
Key-Schedule Cryptanalysis of DEAL

John Kelsey and Bruce Schneier

Counterpane Systems
101 E. Minnehaha Pkwy
Minneapolis, MN 55419

{kelsey,schneier}@counterpane.com

Abstract. DEAL is a six- or eight-round Luby-Rackoff cipher that uses
DES as its round function, with allowed key lengths of 128, 192, and 256
bits. In this paper, we discuss two new results on the DEAL key schedule.
First, we discuss the existence of equivalent keys for all three key lengths;
pairs of equivalent keys in DEAL-128 require about 264 DES encryptions
to find, while equivalent keys in DEAL-192 and DEAL-256 require only
six or eight DES encryptions to find. Second, we discuss a new related-
key attack on DEAL-192 and DEAL-256. This attack requires 233 related
key queries, the same 3 plaintexts encrypted under each key, and may
be implemented with a variety of time-memory tradeoffs; Given 3 × 269

bytes of memory, the attack requires 2113 DES encryptions, and given
3 × 245 bytes of memory, the attack requires 2137 DES encryptions. We
conclude with some questions raised by the analysis.

1 Introduction

In June 1998 the National Institute of Standards and Technology (NIST) re-
ceived fifteen candidate algorithms for the Advanced Encryption Standard
(AES). The AES would eventually replace DES as a federal encryption standard,
and hopefully would become a world-wide encryption standard as well.

One of the hardest aspects of cipher design is the key schedule. Numer-
ous AES submissions have been attacked through their key schedule: SAFER+
[CMK+98] in [KSW99], Crypton [Lim98] in [Bor99], DFC [GGH+98] in [Cop98a]
[Cop98b], Frog [GLC98] in [WFS99], HPC [Sch98] in [Wag99,DBP+99], Ma-
genta [JH98] in [BBF+99], MARS [BCD+98] and RC6 [RRS+98] in [Saa99].
These attacks have ranged from finding equivalent keys to weak key classes to
related-key differential attacks [Bih94,KSW96,KSW97], and have generally not
been serious. Still, equivalent or related keys can make the cipher unusable as a
hash function (for example, in Davies-Meyer feed forward mode [Win84]), and
can reduce the effective keyspace of the cipher[Knu93]; related-key differential
attacks can cause vulnerabilities in applications where related-key queries are
legitimate [KSW96,KSW97]. Weak key classes can mean that a percentage of
the keys are vulnerable to attack.

One of the submissions was DEAL (Data Encryption Algorithm with Larger
blocks) [Knu98]. Intended as the conservative choice, DEAL was designed to
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leverage the cryptographic confidence in DES while creating a new cipher with a
128-bit block and key lengths of 128-, 192-, and 256-bits. In this paper, we refer
to DEAL with an n-bit key as DEAL-n. Thus, we have DEAL-128, DEAL-192,
and DEAL-256.

In [Luc99], an attack was presented for DEAL-192, with a number of possible
tradeoffs given between number of chosen-plaintext queries, and amount of work
done for the attack. The best attack in terms of computational resources requires
256 chosen plaintexts, about 2146 encryptions’ worth of work, and about 263

memory locations. With 240 bits (237 bytes) of memory, Lucks’ best attack on
DEAL-192 requires 233 chosen plaintexts, and work equivalent to about 6×2189

DES encryptions (about 2189 DEAL encryptions).
In [Knu98], a number of impractical attacks are discussed on DEAL-192.

There is a straightforward meet-in-the-middle attack on DEAL-192 requiring
about 2168 work and 2173 bytes of memory, requiring only three known plain-
texts. The memory requirements are totally unreasonable, and trading off time
for memory does not yield an attack with reasonable memory requirements and
less work than brute-forcing the key. There is also a general attack on 6-round
Feistel ciphers with bijective F-functions, based on a 5-round impossible trun-
cated differential. Applying this attack to DEAL-192 gives an attack with 2119

work, 270 chosen plaintexts, and 268 bytes of memory. The chosen-plaintext re-
quirements make this attack totally impractical. No attacks on DEAL-256 faster
than exhaustive search were discussed.

1.1 Our Results

In this paper, we present the following results against DEAL:

– Equivalent keys for DEAL-192 and DEAL-256, with an algorithm to find
them. The algorithm requires about six DES encryptions to find a set of 256
equivalent DEAL-192 keys, and eight DES encryptions to find a set of 256
equivalent DEAL-256 keys.

– Equivalent keys for DEAL-128, with an algorithm to find them. The algo-
rithm requires about 264 work to find a pair of equivalent keys.

– A related-key attack on DEAL-192 and DEAL-256, requiring three plaintexts
under 233 keys with a certain relationship, 3 × 245 bytes of memory, and
about 2137 DEAL encryptions’ work, to find the last two rounds’ subkeys for
DEAL-192 and DEAL-256. (With more memory, this can be made faster.)

– A number of possible extensions to these attacks. DEAL-192 can be peeled
down to four rounds, and then Biham’s attack on four-round Ladder-DES
can be applied[Bih97]; DEAL-256 can be peeled down to six rounds, and
then Lucks’ attack on six-round DEAL-192 can be applied. Alternatively, 64
bits can be recovered from the original key, and the remainder brute-force
searched.

Importance of the Results. These results have both practical and theoretical
interest.
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DEAL is likely to see some use in the future in real-world systems. DEAL
is an AES candidate, but even if it is not accepted as an AES finalist, it will
almost certainly see some use. The general idea behind DEAL is a sound one,
and has been proposed several times before [Rit94,Bih97]. As pointed out by
Outerbridge at the first AES conference, widespread availability of DES hard-
ware in many different environments makes DEAL relatively easy to implement
in many different environments, at very low cost. A system designer in need of a
128-bit block cipher, and in possession of lots of DES-enabled devices, might do
well to choose an algorithm like DEAL. (Certainly, he would be better off doing
this than trying to design his own cipher from DES.)

In real-world use, the equivalent keys of DEAL have important practical
implications–they make many standard hashing modes, e.g. Davies-Meyer mode,
unsafe to use1 .

The related-key attacks are probably somewhat less practical, but may still
be important in some applications. These attacks have the effect of peeling off the
last two rounds of DEAL at the cost of about 2137 DEAL encryptions of work,
using about 3 × 245 bytes of memory, and requiring the same three plaintexts
be encrypted under 233 related keys. There are various time-memory tradeoffs
available.

In the presence of 3 × 269 bytes of random-access storage, the attack will
run with about 2113 work, again recovering the last two round subkeys2 . At
that point, Biham’s attack on 4-round Ladder-DES [Bih97] can be mounted,
requiring another 233 chosen plaintexts (under only one key) and 288 time. The
whole attack thus takes about 2113 work, 3×269 bytes of random-access storage,
3 known plaintexts encrypted under 233 related keys, and 232 chosen plaintexts
under one of those keys, to be selected after the rest of the attack has run its
course. This compares with the best previously known attack, which required
2119 work, 264 memory, and 270 chosen plaintexts.

On a theoretical level, our results demonstrate an important fact: It is widely
assumed that a key schedule that uses strong cryptographic components will, in
practice, not be vulnerable to cryptanalysis. This assumption has motivated a
number of ciphers’ key schedules, including those of Khufu [Mer91], Blowfish
[Sch94], and SEAL [RC98]. This assumption, unfortunately, isn’t always true. In
DEAL, a strong cipher is used in an apparently-reasonable way to process key
material. However, the method used leaves the cipher vulnerable to related-key
cryptanalysis, as well as allowing the existence of equivalent keys.

1.2 Guide to the Rest of the Paper

The rest of this paper is organized as follows: We first discuss the DEAL cipher
and key schedule in the level of detail required for our attacks. We then discuss
1 In [Knu98], it is noted that the slow key schedule of DEAL makes it a poor choice

for hashing applications.
2 This assumes that 3 × 269 bytes of random-access storage can be found and used

efficiently–in practice, this attack is of no practical significance, though variant at-
tacks with lower memory requirements may be.
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equivalent keys in DEAL-192 and DEAL-256, both how to find them and how
many there appear to be. Next, we discuss equivalent keys in DEAL-128. After
that, we discuss related-key differential attacks on DEAL-192 and DEAL-256.
We conclude with a summary of our results, and some questions raised by them.

2 The DEAL Cipher and Key Schedule

DEAL is a cipher designed originally by Lars Knudsen [Knu98] and submitted
for the AES by Richard Outerbridge. DEAL uses the DES as the round function
of a larger balanced Feistel cipher in a Luby-Rackoff construction [LR88].

DEAL works as follows:
Let A, B be the left and right 64-bit halves of the input block, respectively.

Let R0..N−1 be the round subkeys, which are 64 bit blocks that are used as 56-bit
DES keys, by ignoring the parity bits. Encryption is as follows: (Here, we show
8 rounds.)

A = A ⊕ ER0(B)
B = B ⊕ ER1(A)
A = A ⊕ ER2(B)
B = B ⊕ ER3(A)
A = A ⊕ ER4(B)
B = B ⊕ ER5(A)
A = A ⊕ ER6(B)
B = B ⊕ ER7(A).

DEAL has 6 rounds for 128- and 192-bit keys, and 8 rounds for 256-bit keys. The
key schedule works as follows, where E(X) means X encrypted under a constant
key used only for key scheduling, and K0..3 are the four 64-bit blocks that make
up a 256-bit key. (The key schedules for DEAL-192 and DEAL-128 are very
similar to the key schedule shown below for DEAL-256, but with only six round
keys generated, and only three or two 64-bit blocks of input key material.)

R0 = E(K0)
R1 = E(K1 ⊕ R0)
R2 = E(K2 ⊕ R1)
R3 = E(K3 ⊕ R2)
R4 = E(K0 ⊕ R3 ⊕ 1)
R5 = E(K1 ⊕ R4 ⊕ 2)
R6 = E(K2 ⊕ R5 ⊕ 4)
R7 = E(K3 ⊕ R6 ⊕ 8).

The Ri values are used only as DES keys, and so their parity bits are ignored.
This turns out to be very important for our analysis.
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3 Equivalent Keys in DEAL-192 and DEAL-256

An encryption algorithm has equivalent keys when there are two or more keys,
K, K∗, such that K 6= K∗ but EK(X) = EK∗(X) for all X. Equivalent keys
can reduce the effective keyspace of an algorithm in some cases, and if pairs of
keys can be efficiently found, render the encryption algorithm unsafe to use in
hashing modes.

We have an algorithm for finding sets of 256 equivalent keys in DEAL. For a
special class of weak keys consisting of 2−64 of all keys of length 192 or 256, it is
always possible to find sets of 256 equivalent keys. Further, an efficient algorithm
exists to find weak keys of this type. Equivalent keys also exist for DEAL-128,
but a very different algorithm is needed to find these keys, and they are discussed
in the next section.

3.1 The Algorithm to Find Sets of Equivalent Keys

Consider the DEAL key schedule again:

R0 = E(K0)
R1 = E(K1 ⊕ R0)
R2 = E(K2 ⊕ R1)
R3 = E(K3 ⊕ R2)
R4 = E(K0 ⊕ R3 ⊕ 1)
R5 = E(K1 ⊕ R4 ⊕ 2)
R6 = E(K2 ⊕ R5 ⊕ 4)
R7 = E(K3 ⊕ R6 ⊕ 8).

Our general strategy will be as follows:

1. Find a “weak key” such that R0 = R3 ⊕ 2 for 192-bit keys, or such that
R1 = R5 ⊕ 4.

2. Choose ∆ active only in parity bits.
3. Let:

K∗
0 = K0

K∗
1 = K1

K∗
2 = D(R2 ⊕ ∆) ⊕ R1

K∗
3 = K3 ⊕ ∆

4. The result is a sequence of round subkeys such that:

R0 = R∗
0

R1 = R∗
1



Key-Schedule Cryptanalysis of DEAL 123

R2 = R∗
2 ⊕ ∆

R3 = R∗
3

R4 = R∗
4

R5 = R∗
5

R6 = R∗
6 ⊕ ∆

R7 = R∗
7

We choose K∗
2 , K∗

3 as:

K∗
3 = K3 ⊕ ∆

K∗
2 = D(R2 ⊕ ∆) ⊕ R1

This gives us a pair of equivalent keys:

(K0, K1, K2, K3)(K0, K1, K
∗
2 , K∗

3 ).

In fact, for each ∆ satisfying the above-mentioned requirements, we get a
key equivalent to (K0, K1, K2, K3). The result is that we get a family of 256
equivalent keys, since there are 256 ∆ values (including zero) that satisfy the
requirements for ∆ to be active only in parity bits.)

3.2 Why It Works

Let’s consider the values of subkeys between the two related keys: overflowing as
the equation was long. Had to seperate them. (K0, K1, K2, K3),
(K0, K1, K

∗
2 , K∗

3)
Recall that:

R1 = R5 ⊕ 4
K∗

3 = K3 ⊕ ∆

K∗
2 = D(R2 ⊕ ∆) ⊕ R1

Also, recall that Ri ⊕∆ is equivalent to Ri, so long as ∆ is active only in its
parity bits.

1. There is no change in K0, K1, so there can be no change in R0, R1. That is,

We know that:
K0 = K∗

0

K1 = K∗
1

Therefore:
R0 = R∗

0

R1 = R∗
1
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2. R2 = R∗
2 ⊕ ∆ because

We know that:
K∗

2 = D(R2 ⊕ ∆) ⊕ R1

R2 = E(K2 ⊕ R1)
Therefore:

R∗
2 = E(K∗

2 ⊕ R∗
1)

= E(D(R2 ⊕ ∆) ⊕ R1 ⊕ R1)
= E(D(R2 ⊕ ∆))
= R2 ⊕ ∆

3. R3 = R∗
3 because:

We know that:
K∗

3 = K3 ⊕ ∆

R3 = E(K3 ⊕ R2)
R∗

2 = R2 ⊕ ∆

Therefore:
R∗

3 = E(K∗
3 ⊕ R∗

2)
= E(K3 ⊕ ∆ ⊕ R2 ⊕ ∆)
= E(K3 ⊕ R2)
= R3.

4. R4 and R5 are unchanged, (that is, R4 = R∗
4, R5 = R∗

5) because R4, R5 are
dependent only upon K0, K1, andR3, and we have already established that
those values are all unchanged.

R4 = E(K0 ⊕ R3 ⊕ 1)
= R∗

4

R5 = E(K1 ⊕ R4 ⊕ 2)
= R∗

5

5. R6 = R∗
6 ⊕ ∆, because

We know that:
R5 = R1 ⊕ 4
R1 = R∗

1

R5 = R∗
5

R6 = E(K2 ⊕ R5 ⊕ 4)
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= E(K2 ⊕ R1 ⊕ 4 ⊕ 4)
= E(K2 ⊕ R1)
= R2

Therefore:
R∗

6 = E(K∗
2 ⊕ R5 ⊕ 4)

= E(K∗
2 ⊕ R1)

= R∗
2

= R2 ⊕ ∆

And thus:
R∗

6 = R6 ⊕ ∆

6. Finally, R7 = R∗
7 because

We know that:
R7 = E(K3 ⊕ R6 ⊕ 8)
R∗

6 = R6 ⊕ ∆

K3 = K∗
3 ⊕ ∆

Therefore:
R∗

7 = E(K∗
3 ⊕ R∗

6 ⊕ 8)
= E(K3 ⊕ ∆ ⊕ R6 ⊕ ∆ ⊕ 8)
= E(K3 ⊕ R6 ⊕ 8)
= R7

3.3 Effect on the DEAL Keyspace

This set of equivalent keys has essentially no effect on the size of the effective
keyspace, since it applies only to such a tiny fraction (about 3 ∗ 2−64) of special
keys.

3.4 Extensions

A variant of the same algorithm works with K1, K2 or K0, K1 as the active pair
of key blocks. A variant of the algorithm can be carried out against DEAL-
192. Against DEAL-128, a much more complex algorithm can be used to find
equivalent keys, as will be discussed later in this paper.

3.5 Efficiently Finding Equivalent Keys

The naive algorithm for finding equivalent keys would be to try about 264 dif-
ferent keys, waiting until R1 = R5 ⊕ 4. This has complexity 264, and thus is no
easier than looking for a collision in a 128-bit hash function, such as might be
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built from DEAL in Davies-Meyer hashing mode. However, the search for a class
256 of equivalent keys can be converted to a straightforward algebra problem,
as follows:

1. Choose K0,1,2 arbitrarily.
2. Derive:

R0 = E(K0)
R1 = E(K1 ⊕ R0)
R2 = E(K2 ⊕ R1)

3. Use the requirement that R5 = R1 ⊕ 4 to derive:

R5 = R1 ⊕ 4
= E(K1 ⊕ R4 ⊕ 2)

Thus:
R4 = D(R5) ⊕ K1 ⊕ 2

4. Having learned R4, we next compute R3, and thus K3:

R4 = E(R3 ⊕ K0 ⊕ 1)
= D(R5) ⊕ K1 ⊕ 2

Thus:
R3 = D(D(R5) ⊕ K1 ⊕ 2) ⊕ K0 ⊕ 1

= E(R2 ⊕ K3)
Thus:

K3 = D(R3) ⊕ R2

= D(D(D(R5) ⊕ K1 ⊕ 2) ⊕ K0 ⊕ 1) ⊕ R2

5. With K0,1,2,3, we now have a “weak” key.

The process is nearly identical with DEAL-192.

4 Finding Equivalent Keys in DEAL-128

In this section3 , we discuss an algorithm for finding equivalent keys in DEAL-
128. Unlike the previous algorithm, this does not find classes of 256 equivalent
keys, but instead pairs of equivalent keys. Also unlike the previous algorithm,
this algorithm requires about 264 runs of the DEAL key schedule to find a single
pair of equivalent keys.
3 We are indebted to David Wagner for pointing out the possibility of finding equiva-

lent keys in DEAL-128, and proposing another, earlier method for finding them.
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4.1 An Overview of Our Method

The goal is to find a pair of keys, K, K∗, such that R0..5 and R∗
0..5 are all either

equal or equivalent (equal in all bits except their parity bits, which will be ignored
by the DES key schedule).

4.2 The Algorithm

1. For each ∆ active only in parity bits:
(a) For each K0 value from 0 to 264 − 1:

i. Compute K∗
0 = D(E(K0) ⊕ ∆)

ii. Compute K1 = D(1) ⊕ E(K0)
iii. Compute K∗

1 = K1 ⊕ ∆
iv. Use K0,1 to compute R0..5, and K∗

0,1 to compute R∗
0..5.

v. Note that R0..3 and R∗
0..3 are now equivalent:

R0 = R∗
0 ⊕ ∆

R1 = R∗
1

R2 = R∗
2 ⊕ ∆

R3 = R∗
3

.
vi. Check to see whether R4 ⊕ R∗

4 = ∆ This should happen with prob-
ability 2−64

vii. If so, we’re done; R5 will also equal R∗
5. If not, we must keep looking.

4.3 Why It Works

1. R0 = R∗
0 ⊕ ∆ because

We know that:
K∗

0 = D(E(K0) ⊕ ∆)
R0 = E(K0)

Therefore:
R∗

0 = E(K∗
0 )

= E(D(E(K0) ⊕ ∆))
= E(K0) ⊕ ∆

= R0 ⊕ ∆

2. R∗
1 = R1 because:

We know that:
K∗

1 = K1 ⊕ ∆

R∗
0 = R0 ⊕ ∆
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R1 = E(R0 ⊕ K1)
Therefore:

R∗
1 = E(R∗

0 ⊕ K∗
1 )

= E(R0 ⊕ ∆ ⊕ K1 ⊕ ∆)
= E(R0 ⊕ K1)
= R1

3. R1 = 1, because

We know that:
K1 = D(1) ⊕ E(K0)

= D(1) ⊕ R0

Therefore:
R1 = E(R0 ⊕ K1)

= E(R0 ⊕ E(K0) ⊕ D(1))
= E(R0 ⊕ R0 ⊕ D(1))
= E(D(1))
= 1

4. R1 = 1 is necessary so that R∗
2 = R2 ⊕ ∆:

We know that:
R∗

0 = E(K∗
0 )

= R∗
0

R1 = 1
= R∗

1

R2 = E(R1 ⊕ 1 ⊕ K0)
= E(K0)
= R0

Therefore:
R∗

2 = E(R∗
1 ⊕ 1 ⊕ K∗

0 )
= E(R1 ⊕ 1 ⊕ K∗

0 )
= E(K∗

0 )
= R∗

0

= R0 ⊕ ∆

= R2 ⊕ ∆
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5. R∗
3 = R3 because

We know that
R∗

2 = R2 ⊕ ∆

K∗
1 = K1 ⊕ ∆

Therefore:
R∗

3 = E(R∗
2 ⊕ 2 ⊕ K∗

1 )
= E(R2 ⊕ ∆ ⊕ 2 ⊕ K1 ⊕ ∆)
= E(R2 ⊕ 2 ⊕ K1)
= R3

6. We keep trying different values for (K0, K1) until we see R∗
4 = R4 ⊕ ∆.

7. R∗
5 = R5 because

We know that:
R∗

4 = R4 ⊕ ∆

K∗
1 = K1 ⊕ ∆

Therefore:
R∗

5 = E(R∗
4 ⊕ 8 ⊕ K∗

1 )
= E(R4 ⊕ d ⊕ 8 ⊕ K1 ⊕ ∆)
= E(R4 ⊕ 8 ⊕ K1)
= R5

5 Related-Key Attacks on DEAL-256 and DEAL-192

Consider the algorithm for finding equivalent keys in DEAL-256. If we applied
the algorithm without the special key property that R1 = R5 ⊕ 4, we would end
up with nearly equivalent keys: key with the same subkeys for all but the last two
rounds. We could then mount an attack based on this fact, given encryptions
from the two keys.

Here, we will discuss a related-key attack based on finding a pair of nearly-
equivalent keys. We will discuss several issues with this attack, and then present
the whole attack:

– How to detect that we have a pair of nearly-equivalent keys.
– How to use detection to learn information about the key.
– How to extract the last two rounds’ subkeys when this property holds.
– How to mount the full attack.

5.1 Detecting Nearly-Equivalent Keys

Given three plaintext/ciphertext pairs from a pair of keys, (K, K∗) believed to be
nearly-equivalent, we can determine whether they have this property with very
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high probability of being right, at the cost of about 264 work and about 3× 256

memory locations. We mount something very similar to the meet-in-the-middle
attack on double DES encryption.

Consider one text, broken into two 64-bit halves, (A0, B0). All but the last
two rounds of encryption are identical between the keys, so after the identical
rounds, we get (C0, D0) for this plaintext under both keys. The last two rounds
are different, so we get (Y0, Z0) from K, and (Y0∗, Z0∗) from K∗.

Note that:

Z0 = D0 ⊕ ER7(Y0)
Z0∗ = D0 ⊕ ER∗

7
(Y0∗).

We know three plaintext,ciphertext pairs, so we know three different sets of
Y0, Y0∗, and Z0, Z0∗ values. We can mount a DES keysearch effort on R7 and
R∗

7. We try all 256 possible values of R7, and for each one, we get candidate D0

values from all three plaintexts. We do the same for all possible values of R∗
7.

We get two tables of 256 different 192-bit values, which must be sorted. We then
find the matches between the two tables. For 192-bit keys, the keysearch would
be on R5 and R∗

5.
If we find a pair of matching values, it is overwhelmingly likely that we have

found the right values for R7, R
∗
7 (or R5, R

∗
5).

This shows how to determine whether a pair of keys is nearly-equivalent, but
not how to find which pair in a batch of 233 of them is nearly-equivalent.

Imagine a situation in which we had unlimited memory resources. We could
do the same kind of meet-in-the-middle computation described above, but on all
233 keys. This would take 256×233 = 289 encryptions, 89×289 swap operations,
and about 295 bytes of memory. At the end, we would sweep through the 289

192-bit blocks computed from three ciphertexts under each key, and look for
duplicates. We would not expect to see any duplicates (though it wouldn’t be
totally surprising to see them) unless there is a pair of nearly-equivalent keys.
Any duplicates that came either from the same key, or from keys with the same
∆ value would simply be ignored.

In practice, we have limited memory resources, and so we consider time-
memory tradeoffs.
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The time-memory tradeoffs available here can be summarized as follows 4:

Memory Work
(bytes) (DES encryptions) Updated

3 × 269 2113

3 × 261 2121

3 × 253 2129

3 × 245 2137

3 × 237 2145

5.2 Extracting the Rest of the Key

Once we know R7, R
∗
7, we can mount the same kind of attack to get R6, R

∗
6. We

have then peeled off the last two rounds, and have a six-round cipher remaining
to attack. (In the case of DEAL-192, we have a four-round cipher remaining to
attack.) In the case of DEAL-256, knowing R6 and R7 allows us to find K3. In the
case of DEAL-192, knowing R4 and R5 allows us to find K2. This leaves us with
a 192-bit search to break DEAL-256, or a 128-bit search to break DEAL-192.

5.3 Selecting the Keys

Let K be the original key. Let Ki be the ith additional key requested. We request
∆ keys such that:

– Start with initial targeted key, K, and ∆ active in parity bits only.
– For i = 0 to 255, do

• Let ∆j = next delta active in parity bits only.
• For j = 0 to 225, do

K[0]i = K[0]
K[1]i = K[1]⊕ Random Blockj

K[2]i = K[2]⊕ ∆i

R2[i] = R2[j] ⊕ ∆.

by the birthday paradox. So, we will have ∆ pairs of keys to test, of which we
expect one pair to be nearly-equivalent.

4 These computational cost estimates assume memory available with no additional
costs for random accesses. If the attack were implemented with tape memory, for
example, then the actual time taken for the attack would go up substantially.
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5.4 The Full Attack

The full attack is thus carried out as follows:

1. We request 233 related keys according to the pattern described above. We
expect one pair of these keys to be nearly-equivalent, but we don’t yet know
which pair.

2. We request the same three chosen plaintexts to be encrypted under each
key. (We don’t have to be able to choose anything about them, but the same
three plaintexts must be encrypted under each key.)

3. We apply our test to the whole set of ciphertexts from the related keys. Given
3 × 245 bytes of memory, we will have to carry out 2137 DES encyptions.

4. Let K, K∗ be the pair of nearly-equivalent keys, which we have now detected.
In detecting the property, we have learned the last round’s subkey. We now
apply the same meet-in-the-middle attack to find the next-to-last round’s
subkey. (In DEAL-256, this isR6; in DEAL-192, this is R4.)

5. We may now either apply some other attack on the cipher with two fewer
rounds, or we may use knowledge of the last two rounds’ subkeys to learn
64 bits of the input key, and then brute-force the remaining key.

6. Assuming we just brute-force the remaining key, the attacks on DEAL-192
and DEAL-256 both require 233 related-key queries, the same three chosen-
plaintexts requested under each key, and 3×253 bytes of memory. The attack
on DEAL-192 then requires 2129 work, and the attack on DEAL-256 requires
2192 work.

7. There may be improved attacks that exploit weaknesses in four- or six-
round DEAL once we have discovered the last two round keys. For example,
Biham’s attack against Ladder-DES can also be applied to DEAL-192, once
the last two rounds have been peeled off.

6 Conclusions

In this paper, we have demonstrated a weakness in the key schedule of DEAL,
leading to both equivalent keys and vulnerability to related-key attacks. While
the related-key attacks are of primarily academic interest (requiring 2128 DEAL
encryptions worth of work for the cheapest attack), the equivalent keys are of
immediate interest for anyone using DEAL in certain hashing modes. The im-
portant lessons we draw from this analysis are:

1. Simply using a cryptographic primitive in a reasonable-looking way to design
a key schedule does not guarantee resistance to attacks on the key schedule.

2. In the specific case of DEAL, ignoring the parity bits of the keys sent in
allowed nearly-equivalent keys to be found. A special class of keys were
then found for which, instead of nearly-equivalent keys, these keys would
be equivalent. Had those bits been immediately used, our attacks would not
work.
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Unfortunately, we don’t have a general design principle we can pull out of this
analysis; designing key schedules is hard, and there aren’t any sure-fire shortcuts.
This is borne out by the long list of AES candidates cryptanalyzed based on their
key schedules which appears in the introduction.

6.1 Open Questions

A number of questions are raised by this research:

1. Are there key schedules we can build from cryptographic mechanisms that
are provably secure against various forms of attack?

2. In the absence of these, can we at least find some useful design principles for
cryptographic key schedules?

3. Are there similar attacks on other cryptographic key schedules, e.g., those
of Khufu, Blowfish, and SEAL?
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