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Abstract. In this paper, we introduce a new approach to the genera-
tion of binary sequences by applying trace functions to elliptic curves
over GF (2m). We call these sequences elliptic curve pseudorandom se-
quences (EC-sequence). We determine their periods, distribution of zeros
and ones, and linear spans for a class of EC-sequences generated from
supersingular curves. We exhibit a class of EC-sequences which has half
period as a lower bound for their linear spans. EC-sequences can be
constructed algebraically and can be generated efficiently in software
or hardware by the same methods that are used for implementation of
elliptic curve public-key cryptosystems.

1 Introduction

It is a well-known result that any periodic binary sequence can be decomposed as
a sum of linear feedback shift register (LFSR) sequences and can be considered as
a sequence arising from operating a trace function on a Reed-Solomon codeword
[22], [24]. More precisely, let α be a primitive element of a finite field F2n and let
C = {r1, · · · , rs}, 0 < ri < 2n − 1, be the null spectrum set of a Reed-Solomon
code. If we want to transmit a message m = (m1, · · · , ms), mi ∈ F2n , over a
noisy channel, then first we form a polynomial g(x) =

∑s
i=0 mix

ri and then
compute cj = g(αj). The codeword is c = (c0, c1, · · · , c2n−2). Now we apply the
trace function from F2n to F2 to this codeword, i.e., we compute

ai = Tr(ci) = Tr(g(αi)), i = 0, 1, · · · , 2n − 2. (1)

Then the resulting sequence A = {ai} is a binary sequence having period which
is a factor of 2n−1. All periodic binary sequences can be reduced to this model.
Note that if g(x) = x, then A is an m-sequence of period 2n−1. A lot of research
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has been done concerning ways to choose the function g(x) such that the result-
ing sequence has the good statistical properties. Examples include filter function
generators [15], [11], [18], combinatorial function generators [14], [25], [23], and
clock controlled generators and shrinking generators[1], [5]. Unfortunately, the
trace function destroys the structure of Reed-Solomon code. It is difficult to
get sequences satisfying cryptographic requirements from this approach. If one
can specify the linear span, then there is no obvious method to determine the
statistical properties of the resulting sequences. Examples include many conjec-
tured sequences with two-level autocorrelation or lower level cross correlation
[21], [27]. If one can fix the parameters for good statistical properties, then all
known sequences have low linear spans in the sense that ratio of linear span to
the period is much less than 1/2.

Note that if a binary sequence of period 2n has the property that each n-
tuple occurs exactly once in one period, then it is called a de Bruijn sequence [3].
Chan et al. proved that de Bruijn sequences have large linear spans [4]. From a
de Bruijn sequence of period 2n one can construct a binary sequence of period
2n−1 by deleting one zero from the unique run of zeros of length n. The resulting
sequence is called a modified de Bruijn sequence, see [10]. There is no theoretical
result on the linear spans of such sequences except for m-sequences. Experimental
computation on the linear spans of the modified sequences have only been done
for the sequences with period 15, 31 and 63 [10]. Another problem that de
Bruijn sequences have is that they are difficult to implement. All algorithms
for constructing de Bruijn sequences (except for a class constructed from the
m-sequences of period 2n − 1) require a huge memory space. It is infeasible to
construct a de Bruijn sequence or a nonlinear modified de Bruijn sequence with
period 2n when n > 30 [6], [7], [9]. (It is a well known fact that in design of
secure systems, if one sequence can be obtained by removing or inserting one bit
from another sequence, and the resulting sequence has a large linear span, then
it is not considered as secure. Consequently, the de Bruijn sequences of period
2n constructed from m-sequences of period 2n − 1 by inserting one zero into the
run of zeros of length n − 1 of the m-sequence are not considered to be good
pseudorandom sequences. )

In this paper, we introduce a new method for generating binary sequences.
We will replace a Reed-Solomon codeword in (1) by the points on an elliptic
curve over F2n . The resulting binary sequences are called elliptic curve pseudo-
random sequences, or EC-sequences for short. We will discuss constructions and
representation of EC-sequences, their statistical properties, their periods and
linear spans. We exhibit a class of EC-sequences which may be suitable for use
as a key generator in stream cipher cryptosystems. These EC-sequences have
period equal to 2n+1, the bias for unbalance is b2n/2c and lower bound and up-
per bounds on their linear spans are 2n and 2n+1 − 2, respectively. It is worth
pointing out that EC-sequences can be constructed algebraically and they can
be generated efficiently in software or hardware by the same method that are
used for implementation of elliptic curve public-key cryptosystems [20].
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The paper is organized as follows. In Section 2, we introduce some concepts
and and preliminary results from sequence analysis and the definition of the
elliptic curves over F2n . In Section 3, we give a method for construction of EC-
sequences and their representation by interleaved structure. In Section 4, we
discuss statistical properties of EC-sequences constructed from supersingular el-
liptic curves. In Section 5, we determine the periods of EC-sequences constructed
from supersingular elliptic curves. In Section 6, we derive a lower bound and an
upper bound for EC-sequences constructed from a class of supersingular elliptic
curves with order 2n +1. Section 7 shows a class of EC-sequences which are suit-
able for use as a key generator in stream cipher cryptosystems. A comparison
of this class of EC sequence generators with the other known pseudo-random
sequence generators is also included in this section.

Remark. Kaliski discussed how to generate a pseudo-random sequence from
elliptic curves in [16], where he used randomness criteria based on the com-
putational difficulty of the discrete logarithm over the elliptic curves [26]. In
this paper our approach is completely different. We use the unconditional ran-
domness criteria to measure the EC-sequences and use the trace function to
obtain binary sequences. A set of the unconditional randomness measurements
for pseudorandom sequence generators is described as follows:

– Long period
– Balance property (Golomb Postulate 1 [9])
– Run property (Golomb Postulate 2)
– n-tuple distribution
– Two-level auto correlation (Golomb Postulate 3)
– Low-level cross correlation
– Large linear span and smooth increased linear span profiles

2 Preliminaries

In this section, we introduce some concepts and preliminary results on sequence
analysis.

Let q = 2n, let
Fq be a finite field and let Fq [x] be the ring of polynomials over Fq .

2.1 Trace Function from Fq to F2

Tr(x) = x + x2 + · · ·+ x2n−1
, x ∈ Fq.

Property: Tr(x2k

) = Tr(x) for any positive integer k.
For x ∈ Fq, this can be written as

x = x0α + x1α
2 + · · ·+ xn−1α

2n−1
, xi ∈ {0, 1}
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where {α, α2, · · · , α2n−1} is a normal basis of F2n . In this representation, Tr(x)
can be computed as follows

Tr(x) = x0 + x1 + · · ·+ xn−1.

2.2 Periods, Characteristic Polynomials, and Minimal Polynomials
of Sequences

Let A = {ai} be a binary sequence. If v is a positive integer such that

ai = av+i, i = 0, 1, · · · , (2)

then v is called a length of A. We also write A = (a0, a1, · · · , av−1), denote
v = length(A). Note the index is reduced modulo v. If p is the smallest positive
integer satisfying (2), then we say p is the period of A, denoted as per(A). It is
easy to see that p|v.

Let f(x) = xl+cl−1x
l−1 + · · ·+c1x+c0 ∈ F2[x]. If f(x) satisfies the following

recursive relation:

al+k =
l−1∑
i=0

ciai+k = cl−1al−1+k + · · ·+ c1a1+k + c0ak, k = 0, 1, · · ·

then we say f(x) is a characteristic polynomial of A over F2.
The left shift operator L is defined as

L(A) = a1, a2, · · · ,

For any i > 0,
Li(A) = ai, ai+1, · · · ,

We denote L0(A) = A for convention. If f(x) is a characteristic polynomial of
A over F2, then

f(L)A =
l∑

i=0

ciL
i(A) = 0

where 0 represents a sequence consisting of all zeros. (Note 0 represents a number
0 or a sequence consisting of all zeros depending on the context.) Let

G(A) = {f(x) ∈ F2[x]|f(L)A = 0}.

The polynomial in G(A) with the smallest degree, say m(x), is called the min-
imal polynomial of A over F2. Note that G(A) is a principle ideal of F2[x] and
G(A) =< m(x) >. So, if f(x) is a characteristic polynomial of A over F2, then
f(x) = m(x)h(x) where h(x) ∈ F2[x]. The linear span of A over F2, denoted as
LS(S), is defined as LS(A) = deg(m(x)).
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2.3 Interleaved Sequences

We can arrange the elements of the sequence A into a t by s array as follows:


a0 at · · · a(s−1)t

a1 at+1 · · · a(s−1)t+1

a2 at+2 · · · a(s−1)t+2

...
at−1 at+t−1 · · · a(s−1)t+t−1




Let Ai denote the ith row of the above array. Then we also write the sequence
A = (A0, A1, · · · , At−1)T where T is a transpose of a vector. In reference [12],
A is called an interleaved sequence if Ai, 0 ≤ i ≤ t − 1, has the same minimal
polynomial over F2. Here we generalize this concept to any structures of Ais.
We still refer to A as a (t, s) interleaved sequence. By using the same approach
as used in [12], we can have the following proposition.

Proposition 1 Let v be a length of A and A be a (t, s) interleaved sequence
where v = ts. Let mi(x) ∈ F2[x] be the minimal polynomial of Ai, 1 ≤ i ≤ t and
m(x) ∈ F2[x] be the minimal polynomial of A, then

m(x)|mj(xt), 0 ≤ j ≤ t − 1.

2.4 Elliptic Curves over F2n

An elliptic curve E over F2n can be written in the following standard form (see
[19]):

y2 + y = x3 + c4x + c6, ci ∈ F2n (3)
if E is supersingular, or

y2 + xy = x3 + c2x
2 + c6, ci ∈ F2n (4)

if E is non-supersingular. The points P = (x, y), x, y ∈ F2n , that satisfy this
equation, together with a “point at infinity” denoted O, form an Abelian group
(E, +, O) whose identity element is O.

Let P = (x1, y1) and Q = (x2, y2) be two different points in E and both P
and Q are not equal to the infinity point.

Addition Law for E supersingular For 2P = P + P = (x3, y3),

x3 = x4
1 + c2

4 (5)
y3 = (x2

1 + c4)(x1 + x3) + y1 + 1 (6)

For P + Q = (x3, y3), if x1 = x2, then P + Q = O . Otherwise,

x3 = λ2 + x1 + x2

y3 = λ(x1 + x3) + y1 + 1

where λ = (y1 + y2)/(x1 + x2).

Remark 1 For a detailed treatment of sequence analysis and an introduction to
elliptic curves, the reader is referred to [9], [19].
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3 Constructions of Pseudorandom Sequences from
Elliptic Curves over Fq

In this section, we give a construction of binary sequences from an elliptic curve
over Fq .

Let E be an elliptic curve over Fq , denoted as E(Fq) or simply E if there
is no confusion for the field that we work with, and let |E| be the number of
points of E over Fq . Let P = (x1, y1) be a point of E with order v +1. Note that
v + 1||E|. Let Γ = (P, 2P, · · · , vP ) where iP = (xi, yi), 1 ≤ i ≤ v. Note that v
is even if E is supersingular. v may be odd or even if E is non-supersingular.
So, we can write v = 2l if E is supersingular and v = 2l + e, e ∈ F2 if E is
non-supersingular.

3.1 Construction

Let
ai = Tr(xi) and bi = Tr(yi), i = 1, 2, · · · , v, (7)

S0 = (a1, · · · , av) and S1 = (b1, · · · , bv). (8)

Let S = (S0, S1)T be a (2, v) interleaved sequence, i.e., the elements of S =
{si}i≥1 are given by

s2i−1 = ai and s2i = bi, i = 1, · · · , v (9)

where length(S) = 2v. For a convenient discussion in the following sections, we
write S starting from 1, we denote 0 as 2v when the index is computed modulo
2v. We call S a binary elliptic curve pseudorandom sequence generated by E(Fq)
of type I, an EC-sequence for short.

Remark 2 In the full paper [13], we discuss two other methods of constructing
sequences from elliptic curves.

Let A = (a1, a2, · · · , al) and B = (b1, b2, · · · , bl). If U = (u1, u2, · · · , ut), then
we denote

←
U= (ut, ut−1, · · · , u1), i.e., U written backwards.

Theorem 1 With the above notation. Let v + 1||E|, and let S = (S0, S1)T be a
EC-sequence generated by E(Fq) of length 2v whose elements are given by (9).
Let E be supersingular. Then

S =

(
A
←
A

B
←
B +1

)
(10)

Proof. Let E be supersingular. Note that y and y + 1 are two roots of (3) in Fq

under the condition Tr(x3 + c4x + c6) = 0. Since the order of P is v + 1, then

iP + (2l + 1 − i)P = O =⇒ xl+i = xl+1−i =⇒ yl+i = yl+1−i + 1, i = 1, · · · , l.

Thus we have S0 = (A,
←
A) and S1 = (B,

←
B +1).
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4 Statistical Properties of Supersingular EC-Sequences

In this section, we discuss the statistical properties of EC-sequences generated
by supersingular curves over F2n where n is odd. Let A = (a0, · · · , ap−1), w(A)
represent the Hamming weight of sequence A. i.e.,

w(A) = |{i | ai = 1, 0 ≤ i < p}|.

For convenience, we generalize the notation of Hamming weight of binary se-
quences to functions from Fq to F2. Let g(x) be a function from Fq to F2, the
weight of g is defined as w(g) = |{x ∈ Fq |g(x) = 1}|. For two isomorphic curves
E(Fq) and T (Fq), denote this by E ∼= T . From [19], there are three different
isomorphism classes for supersingular curves over Fq (q = 2n) for n odd.

1. E1 = {E(Fq)|E(Fq) ∼= y2 + y = x3} and |E1| = 22n−1 and for any E(Fq) ∈
E1, |E| = q + 1.

2. E2 = {E(Fq)|E(Fq) ∼= y2 + y = x3 + x}.
3. E3 = {E(Fq)|E(Fq) ∼= y2 + y = x3 + x + 1}.

Here |E2| = |E3| = 22n−2. For any E(Fq) ∈ E2 or E3, |E| = 2n ± 2(n+1)/2 + 1.
Let

E : y2 + y = x3 + c4x + c6, c4, c6 ∈ Fq .

Theorem 2 Let n be odd. Let S =

(
A
←
A

B
←
B +1

)
be an EC-sequence generated

by a supersingular elliptic curve E where length(S) = 2v and v = |E| − 1.
Then w(S0) = 2w(A), w(S1) = v/2 and w(S) = 2w(A) + v/2, where w(A) =
2n−2 ± 2(n−3)/2.

In order to prove this result, we need the following lemma. If we denote
h(x) = x3 + c4x + c6, then E can be written as y2 + y = h(x).

Lemma 1 Let E and h(x) be defined as above. Then we have

∑
x∈F2n

(−1)Tr(h(x)) = |E| − 2n − 1.

Proof.

∑
x∈F2n

(−1)Tr(h(x)) = |{x ∈ F2n : Tr(h(x)) = 0}| − |{x ∈ F2n : Tr(h(x)) = 1}|

= 2|{x ∈ F2n : Tr(h(x)) = 0}| − 2n

= (|E| − 1) − 2n.
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For i, j = 0, 1, define

ni,j = |{x ∈ F2n : Tr(x) = i, T r(h(x)) = j}|.

Next we determine n1,0. Let F denote the elliptic curve y2 + y = h(x) + x.
Then the following equations hold:

n1,0 + n1,1 = 2n−1

n0,0 + n0,1 = 2n−1

n0,0 + n1,0 = (|E| − 1)/2
n0,0 + n1,1 − (n0,1 + n1,0) = |F | − 1 − 2n.

Note that the last equation follows easily from Lemma 1 since

n0,0 + n1,1 − (n0,1 + n1,0) = |{x ∈ F2n : Tr(x + h(x))
= 0}| − |{x ∈ F2n : Tr(x + h(x)) = 1}|.

Now, this system of four equations in four unknowns is easily seen to have a
unique solution. The value of n1,0 is as stated in the following lemma:

Lemma 2 Let E, F and n1,0 be defined as above. Then we have

n1,0 = 2n−2 +
|E| − |F |

4
.

It is known that |E| − |F | = ±2(n+1)/2 for any values of c4 and c6 (This is
shown in [8]; alternatively it follows easily from [19], p.40 and 47.) Thus we have
the following corollary:

Corollary 1 Let n1,0 be defined as above; then n1,0 = 2n−2 ± 2(n−3)/2.

Proof (Proof of Theorem 2). Since length(S) = 2v, from Theorem 1, we have
w(S0) = 2w(A) and w(S1) = v/2. So,

w(S) = 2w(A) + v/2. (11)

According to the definition of ni,j, we have w(A) = n10. From Corollary 1,
w(A) = 2n−2 ± 2(n−3)/2.

Remark 3 The value of w(A) depends on the values of c4 and c6. For further
results on this, we refer the reader to the full version of this work [13].

5 Periods of Supersingular EC-Sequences

In this section, we discuss the periods of EC-sequences generated by supersin-
gular curves.
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Lemma 3 Let S = (S0, S1)T be a EC-sequence generated by a supersingular
elliptic curve E(Fq) where S0 = (a1, a2, · · · , av) and v = |E| − 1 = 2l . Then

a2i = ai + Tr(c4), i = 1, 2, · · · , l.
Proof. Recall that ai = Tr(xi). From formula (5) in Section 1,

x2i = x4
i + c2

4, i = 1, · · · , l. (12)

=⇒ a2i = Tr(x2i) = Tr(x4
i + c2

4) = Tr(xi) + Tr(c4) = ai + Tr(c4).

Definition 1 Let U = (u1, u2, · · · , u2k) be a binary sequence of length 2k. Then
U is called a coset fixed palindrome sequence of length 2k, CFP-sequence of length
2k for short, if it satisfies the following two conditions.

(i) Palindrome Condition (P)

U = (U0,
←
U0) where U0 = (u1, u2, · · · , uk).

(ii) Coset Fixed Condition (CF)
u2i = ui + c, for each 1 ≤ i ≤ k where c is a constant in F2.

Lemma 4 Let U be a CFP sequence of length 2d and 0 < w(U) < 2d. Then
per(U) = 2d.

Proof. We claim that per(U) 6= 2. Otherwise, from the coset fixed condition
u2i = ui, 1 ≤ i ≤ d, we get w(U) = 0 or w(U) = 2d, which is a contradiction
with the given condition. Therefore we can write per(U) = t where 2 < t and
t|2d. If t < 2d, let 2d = ts. Then

ut+i = ui, i = 1, 2, · · ·. (13)

Since U is a CFP sequence, from condition (i) in Definition 1, we have

ud−i = ud+1+i, 0 ≤ i ≤ d − 1. (14)

From (13) and (14), we get

ul−i = ul+1+i, 0 ≤ i ≤ l − 1 (15)

where l = t/2 if t is even and

ul−i = ul+i, 1 ≤ i ≤ l − 1 (16)

l = (t + 1)/2 if t is odd. From condition 2 in Definition 1,

u2i = ui + c, 1 ≤ i ≤ t. (17)

Since 0 < w(U) < 2d and U satisfies the CF condition, there exists k : 0 ≤ k < l
such that

(ut+2k+1, ut+2k+2) = (1, 0) or (0, 1). (18)
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( For a detailed proof of existence of such k, please see the full version of this
paper [13].)

Case 1 t = 2l. Applying the above identities,

ul+k+1
(17)
= u2l+2k+2 + c = ut+2k+2 + c. (19)

On the other hand,

ul+k+1
(15)
= ul−k

(17)
= u2l−2k + c = ut−2k + c

(14)
= ut+2k+1 + c (20)

(19) and (20) =⇒ ut+2k+1 = ut+2k+2 which contradicts with (18). Thus per(U) =
2d.

Case 2 t = 2l − 1.

ul+k+1
(17)
= u2l+2k+2 + c = ut+2k+1 + c. (21)

ul+k+1
(16)
= ul−k−1

(17)
= u2l−2k−2 + c = ut−2k−1 + c

(14)
= ut+2k+2 + c (22)

(21) and (22) =⇒ ut+2k+1 = ut+2k+2 which contradicts with (18). Thus per(U) =
2d.

Lemma 5 Let S = (S0, S1)T be a EC-sequence of length 2v, generated by a
supersingular elliptic curve E(Fq), where v|(|E| − 1) and 0 < w(S0) < v. Then
per(S0) = v.

Proof. From Theorem 1, we have S0 = (A,
←
A), where length(A) = v/2. Together

with Lemma 3, S0 is a CFP sequence of length v. Since 0 < w(S0) < v, applying
Lemma 4, we get per(S0) = v.

Lemma 6 Let S = (S0, S1)T be a EC-sequence of length 2v, generated by an
elliptic curve E(Fq), where v|(|E| − 1). Then per(S) is an even number.

Proof. Assume that per(S) = 2t + 1. Then we have s1 = s2t+2 = bt+1 and
bv−t+1 = s2v−2(t+1) = s1 =⇒ bv−t+1 = bt+1. From Theorem 1, bv−t+1 = bt+1 +1
which is a contradiction. So, per(S) is even.

Theorem 3 Let S = (S0, S1)T be a EC-sequence of length 2v, generated by a
supersingular elliptic curve E(Fq), where v|(|E| − 1) and 0 < w(S0) < v. Then
per(S) = 2v.

Proof. Since length(S) = 2v, then per(S)|2v. According to Lemma 6, per(S) =
2t where t|v. Assume that t < v. Then

at+j = s2(t+j)−1 = s2t+2j−1 = s2j−1 = aj, j = 1, 2, · · · .
Thus, t is a length of S0 =⇒ per(S0)|t . According to Lemma 5, per(S0) = v.
Thus t = per(S0) = v =⇒ per(S) = 2v.



44 Guang Gong, Thomas A. Berson, and Douglas R. Stinson

Corollary 2 Let n be odd. Let S = (S0, S1)T be a EC-sequence of length 2v, gen-
erated by a supersingular elliptic curve E(Fq), where v|(|E|−1). Then per(S) =
2v.

Proof. From Theorem 4, we have 0 < w(S0) < v. Applying Theorem 5, the
result follows.

6 Linear Span of Supersingular EC-Sequences

In this section, we derive a lower bound and an upper bound on the linear span
of the EC-sequences generated by supersingular elliptic curves in the isomorphic
class E1. For convenience in using Proposition 1, from now on we will write
S, S0 and S1 with the starting index at 0, i.e., S = (s0, s1, · · · , s2n+1−1), S0 =
(a0, a1, · · · , a2n−1) and S1 = (b0, b1, · · · , b2n−1) (v = 2n in this case). So,

ai = s2i, i = 0, 1, · · · ,
bi = s2i+1, i = 0, 1, · · · .

Lemma 7 Let U = (u0, · · · , u2k−1) where per(U) = 2k and w(U) ≡ 0 mod 2.
Then, the linear span of U , LS(U), is bounded as follows:

2k−1 < LS(U) ≤ 2k − 1

Proof. Let h(x) be the minimal polynomial of U over F2. Let f(x) = x2k

+ 1,
then f(L)(S) = 0. Thus h(x)|f(x). Since

f(x) = x2k

+ 1 = (x + 1)2
k

,

we have h(x) = (x + 1)t where t is in the range of 1 ≤ t ≤ 2k. Since w(U) ≡ 0
mod 2, let p = 2k, we have

up+j =
p−1∑
i=0

uj+i, j = 0, 1, · · · .

=⇒ g(x) =
∑p−1

i=0 xi is a characteristic polynomial of U over F2. So h(x)|g(x) =⇒
LS(U) ≤ 2k − 1.

On the other hand, if r < 2k−1, then h(x)|(x + 1)2
k−1

= x2k−1
+ 1 =⇒

x2k−1
+ 1 is a characteristic polynomial of U over F2 =⇒

(L2k−1
+ 1)U = u2k−1+i + ui = 0, i = 0, 1, · · ·

=⇒ per(U)|2k−1. This contradicts per(U) = 2k. So, r = LS(U) > 2k−1.

Theorem 4 Let n be odd. Let S be an EC-sequence of length 2v, generated from
a supersingular elliptic curve E(Fq) which is isomorphic to y2 + y = x3, where
v = |E| − 1. Then

2n ≤ LS(S) ≤ 2(2n − 1).
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Proof. From Corollary 2, we have per(S) = 2n+1. According to Theorem 2,
w(S) ≡ 0 mod 2. So, S satisfies the conditions of Lemma 7. Applying Lemma 7,

2n < LS(S) < 2n+1 − 1.

Now, we only need to prove that LS(S) ≤ 2(2n − 1). Let m(x) and m0(x) be
the minimal polynomials of S and S0 over F2, respectively, where S = (S0, S1)T .
According to Proposition 1, we have

m(x)|m0(x2) =⇒ deg(m(x)) ≤ 2deg(m0(x)).

Since S0 also satisfies the condition of Lemma 7, we get deg(m0(x)) = LS(S0) ≤
2n − 1. So,

LS(S) = deg(m(x)) ≤ 2deg(m0(x)) ≤ 2(2n − 1).

7 Applications

In this section, using the theoretical results that we obtained in the previous
sections, we construct a class of EC-sequences with large linear spans and small
bias unbalance, point out its implementation and give a comparison of ECPSG
I with other known pseudorandom sequence generators.

7.1 ECPSG I

(a) Choose a finite field K = F2n where n is odd
(b) Randomly choose a super singular curve E : y2 + y = x3 + c4x + c6 over F2n

in the isomorphism class E1 of the curve y2 + y = x3. (|E1| = 22n−1.)
(c) Randomly choose a point P = (x, y) on the curve E such that the order of

P is 2n + 1.
(d) Compute iP = (xi, yi), i = 1, · · · , 2n.
(e) Map iP into a binary pair by using the trace function

ai = Tr(xi) and bi = Tr(yi)

(f) Concatenate the pair (ai, bi) to construct the sequence S = (a1, b1, a2, b2, · · · ,
a2n , b2n).

Let
G(E1) = {S = {si}|S generated by E(F2n) ∈ E1}.

G(E1) is called an elliptic curve pseudorandom sequence generator of type I
(ECPSG I). Any sequence in G(E1) satisfies that per(S) = 2n+1, w(S) = 2n±2m

and 2n < LS(S) ≤ 2(2n − 1).

Example Let n = 5.

(a) Construct a finite field F25 which is generated by a primitive polynomial
f(x) = x5 + x3 + 1. Let α be a root of f(x). We represent the elements in
F25 as a power of α. For zero element, we write as 0 = α∞.
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(b) Choose a curve E : y2 + y = x3 .
(c) Choose P = (α, α23) with order 33.
(d) Compute iP = (xi, yi), i = 1, · · · , 32, and the exponents of α for each point

iP are listed in Table 1.

Table 1. {iP }
(1, 23) (4, 13) (18, 7) (16, 27) (13, 5)
(10, 2) (26, 6) (2, 22) (5, 14) (21, 12)
(∞, 0) (9, 19) (22, 17) (11, 9) (20, 25)
(8, 29) (8 , 26) (20, 4) (11, 24) (22, 18)
(9, 8) (∞,∞) (21, 20) (5 , 1) (2, 15)
(26, 10) (10, 28) (13, 3) (16, 21) (18, 16)
(4, 30 ) (1, 11)

(e) Map the point iP into two bits by the trace function:
x-coordinate sequence

{ai = Tr(xi)} = 00101110110111100111101101110100

and y-coordinate sequence

{bi = Tr(yi)} = 01101001101101101001001001101001

(f) Interleave (ai, bi):

S = (a1, b1, a2, b2, · · · , a32, b32)
= 0001110011101001111001111011110001101011100011100011111001100001

According to Theorems 3, 2 and 4, we have

– per(S) = 64.
– w(S) = 25 + 22 = 36. The bias of unbalance is equal to 4 for S.
– Linear span: 32 < LS(S) ≤ 62.

Remark 4 1. The actual linear span of S is 62 and it has the minimal poly-
nomial m(x) = (x + 1)62.

2. The linear span of a periodic sequence is invariant under the cyclic shift
operation on the sequence. We computed the supersingular EC-sequences over
F25 and F27 for all phase shifts of the sequences. Experimental data shows
that the profile of linear spans of any supersingular EC-sequence increases
smoothly for each phase shift of the sequence.

7.2 Implementation of ECPSG I

Implementation of ECPSG relies only on implementation of elliptic curves over
F2n , we can borrow software/hardware from elliptic curve public-key cryptosys-
tems to implement ECPSG.
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7.3 A Table

In Table 2, we compare the period, frequency range of 1 occurrence, unbalance
range, and linear span (LS) of ECPSG I with other sequence generators, such as
filter function generators (FFG), combinatorial function generators (CFG), and
clock controlled generators (CCG). We also include data for de Bruijn sequences.
We conclude that ECPSG I may be suitable for use as a key generator in a stream
cipher cryptosystem.

Table 2. Comparison of ECPSG I with Other Sequence Generators

Type of Period Frequency Range Unbalance Linear
Generator of 1 occurrence Range Span

FFG 2n − 1 [1, 2n−1] [1, 2n−1] unclear

CFG ≤ 2n − 1 [1, 2n−1] [1, 2n−1] unclear

CCG (2n − 1)2 2n−1(2n − 1) 2n − 1 n(2n − 1)
de Bruijn 2n+1 2n 0 ≥ 2n + n + 1

≤ 2n+1 − 1

ECPSG I 2n+1 2n ± 2(n−1)/2 ±2(n−1)/2 ≥ 2n

≤ 2n+1 − 2
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