ideals in the maximal order are mapped to principal ideals in the non-
maximal order by applying ϕ:

Corollary 2. Let α ∈ O∆1 be an element of the maximal order and O∆f be the
order of conductor f. Then ϕ (αO∆1) ∼ O∆f if and only if

α ≡ a (mod fO∆1)

with a ∈ ZZ such that gcd(a, f) = 1

Thus we are able to ”model” the equivalence relation in the non-maximal
order by considering generators of principal ideals in the maximal orders. This
fact is called ring-equivalence.

In Section 5 we will use the above results to formulate concrete algorithms
for efficient exponentiation of elements in Ker(φ−1

Cl ).
Finally, we will give the exact relationship between the class numbers h(∆1)

and h(∆f).

Theorem 1. Let O∆f be the order of conductor f in a quadratic field Q(
√
∆)

with maximal order O∆1 . Then

h(∆f) =
h(∆1)f

[O∗
∆1

: O∗
∆f

]

∏
p|f


1−

(
∆1
p

)
p


 = nh(∆1),

where n ∈ IN and
(

∆1
p

)
is the Kronecker-symbol.

Proof: See [6, Theorem 7.24, page 146]. 2

Because O∗
∆1

= O∗
∆p

= {±1}, for ∆p = ∆1p
2, p prime and ∆1 < −4 we have

an immediate corollary of Theorem 1.

Corollary 3. Let ∆1 < −4, ∆1 ≡ 0, 1 (mod 4) and p prime. Then h(∆p) =

h(∆1)
(
p−

(
∆1
p

))
and

∣∣Ker(φ−1
Cl )
∣∣ =

(
p−

(
∆1
p

))
, where

(
∆1
p

)
is the

Kronecker-symbol.

Thus we are able to control the order of the kernel and consequently set up
a Schnorr analogue using the group Ker(φ−1

Cl ) instead of IF∗
p as proposed in [17].
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3 The NICE Cryptosystem

In this section we will briefly recall the setup of NICE. We refer to [24,12,18] for
a more comprehensive treatment.

Choose two primes p, q, p > 2
√
q and set ∆1 = −q if q ≡ 3 (mod 4),

∆1 = −4q otherwise and∆p = ∆1p
2. Then O∆1 is a maximal order and O∆p is a

non-maximal order of conductor p. Note that by [14, Lemma 8] all reduced O∆1-
ideals are guaranteed to be prime to p, because p >

√|∆1|. Furthermore choose
a reduced O∆p-ideal g ∈ Ker(φ−1

Cl ). In [18] there is given a simple algorithm
which computes such a kernel element g.

The secret key is just

– the conductor p.

The public key consists of

– the non-fundamental discriminant ∆p and
– the ideal g.

Because the system is entirely broken if one is able to factor ∆p one should,
as explained in [14], at least choose p, q > 2200.

To encrypt a message 1 ≤ m <
√|∆1|/4 one proceeds as follows:

1. Choose a random k ∈ ZZ with 1 < k < 280.
2. Compute the reduced O∆p-ideal k = ρp(gk).
3. Embed the message m ∈ ZZ in a O∆p -Ideal m with N (m) <

√|∆1|/4.
4. Compute the ciphertext c = ρp(mk).

For the message embedding one may use the algorithm given in [18]. It is
clear that the ideal k is simply used to ”mask” the message in the ElGamal-type
scheme. Furthermore note that k < 280 can be chosen to be ”unusually small”,
because in contrast to the classical ElGamal cryptosystem the ciphertext consists
of just one element and hence one would have to apply a brute force strategy to
determine the message. It is just not possible to compute some discrete logarithm
using more sophisticated e.g. (baby-step-giant-step) techniques if one is only
given the cipher text. We refer to [18] for a detailed treatment of this issue.

To decrypt the ciphertext c one proceeds as follows:

1. Compute C = ϕ−1(c) using algorithm GotoMaxorder(c, p) from [14].
2. Reduce C, i.e. compute M = ρ1(C).
3. Compute m = ϕ(M) using algorithm GotoNonMaxorder(M, p) from [14].

Note that the computation in Step 1.-2. is just the computation of φ−1
Cl .

The correctness of the decryption procedure is easy to see. Because g ∈
Ker(φ−1

Cl ) we have
ϕ−1(c) = ϕ−1(mk) = ϕ−1(m)(α)O∆1 = M(α)O∆1 ∼M, where α ∈ O∆1 .
Because N (m) <

√|∆1|/4 we know that m = ϕ(M) = ϕ(ρ1(C)) is a reduced
O∆p-ideal - the message-ideal m.
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Note that if the message is embedded in the norm of the ideal m only, as
proposed in [18], then the step back to the non-maximal order (Step 3.) may be
omitted, because we have N (m) = N (M).

For the readers convenience we will recall the algorithm GotoMaxOrder from
[14]:

Algorithm 2 (GoToMaxOrder)
Input: A primitive O∆p -ideal a = (a, b), the fundamental discriminant ∆1

and the conductor p
Output: A primitive O∆1-ideal A = ϕ−1(a) = aO∆1

1. bO ← ∆1 (mod 2)
2. Solve 1 = µp + λa for µ, λ ∈ ZZ
3. B ← bµ+ abOλ (mod 2a)
4. RETURN (a, B)

4 Efficient Batch Decryption for NICE

It is clear that because of its very fast decryption NICE is very well suited for
applications in which a central server has to decrypt a large number of cipher-
texts in a short time. Thus it is desireable to have an efficient batch decryption
procedure at hand. In the following we will introduce a simple method which
decrypts n ciphertexts ci, 1 ≤ i ≤ n in one step, which turns out to be much
faster than the sequential processing.

If we have a closer look at the decryption procedure above we recognize that
the most time consuming operation is the computation of GotoMaxOrder. This
step is essentially the computation of a modular inverse modulo the conductor.
Thus we can speed up the decryption process by applying a batch-gcd-strategy,
like proposed in [21]1. The central idea is to replace all but one costly inversions
with the Extended Euclidean Algorithm by a few modular multiplications.

If one is asked to compute b1 ≡ a−1
1 (mod p) and b2 ≡ a−1

2 (mod p). Then
instead of performing two inversions one can compute a ≡ a1a2 (mod p), b ≡
a−1 (mod p), b1 ≡ ba2 (mod p) and b2 ≡ ba1 (mod p). Thus one replaces
one inversion by three modular multiplications, which are usually faster, because
in most implementations one inversion is ”about” 15 modular multiplications.

It is an easy matter to generalize this strategy to n inversions. This immedi-
ately leads to the following algorithm for batch decryption, where we assume that
the message is entirely encoded in the norm of the message-ideal, like proposed
in [18].

Algorithm 3 (NICE-Batch-Decryption)
Input: n ciphertexts, i.e. reduced O∆p -ideals ci = (ai, bi), 1 ≤ i ≤ n, the

fundamental discriminant ∆1 and the conductor p.
Output: The n corresponding plaintexts, i.e. the norms Ai of the corre-

sponding ideals Mi = (Ai, Bi), for 1 ≤ i ≤ n.
1 The author would like to thank V. Müller for pointing out the reference.
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1. bO ← ∆1 (mod 2)
2. g0 ← 1
3. g1 ← a1

4. FOR i FROM 2 TO n DO gi ← gi−1ai (mod p)
5. Compute hn ← g−1

n (mod p)
6. FOR i FROM n TO 1 DO

6.1 λi ← higi−1 (mod p)
6.2 hi−1 ← hiai (mod p)
6.3 µi ← 1−λiai

p

6.4 Bi ← biµi + aibOλi (mod 2ai)
6.5 Mi = (Ai, Bi)← ρ1(ai, Bi)

7. RETURN n plaintexts Ai, 1 ≤ i ≤ n

Thus instead of n inversions with the Extended Euclidean Algorithm we
only have to perform one inversion, 3n − 3 modular multiplications, n integer
multiplications and n integer divisions. Thus in typical implementations we are
able to reduce the time for n decryptions, as shown in Table 1 below.

The implementation was done using the LiDIA-package [20] on a Pentium 133
MHz choosing random primes p, q of the respective bit-length. The timings are
given in microseconds, averaged over a number of 100 randomly chosen messages.
The first row shows how many modular multiplications are as costly as one
inversion in LiDIA. The next rows give the time for a NICE-encryption using
80bit exponents and the binary, usual BGMW-, and the signed BGMW-method
[2] for exponentiation. This includes the time for the message-embedding. The
last four rows give the decryption time (per message) for batch sizes of 1, 5, 10
and 100 messages respectively. This shows that for a batch size of 100 we are
able to speed up the decryption by about 30%.

bitlength p, q 200 300 400 500
mult / inv 13.9 15.4 16.2 15.6

ms % ms % ms % ms %
NICE Enc. (binary) 1861.7 100 4065.2 100 7368.9 100 12182.1 100
NICE Enc. (BGMW) 669.7 35.97 1786.6 43.95 3556.5 48.26 6461.9 53.04
NICE Enc. (±-BGMW) 640.9 34.43 1732.6 42.62 3493.6 47.41 6315.5 51.84
NICE Dec. (1 mess.) 9.50 100 16.75 100 26.30 100 35.66 100
NICE Dec. (5 mess.) 8.20 86.32 13.16 78.57 20.00 76.05 26.93 75.52
NICE Dec. (10 mess.) 7.45 78.42 12.34 73.67 19.11 72.66 25.61 71.82
NICE Dec. (100 mess.) 6.70 70.53 11.64 69.49 18.30 69.58 24.61 69.01

Table 1. Timings for NICE with sequential and batch decryption

5 Efficient Exponentiation for Elements of Ker(φ�1
Cl

)

In this section we will introduce a novel arithmetic for classes in Ker(φ−1
Cl ) which

turns out to be much more efficient than standard ideal arithmetic.
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Since we need to apply ϕ during our computation we will only consider
ideals a which are prime to the conductor f . Thus if we are considering principal
(integral) ideals αO∆1, for some α ∈ O∆1 , then we require gcd(N(α), f) = 1.

We start with providing the details of a naive generator arithmetic in Section
5.1. While an exponentiation of an ideal using this arithmetic turns out to be
about twenty times (for the Schnorr-scheme and thirteen times for the DSA-
scheme in totally non-maximal orders) as fast as conventional ideal arithmetic,
we can do even twice as good by applying CRT in (O∆1/fO∆1)∗ as proposed
in [17]. For the readers convenience this method is briefly outlined in Section
5.2. With this arithmetic the signature generation in the Schnorr-analogue [17]
is more than twice as fast as in the original scheme.

5.1 Arithmetic in Ker(φ−1
Cl ) Using (O∆1/fO∆1)

∗

While we already know from Lemma 1 that the arithmetic in Ker(φ−1
Cl ) can be

reduced to the arithmetic in (O∆1/fO∆1 )
∗, we will give a very elementary proof

here, which ends up in a ”ready to implement” algorithm.
It is clear that all integral ideals a ∈ Ker(φ−1

Cl ) ⊆ Cl(∆f) are of the form

a = ϕ(αO∆1), (4)

for some α ∈ O∆1 .
Now instead of multiplying and reducing the ideals in the non-maximal order

we will work with the generators which are corresponding to principal ideals in
the maximal order.

We will start with a simple lemma, which can easily be verified by straight-
forward calculation.

Lemma 2. Let αi = xi + yiω ∈ O∆1 , xi, yi ∈ ZZ, i ∈ {1, 2} and ω like given in
(1). Then β = x+ yω = α1α2 is given by

x = x1x2 + y1y2
∆1

4
(5)

y = x1y2 + x2y1 (6)

in the case that ∆1 ≡ 0 (mod 4) and

x = x1x2 + y1y2
∆1 − 1

4
(7)

y = x1y2 + x2y1 + y1y2 (8)

if ∆1 ≡ 1 (mod 4).

Thus multiplying two generators αi is more efficient than multiplying the
two ideals αiO∆1 , because no application of the costly Extended Euclidean Al-
gorithm is necessary.

It is clear however that we ”somehow need to reduce” intermediate results
during exponentiation to obtain a polynomial time algorithm. The central idea
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is to ”model” reduction of ideals (in the non-maximal order) by manipulating
the generator. This task will turn out to be surprisingly simple.

The following lemma is immediate.

Lemma 3. Let α = x + yω, α′ = x′ + y′ω ∈ O∆1 and f ∈ ZZ>1. Then α ≡ α′
(mod fO∆1 ) if and only if x′ ≡ x (mod f) and y′ ≡ y (mod f).

Next we will consider the norm of an element α ∈ O∆1 under this congruence.

Lemma 4. Let α, β ∈ O∆1 and f ∈ ZZ>1. If α ≡ β (mod fO∆1 ) then N (α) ≡
N (β) (mod f).

Proof: Let α = x+ yω. Then by Lemma 3 above we have β = x′ + y′ω, where
x′ ≡ x (mod f) and y′ ≡ y (mod f).

Then we have

N (α) = x2 − y2ω2

≡ x′2 − y′2ω2 (mod f)
= N (β).

2

The following corollary is immediate.

Corollary 4. Let α, β ∈ O∆1 , f ∈ ZZ>1 and α ≡ β (mod fO∆1 ). gcd(N (α),
f) = 1 if and only if gcd(N (β), f) = 1.

Lemma 5. Let α, β ∈ O∆1 such that gcd(N (α), f) = gcd(N (β), f) = 1 and
ϕ as defined in Proposition 1. Furthermore let γ ≡ αβ (mod fO∆1 ). Then
gcd(N (γ), f) = 1 and if α ≡ β (mod fO∆1 ) then ϕ(αO∆1) ∼ ϕ(βO∆1 ) in
Cl(∆f).

Proof: That gcd(N (γ), f) = 1 is immediate by the multiplicativity of the norm
and Corollary 4.

Because α ≡ β (mod fO∆1 ) it follows, that α = βδ for some δ ∈ Q(
√
∆),

where δ ≡ 1 (mod fO∆1 ). Thus by Proposition 2 we know that ϕ(δO∆1) ∼
O∆f and hence the assertion follows. 2

Furthermore we need the following result, which is immediate because ϕ is
an isomorphism.

Lemma 6. Let α ∈ O∆1 , such that gcd(N (α), f) = 1, n ∈ ZZ and ϕ as defined
in Proposition 1. Then we have ϕ(αO∆1)n = ϕ(αnO∆1).

By combining the above results we immediately obtain the following.

Lemma 7. Let α ∈ O∆1 , such that gcd(N (α), f) = 1, n ∈ ZZ and ϕ as de-
fined in Proposition 1. Then we have ϕ(αO∆1)n ∼ ϕ(γO∆1 ) for some γ ≡ αn

(mod fO∆1 ).

The following lemma follows immediately from (5)-(8) and Lemma 3.
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Lemma 8. Let αi = xi + yiω ∈ O∆1 , xi, yi ∈ ZZ, i ∈ {1, 2}, ω like given in (1)
and f ≥ 1. Then β = x+ yω ≡ α1α2 (mod fO∆1 ) is given by

x ≡ x1x2 + y1y2
∆1

4
(mod f) (9)

y ≡ x1y2 + x2y1 (mod f) (10)

in the case that ∆1 ≡ 0 (mod 4) and

x ≡ x1x2 + y1y2
∆1 − 1

4
(mod f) (11)

y ≡ x1y2 + x2y1 + y1y2 (mod f) (12)

if ∆1 ≡ 1 (mod 4).

This result enables us to ”model” the conventional ideal arithmetic (mul-
tiplication and reduction) by simple calculations modulo f . This leads to the
following algorithm for exponentiation, which is based on binary method for
exponentiation. We denote the binary length of n by λ(n) = blog2(n)c+ 1.

Algorithm 4 (Gen-Exp)
Input: α = x+ yω ∈ O∆1 , the conductor f such that gcd(N (α), f) = 1 and

the exponent n ∈ ZZ.
Output: a = (a, b) = ρf (ϕ((αO∆1 )n)).

1. IF n = 0 THEN OUTPUT(1, ∆1 (mod 2))
2. IF n < 0 THEN n← −n, y ← −y
3. l ← λ(n) − 1, (nl . . . n0)2 ← binary expansion of n, i.e. nl = 1
4. xh ← x (mod f)
5. yh ← y (mod f)
6. IF ∆1 ≡ 0 (mod 4) THEN D ← ∆1/4 ELSE D ← (∆1 − 1)/4
7. FOR i = l− 1 DOWNTO 0 DO

7.1 h← xh

7.2 xh ← h2 + y2
hD (mod f)

7.3 IF ∆1 ≡ 0 (mod 4) THEN yh ← 2hyh (mod f) ELSE yh ← 2hyh+y2
h

(mod f)
7.4 IF ni = 1 THEN

7.4.1 h← xh

7.4.2 xh ← hx+ yhyD (mod f)
7.4.3 IF ∆1 ≡ 0 (mod 4) THEN yh ← hy + xyh (mod f)

ELSE yh ← hy + xyh + yhy (mod f)
8. /* Compute the standard representation A = d(a, b) = αhO∆1 */

8.1 /* Use x+y
√

∆1
2 -form */

xh ← 2xh

IF ∆1 ≡ 1 (mod 4) THEN xh ← xh + yh

8.2 Compute d ← gcd(yh, (xh + yh∆1)/2) = λyh + µ(xh + yh∆1)/2, for
λ, µ ∈ ZZ

8.3 A← |x2
h −∆1y

2
h|/(4d2)

8.4 B ← (λxh + µ(xh + yh)∆1/2)/d (mod 2A)
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9. /* Lift A′ = (1/d)A to the non-maximal order and reduce it */
b← Bf (mod 2A)

(a, b)← ρf (A, b)
10. OUTPUT(a, b)

Proof: By Lemma 7 we only have to compute γ ≡ αn (mod fO∆1 ). The
correctness of the exponentiation algorithm is immediate because it is the well
known binary method with the operation given in Lemma 8 as group operation.

In step 8 we simply compute the standard representation of the ideal A =
αhO∆1 = d(aZZ + (b+

√
∆1)/2ZZ). By Corollary 4 we know that N (αhO∆1 ) =

ad2 is prime to f . This clearly implies that gcd(d, f) = 1. Because A = (d)A′

for d ∈ ZZ , A′ = aZZ + (b +
√
∆1)/2ZZ we know from Proposition 2 that

ϕ(A) ∼ ϕ(A′). Finally it is clear that we can apply ϕ from Proposition 1, because
gcd(a, f) = 1 2

5.2 Even More Efficient Arithmetic in Ker(φ−1
Cl ) Using CRT in

(O∆1/pO∆1)
∗

In the previous section we saw that the arithmetic in Ker(φ−1
Cl ) can be reduced

to arithmetic in (O∆1/fO∆1 )∗, which turns out to be much more efficient. In
this section we outline yet another method for a further speed up. We refer to
[17,16] for the details.

We will only concentrate on a special case which seems to be most important
for practical application, as it is used in the Schnorr-analogue from [17]. That is
we assume that the conductor is a prime p, where

(
∆1
p

)
= 1.

Lemma 9. Let O∆1 be the maximal order and p be prime. Then there is an
isomorphism

(O∆1/pO∆1)
∗ ' IFp[X]

/
(f(X)) ,

where (f(X)) is the ideal generated by f(X) ∈ IFp[X] and

f(X) =
{
X2 − ∆1

4
, if ∆1 ≡ 0 (mod 4),

X2 −X + 1−∆1
4 , if ∆1 ≡ 1 (mod 4).

(13)

Proof: See [16, Proposition 5]. 2

Theorem 5. Assume that
(

∆1
p

)
= 1 and the roots ρ, ρ̄ ∈ ¯IFp of f(X) ∈ IFp[X]

as given in (13) are known. Then the following isomorphism can be computed
in time O((logp)2):

(O∆1/pO∆1)
∗ ' IF∗

p ⊗ IF∗
p

Proof: From Lemma 9 we know that there is an isomorphic map (O∆1/pO∆1)∗→
IFp[X]/(f(X)), where f(X) ∈ IFp[X] is given in (13). And that this isomorphism
is trivial to compute.

Because
(

∆1
p

)
= 1 the polynomial f(X) is not irreducible, but can be de-

composed as f(X) = (X − ρ)(X − ρ̄) ∈ IFp[X] where ρ, ρ̄ ∈ IFp are the roots
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of f(X). Thus if ∆1 ≡ 0 (mod 4) and D = ∆1/4 we have ρ ∈ IFp such that
ρ2 ≡ D (mod p) and ρ̄ = −ρ. In the other case ∆1 ≡ 1 (mod 4) we have
ρ = (1 + b)/2, where b2 ≡ ∆1 (mod p) and ρ̄ = (1− b)/2 ∈ IFp. Thus we have
the isomorphisms

(O∆1/pO∆1)
∗ '

(
IFp[X]

/
(X − ρ)

)∗
⊗
(

IFp[X]
/
(X − ρ̄)

)∗
' IF∗

p ⊗ IF∗
p.

Let α = a + bω ∈ (O∆1/pO∆1)∗ then the mapping ψ : (O∆1/pO∆1)∗ →
IF∗

p ⊗ IF∗
p is given as x1 = ψ1(α) = a+ bρ ∈ IF∗

p and x2 = ψ2(α) = a + bρ̄ ∈ IF∗
p.

The inverse map ψ−1 is computed by solving the small system of linear equations.
I.e. one will recover a, b ∈ IF∗

p by computing b = x2−x1
ρ̄−ρ

and a = x1 − bρ. Thus
both transformations ψ and ψ−1 need time O((log p)2). 2

With this result we immediately obtain the of the following algorithm.

Algorithm 6 (Gen-CRT)
Input: α = x + yω ∈ O∆1 , the conductor p, such that gcd(N (α), p) = 1,(

∆1
p

)
= 1, the roots ρ, ρ̄ ∈ IF∗

p of f(X) as given in (13) and the exponent n ∈ ZZ.
Output: a = (a, b) = ρp(ϕ((αO∆1)n)).

1. IF n = 0 THEN OUTPUT(1, ∆1 (mod 2))
2. IF n < 0 THEN n← −n, y ← −y
3. x1 ← (x+ ρy)n (mod p)
4. x2 ← (x+ ρ̄y)n (mod p)
5. r← (ρ̄− ρ)−1 (mod p)
6. yh ← (x2 − x1)r (mod p)
7. xh ← x1 − yhρ (mod p)
8. Compute standard representation, lift and reduce as in Algorithm 4 Step 8.-9.
9. OUTPUT(a, b)

Note that the computation of r in Step 5 can be done in a precomputation
phase, as is it independent of the current α.

5.3 Timings for Different Arithmetics

In this section we will give the timinings of a first implementation of the novel
arithmetics for Ker(φ−1

Cl ). We will also include timings for standard-ideal arith-
metic and modular arithmetic to allow comparison.

For the RSA analogues in totally non-maximal orders [15] we fixed ∆1 =
−163 and chose a random exponent k < n = pq. For all DL-based systems
(DSA and Schnorr) we chose a random k < 2160. For the DSA-analogue based
on totally non-maximal orders we also fixed ∆1 = −163. Note that due to the
recent result [16] this analogue with ∆p is only as secure as the original scheme
with p. Thus one needs to compare the lines for the 1200 bit DSA-analogue in
Cl(∆p) with the time for 600 bit modular arithmetic.

For the NICE-Schnorr-analogue [17] we also chose a random k < 2160 and
∆p = ∆1p

2 where ∆1 = −q (or ∆1 = −4q if q ≡ 1 (mod 4) respectively)
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and p, q with equal bitlength. Because factoring integers is about as hard as the
computation of discrete logarithms (modulo p) one needs to compare the timings
where ∆p and the prime modulus have the same bitlength.

The timings are given in microseconds on a pentium 133 MHz using the
LiDIA - package [20]. One should note that the implementation of neither variant
is optimized. This is no problem, because we are interested in the comparison,
rather than the absolute timings.

cryptosystem Schnorr / DSA RSA
arithmetic mod. ideal Gen-exp Gen-exp Gen-CRT mod. ideal Gen-exp
bitlength of p ∆p ∆p = −163p2 ∆p = −qp2 ∆p = −qp2 n = pq n = pq n = pq

600 188 3182 240 159 83 258 10490 994
800 302 4978 368 234 123 583 22381 2053
1000 447 7349 542 340 183 886 35231 3110
1200 644 9984 724 465 249 1771 68150 6087
1600 1063 15751 1156 748 409 3146 125330 10864
2000 1454 22868 1694 1018 563 5284 224799 18067

Table 2. Timings for exponentiation with different arithmetics

The timings in Table 2 show the impressive improvement. One can see that the
exponentiation using Algorithm 4 is already about thirteen times as fast as an
exponentiation using conventional ideal arithmetic, if ∆p = −163p2 and more
than twenty times as fast for the Schnorr-analogue.

If we apply Algorithm 6 as proposed in [17] and outlined in Section 5.2, we are
about forty times as fast as conventional ideal arithmetic. Using this arithmetic
the signature generation in the NICE-Schnorr-analogue is more than twice as
fast as in the original scheme in IF∗

p.
On the other side we see that the RSA-analogue [15] in totally non-maximal

orders is still far less efficient than the original scheme and although immune
against low exponent and chosen ciphertext attack not preferable for practice.

Finally one should note that for the signature verification in the NICE-
Schnorr-scheme one has to use standard ideal arithmetic, which is very inef-
ficient. Thus an important task for the future will be to speed up the standard-
ideal arithmetic as well, to enable practical application of the proposed Schnorr-
analogue [17].
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8. S. Düllmann: Ein Algorithmus zur Bestimmung der Klassenzahl positiv definiter

binrer quadratischer Formen, PHD-thesis (in german), University of Saarbrücken:
1991

9. T. ElGamal: A public key cryptosystem and a signature schem based on discrete
logarithms, IEEE Transactions on Information Theory 31, 1985, pp. 469-472

10. J.L. Hafner, K.S. McCurley: A rigorous subexponential algorithm for computation
of class groups, Journal of the American Mathematical Society, 2, 1989, 837-850

11. S. Hamdy, A. Meyer: personal communication, 1999
12. M. Hartmann, S. Paulus and T. Takagi: NICE - New Ideal Coset Encryption, to

appear in the proceedings of CHES, 1999
13. L.K. Hua: Introduction to Number Theory. Springer-Verlag, New York, 1982.
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