Skip to main content

Reconstruction of Discrete Sets from Three or More X-Rays

  • Conference paper
  • First Online:
Algorithms and Complexity (CIAC 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1767))

Included in the following conference series:

Abstract

The problem of reconstructing a discrete set from its X-rays in a finite number of prescribed directions is NP-complete when the number of prescribed directions is greater than two. In this paper, we consider an interesting subclass of discrete sets having some connectivity and convexity properties and we provide a polynomial-time algorithm for reconstructing a discrete set of this class from its X-rays in directions (1, 0), (0, 1) and (1, 1). This algorithm can be easily extended to contexts having more than three X-rays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. P. Anstee, “Invariant sets of arcs in network flow problems,” Disc. Appl. Math. 13, 1–7(1986).

    Article  MATH  MathSciNet  Google Scholar 

  2. B. Aspvall, M.F. Plass and R.E. Tarjan, “A linear-time algorithm for testing the truth of certain quantified Boolean formulas”Inf. Proc. Lett., 8,3 (1979).

    Google Scholar 

  3. E. Barcucci, A. Del Lungo, M. Nivat and R. Pinzani, “Reconstructing convex polyominoes from their horizontal and vertical projections”, Theor. Comp. Sci., 155 (1996) 321–347.

    Article  MATH  Google Scholar 

  4. M. Chrobak, C. Dürr, “Reconstructing hv-Convex Polyominoes from Orthogonal Projectionsý, Inf. Proc. Lett. (69)6, (1999) 283–289.

    Article  MATH  Google Scholar 

  5. A. Denise, C. Dürr and F. Ibn-majdoub-Hassani, “Enumération et génération aléatoire de polyominos convexes en réseau hexagonal”, Proc. of the 9 th FPSAC, Vienna, 222–235 (1997).

    Google Scholar 

  6. R. J. Gardner, Geometric Tomography, Cambridge University Press, Cambridge, UK, 1995, p.51.

    MATH  Google Scholar 

  7. R. J. Gardner and P. Gritzmann, “Uniqueness and Complexity in Discrete Tomography”, in discrete tomography: foundations, algorithms and applications, editors G.T. Herman and A. Kuba, Birkhauser, Boston, MA, USA, (1999) 85–111.

    Google Scholar 

  8. R. J. Gardner, P. Gritzmann and D. Prangenberg, “On the computational complexity of reconstructing lattice sets from their X-rays,” Disc. Math. 202, (1999) 45–71.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. R. Garey and D.S. Johnson, Computers and intractability: a guide to the theory of NP-completeness, Freeman, New York, (1979) 224.

    MATH  Google Scholar 

  10. P. Gritzmann, “Open problems,” in Discrete Tomography: Algorithms and Complexity, Dagstuhl Seminar report 165 (1997) 18.

    Google Scholar 

  11. P. C. Hammer, “Problem 2,” in Proc. Simp. Pure Math. vol VII: Convexity, Amer. Math. Soc., Providence, RI, (1963) 498–499.

    Google Scholar 

  12. G. T. Herman and A. Kuba, “Discrete Tomography: A Historical Overview”, in discrete tomography: foundations, algorithms and applications, editors G.T. Herman and A. Kuba, Birkhauser, Boston, MA, USA, (1999) 3–29.

    Google Scholar 

  13. M. Gebala:The reconstruction of convex polyominoes from horizontal and vertical projections, private comunication.

    Google Scholar 

  14. R. W. Irving and M. R. Jerrum, “Three-dimensional statistical data security problems,” SIAM Journal of Computing 23, 170–184 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  15. C. Kisielowski, P. Schwander, F. H. Baumann, M. Seibt, Y. Kim and A. Ourmazd, “An approach to quantitative high-resolution transmission electron microscopy of crystalline materials,” Ultramicroscopy 58, 131–155 (1995).

    Article  Google Scholar 

  16. G. P. M. Prause and D. G. W. Onnasch, “Binary reconstruction of the heart chambers from biplane angiographic image sequence,” IEEE Trans. Medical Imaging 15, 532–559 (1996).

    Article  Google Scholar 

  17. A. R. Shliferstein and Y. T. Chien, “Switching components and the ambiguity problem in the reconstruction of pictures from their projections,” Pattern Recognition 10, 327–340 (1978).

    Article  MATH  Google Scholar 

  18. X. G. Viennot, A Survey of polyomino enumeration, Proc. Séries formelles et combinatoire algébrique, eds. P. Leroux et C. Reutenauer, Publications du LACIM 11, Université du Québec à Montréal (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barcucci, E., Brunetti, S., Del Lungo, A., Nivat, M. (2000). Reconstruction of Discrete Sets from Three or More X-Rays. In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds) Algorithms and Complexity. CIAC 2000. Lecture Notes in Computer Science, vol 1767. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46521-9_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-46521-9_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67159-6

  • Online ISBN: 978-3-540-46521-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics