Software Optimization of Decorrelation Module

Fabrice Noilhan

Université Paris-Sud, LRI
Bat. 490, 91405 Orsay, Cedex, France
Fabrice.Noilhan@lri.fr

Abstract. This paper investigates software optimization of special mul-
tiplication. In particular we concentrate on az +b mod 2% + 13 mod 264
which is the bottleneck operation in the DFC cipher. We show that we
can take advantage of the language and architecture properties in order
to get efficient implementations.

In this paper we use the ANSI C and the Java languages. We also inves-
tigate assembly code, and data structure alternatives. Finally, we show
that we can also use floating point arithmetic.

1 Introduction

Several cryptographic algorithms require that some particular multiplication is
optimized. In particular, the DFC AES candidate [1] was believed to be sub-
stantially slower than the others because its main operation ax 4+ b mod 254 +
13 mod 2%% was believed to be necessarily slow. In this paper we concentrate
on optimization techniques for this operation. The results are of course not
restricted to DFC since other cryptographic algorithms use this kind of primi-
tive. For instance, the MMH MAC algorithm [3] uses the 2% | m,;z; mod (232 4
15) mod 23? function, the Shazam [5] algorithm uses the (x + k)% mod p mod n
operation.

We will first introduce how to do a division-less modular reduction. Then, we
will see what are the choices to implement the multiplication and this modular
reduction. We will point out some security issues about the implementation itself
since there are many ways to implement it and see that most concerns can be
solved using proper operations. We finally will show what are the best choices
to get optimal performances with generic ANSI C, 64-bit C, assembly language
and Java on Alpha, Pentium II, UltraSparc processors and on IA64 architecture.

2 Calculation of ax + b mod 2% 4+ 13 mod 264

The multi-precision multiplication is best implemented in a straightforward man-
ner since optimizations such as Karatsuba do not seem worthwhile for such small
operands.

As a division is rather slow, we must have another method to do modular
reduction. We will use the following method:

Howard Heys and Carlisle Adams (Eds.): SAC’99, LNCS 1758, pp. 175-183, 2000.
© Springer-Verlag Berlin Heidelberg 2000

176 Fabrice Noilhan

Let P = ax + b. Note that since a,r and b are 64-bit numbers, P is a 128-bit
number (ax + b < 2128 — 264). We first write

P=Q2"+R

where R is the remainder of the Euclidean division of P by 264, It follows
that
P=Q(2% +13) + R—13Q

and this is equal to R — 13Q modulo 264 4 13.

The subtraction is a problem since it can lead to two different cases: R —
13Q > 0 and R —13@Q < 0. Dealing with negative values is tedious since we have
to take care about timing attacks and use sometimes back and forth conversions
between signed and unsigned integers (we want to use all register bits for multi-
plication). This can be avoided while splitting the value into smaller words but,
usually, it is not effective.

As we are doing arithmetic modulo 264 4+ 13, we can use the bitwise comple-
ment to do subtraction:

P'=R-13Q=R+13(20* -1 -Q) —13(2%* —1) mod 2%* + 13

= R+1302%-1-Q)+182 mod 2% 4 13.
264 1@ is the 64-bit bitwise complement of (). The result is always positive
and is most of the time greater than 264 4+ 13. Thus, we can perform a similar

reduction for P’: P’ = Q'254 + R’, and Q' < 14. Then, we can use a small table
to compute the final values.

3 Some Possibilities

3.1 Multiplication

Implementations should use arithmetic on numbers of the largest size that is
efficiently available on the target processor.

The key factor for speed is the multiplication of two 64-bit quantities yielding
a 128-bit result. We have to do a number of multiplications which depends on
the multiplier of the processor as shown in the table 1.

Table 1. Number of multiplications required

operands(bits) result(bits) # multiplications

64 128 1
32 or 64 64 4
16 or 32 32 16

8 or 16 16 64

Software Optimization of Decorrelation Module 177

We also have to add the resulting values and the number of additions depends
on the size of the registers used (cf table 2).

Table 2. Number of additions required

registers(bits) # additions

64 4
32 18
16 88

The total cost of additions is typically less than the cost of the multiplications
but is not negligible. Thus, optimizations of this part of the algorithm are of
prime importance, especially when dealing with carries.

It is sometimes worth doing more operations on smaller operands, since they
may be faster. Tables 1 and 2 should give a fair estimation of the cycle counts.

3.2 Modular Reduction

Before the modular reduction, we need to add the constant b. This can be done
either before or after the multiplication. The choice is generally made by the lan-
guage used: a low-level language with “add with carry” implies usually a straight-
forward implementation of the multiplication. Otherwise, adding the constant
in the same time as we multiply can save some cycles.

Then, we can implement the modular reduction in many different ways. First,
we have to split the 128-bit result of the multiplication into many words. On the
one hand, if we use words of the maximum size available, then we will not have
any room left to store carries so that we will need to propagate them. On the
other hand, using words of smaller size will imply more operations. Depending on
the processor and its parallelization level, one solution is faster than the other.

In the reduction itself, the multiplication by the constant 13, as explained in
the previous section is usually optimized by the compiler. This is not the case on
UltraSparc (Sun WC 5.0 compiler) or in Java; we have to do it manually with
shifts and adds. The second step of the reduction implies another multiplication
of a low operand. On most processors, this operation is faster using a small
lookup table. Not only it is faster but it avoids some problems of timings attacks
with such small operands.

4 Security Issues

Since the implementation of the algorithm can be done in many distinct ways,
one has to take care about security issues of the implementation itself.

First of all, the multipliers on some chips can compute the product of small
operands in fewer cycles than for large operands. This feature may make timing

178 Fabrice Noilhan

attacks possible, as is the case with most algorithms using integer multiplications
(e.g. RC6, Mars).

Recently, Harvey [2] has noticed that an attack of DFC can be made on care-
less implementations. He supposes a different approach than the one we present
here. Our implementations can be easily made resistant to timings attacks (ex-
cept on the multiplier itself), and rare code paths are easy to test.

Care must be taken with the propagation of carries. On some chips, the
fastest implementation uses branches and thus is vulnerable to timing attacks.
On low end processors, the cost of such a protection is noticeable since there are
many carries to propagate. But on Pentium Pro for instance, the cost is only
about 40 cycles.

5 Dedicated Optimizations

51 ANSIC

Writing portable ANSI C code entails that you do not know anything about
the representation of the objects. When you need a 32-bit unsigned integer, you
have to use an unsigned long.

So, using 32-bit integers for both multiplication and additions, an implemen-
tation of the round function requires at least 16 multiplications and 18 additions.

On most processors, this implementation will not have a high speed compared
to an assembly coded function: the processor may be able to deal with larger
registers or the processor may have some particular properties (e.g. a larger
multiplier, or an add-with-carry opcode). Those characteristics can not be used
in a portable ANSI C code.

Still, an ANSI code should compile and produce the same results whichever
system and (ANSI) compiler you use. The tradeoff between portability and effi-
ciency is generally costly.

As regards to the modular reduction, since we do not know anything about
the processor, it does not make much sense to choose between alternatives. The
addition of b can be made within the multiplication. We should use 32-bit words
to do the modular reduction, since it would otherwise require too many opera-
tions.

5.2 C with 64-Bit Integers

A new norm, called C9X, will allow to use 64-bit integers (such as in JAVA for
instance). Indeed, it will not only help 64-bit processors to give their full power,
but also it will be helpful for 32-bit processors (such as Pentium IT) which have
a larger multiplier.

Using 64-bit unsigned long long, one can use only 4 multiplications to
compute the 128-bit multiplication of the round function. One should switch
back to the 32-bit integers next, since other operations on 64-bit integers are
emulated by the compiler. Thus they yield to poor performance.

Software Optimization of Decorrelation Module 179

For native 64-bit processors, not only does the use of 64-bit types reduce the
number of operations, but these operations are faster: 32-bit operations are often
emulated by the processor (using integer masks for example) and are slower than
64-bit opcodes.

In this code, we can use 32-bit words, even on 64-bit processors, to do the
modular reduction. With 32-bit processors, it is obvious. With 64-bit processors,
many instructions are executed each cycle. So you may group into 32-bit words
for free if it helps parallelization. The main advantage is that the propagation
of carries is eased since we do them only once at the end of the computing (they
are stored in the 32 most significant bits of the registers during the calculation).

5.3 Alpha

The Alpha 21164 has a multiplier which takes two 64-bit inputs and provides
the least significant or most significant half of the 128-bit result after 12 or 14
cycles respectively. Also, the multiplications can overlap and can run in parallel
with other operations.

If we use portable ANSI C code, which only guarantees arithmetic up to
32 bits, then performance is relatively poor on 64-bit chips. We have to break
numbers into 32-bit pieces and cannot use any 64-bit capabilities, in particular
fast multipliers such as that on the 21164.

ANSI C permits implementations to provide 64-bit arithmetic however, and
by taking advantage of this we gain a lot of speed. We still cannot get the most
significant half of a 64 x 64-bit product however. On Alpha we use the assembly
language instruction, umulh from C (by implementation-dependent methods) to
attain the best performance on this architecture.

Since the multiplication is atomic, the addition of b 4 182 is made after it.
We use 64-bit words, the first multiplication by 13 is done via shifts and the
second one is left to the compiler (which implements it correctly). This can be
done efficiently in C.

More extensive use of assembly language does not appear to yield any signif-
icant improvement.

5.4 Pentium II

The Pentium II is a 32-bit processor with a multiplier which takes two 32-bit
inputs and returns the 64-bit result. The multiplication instruction is fast: it only
takes 4 cycles. So, the entire multiplication and the modular reduction should
be fast as well.

However, the expected speed is not achievable in C. Using only ANSI C, we
are not able to use the multiplication with 64-bit result. Even if we do use 64-bit
integers via the long long type (which will be part of C9X), compiled code
does not use addition with carry instruction and it does a lot of unnecessary
data movement between registers and memory.

To implement the integer multiplication in assembly, we take advantage of
two operations: addition with carry and 32-by-32 multiplication.

180 Fabrice Noilhan

The modular reduction is done with 32-bit words, and use a table lookup.
Once again, we need the addition with carry, so that it is also done in assembly
language.

When the whole computation is done in registers using assembly language,
we get the expected speed of the function.

5.5 UltraSparc

The UltraSparc is a 64-bit processor. Until recently, it could not be used as such
in C since there was no compiler for 64-bit mode. Sun’s new C compiler 5.0
handles 64-bit integers and performs well on 64-bit C code.

The multiplier takes two 64-bit inputs and computes the least significant half
of their product. Unlike the situation on Alpha, there is no method to get the
most significant half. Thus, we have to do four multiplications to get the full
result. These multiplications are rather slow: each of them takes about 20 cycles
so that the time for the entire multiplication is large. The time for modular
reduction is insignificant in comparison.

In order to achieve better results, we can use the Floating Point Unit. The
FPU has a double precision multiplier which we will use in a slightly unusual
way. Since the FPU uses the IEEE 754 ! representation of numbers, we can
use 52 significant bits with double precision floating-point numbers. This means
that we can multiply 24-bit values and add several of the results without any
round-off error occurring. Thus, we can do a 64 x 64-bit product using nine
24 x 24-bit multiplications (and some additions). Alternatively we can do eight
16 x 32-bit multiplications. These methods are faster than using four integer
multiplications.

The only problem is to convert from integers to floats. When done with casts
in C, it uses a function of the C library and is very slow. When done in assembler
using the FiT0d instruction, it is not much better. For reasonable speed we have
to do it manually via a bit mask and an addition. Similar tricks are used to
convert from floating-point numbers back to integers in order to do the modular
reduction.

This enables us to achieve better performances for the multiplication than
the standard 64-bit C code.

The modular reduction is implemented with 32 bit words and carries are
stored into high order bits of the registers. Multiplications by 13 are all made
using shifts and additions.

5.6 IA64 Architecture

Intel has recently unveiled specifications of its next architecture, called TA64.
This enables us to estimate the cycle counts of the Merced processor.

The Merced is a 64-bit processor. We have no idea at the moment whether
compilers will be able to deal with the full set of instructions so that we will

! ANSI/IEEE Standard 754-1985: Standard for Binary Floating Point Arithmetic

Software Optimization of Decorrelation Module 181

only consider assembly language. The key point is that IA64 has a full 64-bit
to 128-bit unsigned integer multiply so it will end up in the fast category. The
instruction xma is an integer a * x + b (which can never overflow 128 bits).

Terje Mathisen has written an IA64 implementation of the round function
and gets a round timing of 30 cycles with some more or less obvious possibilities
to save a few more cycles. Of these 30 cycles, 10 are taken by a pair of sequential
xma operation, but the second can be handled with integer code instead, since
the multiplier is small and known (13).

The one possible problem is that integer multiplication uses the floating point
registers, so the (currently unknown but believed to be 1 cycle) time to convert
back and forth between integers and floating point mantisses is in addition to
the two xma.u operations needed for the low and high halves of the result. For
best performance, all the integers and floating point constants need to be placed
in registers before starting the inner loop.

As predication replaces branches in the carry propagation, there should be
no possibility for a timing attack based on key or data values.

Thus, the 240 cycles count compares well to the 231 cycles on a 21264 Alpha.
This answers to the criticism that the decorrelation module should be slow on
Merced and shows that some non-trivial optimizations of the code can give a
huge improvement of speed. We also note that the numerous registers and the
multiplier should enable a fast RSA implementation.

5.7 Java

There is a very simple way to implement the multiplication and the modular
reduction in JAVA, using Biglntegers. Unfortunately, this slows down the speed
dramatically. It has the advantage of only taking two or three lines of code and
can provide a reference but not an optimized implementation.

Java provides a 64-bit integer data type, which is always signed. Anyway, the
signed-ness can just be ignored in the arithmetic operations we need: additions,
subtractions and multiplications are defined in the standard as if they were
modulo 2% and bitwise logical operations use the sign bit as in normal twos-
complement representation. There is an unsigned right shift operator, as well as
a signed one. The only restriction is that we can neither use comparisons (which
could have been useful to propagate carries) nor use signed divisions (which we
do not need anyway). These characteristics are described in the Java Virtual
Machine specifications [4].

Thus, the implementation is essentially the same as a 64-bit C version. Since
we cannot do casts (even using “assembly” Java bytecode) and since we cannot
use comparisons, the implementation is naturally resistant to endianess issues
and to most timing attacks (except for the multiplications).

Even if one could produce specific Java code for a processor, it does not
gain very much. Optimized versions for Pentium II and UltraSparc uses the
same tricks as optimized C codes. Most of the optimizations dedicated to the
processors are done in JIT compilers. Even hand-written bytecode, which should
produce faster code, does not have a noticeable speedup. The reason why we can

182 Fabrice Noilhan

not do optimizations is that the set of opcodes is very small and the whole job
is given to the JIT compiler which optimizes the code for the given processor.
Since 64-bit operations are part of the language, they are well optimized by the
compiler, which reorders and expands some instructions.

Some errors should be avoided to help the compiler: splitting into functions
as we can do in C, using a multiplication by 13 on UltraSparc processor. But
the Java compilers are relatively new and improve quickly.

With the development of Web services and online payment, these JAVA im-
plementations become all the more important and huge improvements of speed
have been done during the past year: JIT compilers and now HotSpot technology
should give a speed equivalent to C++ according to Sun Microsystems (that is
roughly the speed of C in cryptography).

6 Conclusion

When going to results, there are two facts to outline: one should use the largest
integers available and the round function is not always well optimized by com-
pilers.

On Alpha, on account of the lack of a C instruction to get the most significant
half of the multiplication, 200 cycles are lost. The same problem may exist on
IA64. On Pentium II, compilers do not achieve the expected speed because there
are too few registers. Results on the UltraSparc are disappointing as a result of
the slow multiplier.

In the following table 3, we compare ANSI C portable code and 64-bit C
code to the best implementation available in order to show the importance of
the optimizations.

Table 3. Number of cycles for DFC

Processor JAVA ANSI C 64-bit C Best
Alpha 21164 n/a 2562 526 310 (ASM)
Pentium II 1481 2592 1262 392 (ASM)
UltraSparc 4087 4160 875 775 (C with floats)
(
(

Alpha 21264 n/a n/a 335 231 (ASM)
IA64 n/a n/a n/a 240 (estimated)

With generic ANSI C code, DFC is one of the slowest AES candidates on all
platforms. Using assembly language, it becomes the fastest on Alpha processors
and among the fastest on Intel Pentium II and Merced processors.

We have seen what are the best solutions on various microprocessors and
languages. Harvey [2] thought that “correct implementations may be difficult to
achieve”. We have shown that correct and fast implementations can be easily
made.

Software Optimization of Decorrelation Module 183

As the cost of this decorrelation module is nearly the same as the cost of the
multiplication, it could be used as a plug-in in many other algorithm without
significant decrease of the performances. The drawback is that its optimization
requires access to some low-level instructions (add with carry, most significant
bits of the multiplication) which are generally not available in a high-level lan-
guage such as C.

Acknowledgments

We thank Serge Vaudenay, Robert Harley and Terje Mathisen for comments and
suggestions on this work. We also thank Dominik Behr, Robert Harley, Danjel
McCougan, Terje Mathisen and David Seal for their implementations of DFC
from which most of the work is derived.

Java is a trademark of Sun Microsystems, Inc. in the United States and other
countries.

References

1. H. Gilbert, M. Girault, P. Hoogvorst, F. Noilhan, T. Pornin, G. Poupard, J. Stern,
S. Vaudenay. Decorrelated Fast Cipher: an AES Candidate. (Extended Abstract.)
In Proceedings from the First Advanced Encryption Standard Candidate Confer-
ence, National Institute of Standards and Technology (NIST), August 1998.

2. Harvey. The DFC Cipher: an attack on careless implementations In Proceedings of
the second AES Workshop, 1999

3. Haveli, Krawczyk MMH: Message authentication in software in the Gbit/sec rates
In Proceedings of the 4th Workshop on Fast Software Encryption, 1997

4. Lindholm, Yellin The Java[tm] Virtual Machine Specification, Second Edition Sun
Microsystems, ISBN: 0-201-43294-3

5. Patel, Ramzan, Sundaram. Towards Making Luby-Rackoff Ciphers Optimal and
Practical To appear in Proceedings of the 6th Workshop on Fast Software Encryp-
tion, 1999

	Software Optimization of Decorrelation Module
	1 Introduction
	2 Calculation of ax + b mod 264 + 13 mod 264
	3 Some Possibilities
	3.1 Multiplication
	3.2 Modular Reduction

	4 Security Issues
	5 Dedicated Optimizations
	5.1 ANSI C
	5.2 C with 64-Bit Integers
	5.3 Alpha
	5.4 Pentium II
	5.5 UltraSparc
	5.6 IA64 Architecture
	5.7 Java

	6 Conclusion
	Acknowledgments
	References

