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Binary Exponential Backoff is Stable for High Arrival Rates

Hesham Al-Ammal* Leslie Ann Goldberg' Phil MacKenzie!

July 28, 1999

Abstract

Goodman, Greenberg, Madras and March gave a lower bound of n~?(°8") for the
maximum arriaval rate for which the n-user binary exponential backoff protocol is stable.
Thus, they showed that the protocol is stable as long as the arrival rate is at most
n=20987)  We improve the lower bound, showing that the protocol is stable for arrival
rates up to O(n—?).

Classification of topic: Algorithms and data structures (distributed algorithms)

1 Introduction

A multiple-access channel is a broadcast channel that allows multiple users to communicate
with each other by sending messages onto the channel. If two or more users simultaneously
send messages, then the messages interfere with each other (collide), and the messages are
not transmitted successfully. The channel is not centrally controlled. Instead, the users use a
contention-resolution protocol to resolve collisions. Thus, after a collision, each user involved
in the collision waits a random amount of time (which is determined by the protocol) before
re-sending. Perhaps the best-known contention-resolution protocol is the Ethernet protocol
of Metcalfe and Boggs [9]. The Ethernet protocol is based on the following simple binary
exponential backoff protocol. Time is divided into discrete units called steps. If the ¢’th
user has a message to send during a given step, then it sends this message with probability
2% where b; denotes the number of collisions that this message has already had. With
probability 1 — 27% user i does not send during the step. The Ethernet protocol is based
on binary exponential backoff, but some modifications are made to make it easier to build.
See [6, 9] for details.

Hastad, Leighton and Rogoff [6] have studied the performance of the binary exponential
backoff protocol in the following natural model. The system consists of n users. Each user
maintains a queue of messages that it wishes to send. At the beginning of the #’th time step,
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the length of the queue of the i’th user is denoted ¢;(#) and the number of times that the
message at the head of its queue has collided is denoted b;(¢). At the beginning of the ¢’th
step, each queue receives 0 or 1 new messages. In particular, a new message is added to
the end of each queue independently with probability A/n, where X is the arrival rate of the
system. After the new messages are added to the queues, each user makes an independent
decision about whether or not to send the message at the head of its queue, using the binary
exponential backoff protocol. (If the message at the head of the i’th queue has never been
sent before then b; = 0, so it is now sent. Otherwise, b; = b;(t), so it is sent independently
with probability Z*bi(t).) If exactly one message is sent (so there are no collisions), then this
message is delivered successfully, and it leaves its queue. Otherwise, the messages that are
sent collide and no messages are delivered successfully.

Since the arrivals are modelled by a stochastic process, the evolution of the whole sys-
tem over time can be viewed as a Markov chain in which the state just before step t is
X)) = ((q1(t),.-.,qn(t)), (b1(t),...,bs(t))) and the next state is X (¢ + 1). One measure of
the performance of the system is the expectation of the random variable Tyet, which is the num-
ber of steps required for the system to return to the start state X (0) = ((0,...,0),(0,...,0)).
Hastad et al. [6] proved that if the arrival rate is too high, then the system is unstable, in the
sense that the expected recurrence time is infinite.

Theorem 1 (Hastad, Leighton, and Rogoff) Suppose that for some positive €, A > %-I—e.
Suppose that n is sufficiently large (as a function of €). Then E[Tye] = oo.

On the other hand, Goodman, Greenberg, Madras and March [5] showed that if the arrival
rate is sufficiently low, then the system is stable.

Theorem 2 (Goodman, Greenberg, Madras and March) There is a positive constant o
such that E[Tye) is finite for the n-user system, provided that A < W.

While Goodman, Greenberg, Madras, and March’s result is the only known stability
result for the finitely-many-users binary-exponential-backoff protocol, their upper bound (A <
nalﬁ) is very small. In this paper, we narrow the gap between the two results. In particular,
we prove the following theorem.

Theorem 3 There is a positive constant a such that, as long as n is sufficiently large and

A < =L then E[Tye] is finite for the n-user system.

an-9

The point of Theorem 3 is to show that n-user Binary Exponential Backoff is stable for
arrival rates which grow faster asymptotically than 1/n. That is, the purpose of the result is
to show that, for positive constants « and 7, A < om%’? guarantees stability. We have chosen
n = .1 for concreteness. We believe that the same methods could be used for slightly larger
values of 7, but an interesting (and difficult) question raised by this work is whether the same
result would be true for n = 1. That is, is there a constant « such that the n-user system is
stable whenever A < é?

The organisation of the paper is as follows. In Section 2 we summarise other related work.

In Section 3 we give the proof of Theorem 3.



2 Related Work

We now summarize some other related work. We start by observing that the results in The-
orem 1 and 2 can be extended to more general models. For example, the result of Goodman
et al. can be extended to a more general model of stochastic arrivals in which the expected
number of arrivals at user 7 at time ¢ (conditioned on all events up to time t) is a quantity,
Ai, and Y, \; is required to be equal to A. The result of Hastad et al. can be extended to
small values of n, provided that A > .568 4+ 1/(4n — 2). The instability result of Hastad et
al. implies that, when X is sufficiently large, the expected average waiting time of messages is
infinite.

Next, we mention that the binary exponential backoff protocol is known to be unstable
in the infinitely-many-users Poisson-arrivals model. Kelly and MacPhee [7, 8] showed this for
A < In2 and Aldous [1] showed that it holds for all positive .

Finally, we mention that, while the goal of this paper is to understand the binary-
exponential backoff protocol, on which Ethernet is based, there are other acknowledgement-
based protocols which are known to be stable in the same model for larger arrival rates. In
particular, Hastad et al. have shown that polynomial-backoff protocols are stable as long as
A < 1. The expected waiting time of messages is high in polynomial-backoff protocols, but
Raghavan and Upfal [10] have given a protocol that is stable for A < 1/10, in which the
expected waiting time of every message is O(logn), provided that the users are given a rea-
sonably good estimate of logn. Finally, Goldberg, MacKenzie, Paterson and Srinivasan [4]
have given a protocol that is stable for A < 1/e, in which the expected average message
waiting-time is O(1), provided that the users are given an upper bound on n.

We conclude by observing that the technique of Goldberg and MacKenzie [3] can be used
to extend Theorem 3 so that it applies to a non-geometric version of binary-exponential
backoff, which is closer to the version used in the Ethernet. (Instead of deciding whether to
send on each step independently with probability 2%, the user simply chooses the number of
steps to wait before sending uniformly at random from [1,...,2%].) The ideas are the same
as those used in the proof that follows, but the details are messier. Our result can also be
extended along the lines of [6] to show that, when X is sufficiently low, the expected average
message waiting time is finite.

3 The stability proof

In order to prove Theorem 3, let A = #, where o/ > a. We will now define the relevant
potential function. Let f(X(¢)) be the following function of the state just before step ¢.

f(X(t)) = an'?® i q;(t) + i obi(t)
=1 =1

We will use the following generalisation of Foster’s theorem [2]. Note that the Markov chain X
satisfies the initial conditions of the theorem. That is, it is time-homogeneous, irreducible,
and aperiodic and has a countable state space.



Theorem 4 (Foster; Fayolle, Malyshev, Menshikov) A time-homogeneous irreducible ape-
riodic Markov chain X with a countable state space A is positive recurrent iff there exists a
positive function f(p), p € A, a number € > 0, a positive integer-valued function k(p), p € A,
and a finite set C C A, such that the following inequalities hold.

E[f(X(t+E(X(1) - f(X#) | X(#) =p] < —ek(p),p & C (1)
E[f(X(t+ k(X (1)) | X(t) =p)] < o0,peC. (2)

We use the following notation, where 5 = 3. For a state X (¢), let m(X(¢)) denote the
number of users ¢ with ¢;(¢) > 0 and b;(t) < lgS+1gn, and let m/(X(t)) denote the number of
users i with ¢;(t) > 0 and b;(t) < .81gn + 1. We will take € to be 1 —2/a and C' to be the set
consisting of the single state ((0,...,0),(0,...,0)). We define £(((0,...,0),(0,...,0))) =1,
so Equation 2 is satisfied. For every state p ¢ C, we will define k(p) in such a way that
Equation 1 is also satisfied. We give the details in three cases.

3.1 Case 1: m'(X(t)) =0 and m(X(t)) < n®.

For every state p such that m/(p) = 0 and m(p) < n'® we define k(p) = 1. We wish to show
that, if p # ((0,...,0),(0,...,0)) and X () = p, then E[f(X(t + 1) — f(X(#))] < —e. Our
general approach is the same as the approach used in the proof of Lemma 5.7 of [6]. For
convenience, we use m as shorthand for m (X (¢)) and we use £ to denote the number of users i
with ¢;(t) > 0. Without loss of generality, we assume that these are users 1,...,¢. We use p;
to denote the probability that user i sends on step t. (So p; = 27%® if 4 € [1,...,¢] and
p; = A/n otherwise.) We let T" denote [[;~;(1 — p;) and we let S denote Y i, lfipi. Note
that the expected number of successes at step ¢ is ST. Let I, ;; be the 0/1 indicator random
variable which is 1 iff there is an arrival at user ¢ during step ¢ and let I, ; ; be the 0/1 indicator

random variable which is 1 iff user ¢ succeeds in sending a message at step t. Then

n n

E[f(X(t+1) = F(X(1)] = an'® Y (Blloi] — Elli) + Y (BRMEH] = 240)
=1 =1

= an'®\—an'®ST + Z (2bi(t)az~ - (Zbi(t) — 1)7Ti) , (3)
i=1

= an'S\—an'SST + 3 <2bi(t)pi(1 —~ ) — (2% — 1)p; ) ,
i—1 1 =pi 1 —pi

l n
= an'® A —an'fST+> (1- Ty > i(1 -1 Ty,

= onA—ant®sT 40— er+ 89X g Ze: . +2n: -
= an an - 2 . 1 NE

= an'®\—an' ST +¢— 4T + (n=0HX

= an!SA+/0+ 7(71 _nE)A -



where o; in Equality 3 denotes the probability that user 7 collides at step ¢ and m; denotes the
probability that user i sends successfully at step t. We now find lower bounds for S and T.
First,

=1 1 —Ppi
-y ( 20 ) An —
= \1—27b(0) -2
L 1 A(n —¥)
>
- 1:21 (,Bn — 1) n—A
_ m A(n —¥)
- fBn-—1 n—A (5)
Next,
T = [[d-p)
i=1
1 m 1 l—m Y n—~¢

Y

1-35%) (1—%) =)

L™ _t=m  An—1Y)
- 2n-8 Bn n

Combining Equations 4, 5 and 6, we get the following equation.

Bf(X(t+1) — f(X(£)] < an' S\ + £ + w - (7)

(1 - 27:8 - Egnm _ XN — 6)) <(an1~8 +1) <5nm_ -+ A;”__f)) + 2@) .

We will let g(m,?) be the quantity in Equation 7 plus € and we will show that g(m,¥¢) is
negative for all values of 0 < m < n® and all £ > m. In particular, for every fixed positive
value of m, we will show that

1. g(m,m) is negative,
2. g(m,n) is negative, and

3. %g(m,é) > 0. (g(m,¥) is concave up as a function of ¢ for the fixed value of m so g(m, ¢)
is negative for all £ € [m,n].)

We will handle the case m = 0 similarly except that m = ¢ = 0 corresponds to the start state,
so we will replace Item 1 with the following for m = 0.

1’. ¢(0,1) is negative.

The details of the proof are now merely calculations. We include them in Appendix A for
completeness.



3.2 Case 2: m(X(t) >n®or m(X(t) >n?
For every state p such that m(p) > n® or m'(p) > n*, we will define an integer k (which
depends upon p) and we will show that, if X(t) = then E[f(X(t+k)— f(X(2)] < —¢k,

where e =1 —2/a.

For convenience, we will use m as shorthand for m(X (¢)) and m’ as shorthand for m’(X ().
If m > n® then we will define r = m, W =m'/*[Igr]278, A=W, b=1gf8+1gn and v = n.
Otherwise, we will define r = m/, W = [lgr]278, A =0, b = 8lgn + 1, and v = 2[n?].
In either case, we will define k& = 4(r + v)[lgr]. Let 7 be the set of steps {¢,...,t +k — 1}
and let S be the random variable which denotes the number of successes that the system has
during 7. Let p denote Pr(S > W). Then we have

n t+k
E[f(X(t+k) — f(X(#)] < an'S\—an'BE[S]+Y° Y B[N — 2k'=1)
i=1t=t+1
< an*®\k — an'¥Wp + kn
S _Eka

where the final inequality holds as long as ap > 2'% and n is sufficiently big. Thus, it suffices
to find a positive lower bound for p which is independent of n. We do this with plenty to
spare. In particular, we show that p > 1 —5 x 107°.

We start with a technical lemma, which describes the behaviour of a single user.

Lemma 5 Let j be a positive integer, and let 0 be a positive integer which is at least 2.
Suppose that q;(t) > 0. Then, with probability at least 1 — 9551(27&]2), either user i succeeds in

steps [t, ..., t+0j[lgj1 — 1], or bi(t + 05(1g41) > [Ig 1.

Proof:  Suppose that user 7 is running in an externally-jammed channel (so every send
results in a collision). Let X, denote the number of steps t' € [t,...,t + [d71g(j)]] with
bi(t') = z. We claim that Pr(X, > §[lgj]2°!) < j9/@n2) ThlS proves the lemma
since ZLEg]flé[lgﬂZz_l < 0j[lgj]. To prove the claim, note that Xy < 1, so Pr(Xy >
6Mlg 71271 =0 < 57922 For »z > 0, note that

Pr(X, > d[lgj]12° ) < (1 — TZ)Mlgﬂ?Z‘ < j0/2m2),
O

Next, we define some events. We will show that the events are likely to occur, and, if they
do occur, then § is likely to be at least . This will allow us to conclude that p > 1—5x 107>
which will finish Case 2. We start by defining B = [W] + [A], k' = 4r[lgr], k" = 4B[lg B]
and 79 = {t,...,t + k' — 1}. Let 7/(7) be the set of all ¢ € 7 such that b;(#') = 0 and either
(1) gi(t') > 0 or (2) there is an arrival at user 7 at t'. Let 7 be the set of all # € 7 such that
{(",i) | ' € 7'(i) and " < t'}| > B. Finally, let 71 be the set of all ' € 7 — 79 — 72 such
that, for some i, 7'(7) N[t — k" + 1,t'] # 0. We can now define the events E1-E4.

E1l. There are at most A arrivals during 7.

E2. Every station with ¢;(¢) > 0 and b;(t) < b either sends successfully during 7y or has
bi(t + k') > [lgr].



E3. Every station with ¢;(¢) > 0 and b;(¢) < b has b;(t') <b+lg(r)/2+ 3 for all t' € 7.
E4. For all ¢ € 7'(7) and all £’ > ¢’ such that t" € 7 — 7 — 7, b;(t') > [Ig B].

Next, we show that E1-E4 are likely to occur.
Lemma 6 If n is sufficiently large then Pr(E1) < 107°.

Proof: The expected number of arrivals in 7 is M\k. If m > n8, then A = m!/4 gr]2=8 >
2)\k. By a Chernoff bound, the probability that there are this many arrivals is at most
e~ /3 <1075, Otherwise, A = 0 and Mk = o(1). Thus, Pr(E1) > (1 —\/n)"* > 1 - Xk >
1—1075. O

Lemma 7 If n is sufficiently large then Pr(E2) < 107°.

Proof:  Apply Lemma 5 to each of the r users with 6 = 4 and j = r. Then Pr(E2) <
1 -
L S S T O

Lemma 8 If n is sufficiently large then Pr(ES8) < 1075,

Proof: Lety= [@-I. Note that 2y < %—T + 3. Suppose that user 7 has b;(t') > b+ 2y.
Then this user sent when its backoff counter was [b+ z]| for all z € {y,...,2y — 1}. The
probability of such a send on any particular step is at most ﬁ Thus, the probability that
it makes all y of the sends is at most

k 1 \¥ ke \Y
— < | = <107%/r.
<y> (335) < () <10

Thus, the probability that any of the r users obtains such a big backoff counter is at most 107°.
O

Lemma 9 If n is sufficiently large then Pr(Ej) < 1075,

Proof: We can apply Lemma 5 separately to each of the (up to B) pairs (#,7) with § =4

and j = B. The probability that there is a failure is at most % <1075, O

We now wish to show that Pr(S < W | E1 AE2 A E3 A E4) < 1075, We begin with the
following lemma.

Lemma 10 Given any fized sequence of states X (t),..., X (t + z) which does not violate E2
or E4, and satisfiest+z € T — 19— 11 — T2, qi(t +2) > 0, and bj(t + z) < b+1g(r)/2+ 3, the
probability that user i succeeds at step t + z is at least m

Proof: The conditions in the lemma imply the following.
e There are no users j with b;(t 4 z) < [lg B].

e There are at most B users j with b;(t + z) < [lgr].



e There are at most r 4+ B users j with b;(t 4+ z) < b.
e There are at most m + B users j with b;(t + 2) <lg 3+ Ign.

Thus, the probability that user 7 succeeds is at least

9—(b+1g(r)/2+3) (1 — l)B <1 — 1)7« <1 _ l)m_r <1 — i)n_m_B
B r 20 Bn

1 111 <1 n—m— B)
267-1/293 4 4.4 Bn

1
2109b,.1/2°

Y

a

Corollary 11 Given any fized sequence of states X(t),..., X (t + z) which does not violate
E2, E3, or Ej, and satisfies t + z € T — 19 — 71 — T2, the probability that some user succeeds
at step t + z is at least 213"2;7]?1/2 > 213177,-6'

Proof: Since ¢t + z & 1, at least » — B of the users i with ¢;(¢) > 0 and b;(t) < b have not
succeeded before step ¢+ z. Since E3 holds, each of these has b;(t + z) < b+1g(r)/2+ 3. For
all 7 and 7', the event that user 7 succeeds at step ¢ + z is disjoint with the event that user 4’
succeeds at step ¢ + z. O

Lemma 12 If n is sufficiently large then Pr(S < W | EL A E2 A E3 A E4) < 1075,

Proof: If El is satisfied then 79 does not start until there have been at least W successes.
Since |1 — 19 — 11| > k — k' — BE" > v[lgr]/2, Corollary 11 shows that the probability of
having fewer than W successes is at most the probability of having fewer than W successes
in v[lgr]/2 Bernoulli trials with success probability ﬁ Since W is at most half of the
expected number of successes, a Chernoff bound shows that the probability of having fewer
than W successes is at most exp(—g—[%) <1075, O

We conclude Case 2 by observing that p is at least 1 —Pr(E1) —Pr(E2) —Pr(E3) — Pr(E4) —
Pr(S < W | E1 AE2 AE3 A E4). By Lemmas 6, 7, 8, 9, and 12, this is at least 1 — 5 x 107°.

3.3 Case 3: 0<m/(X(t) <n?tand m(X(t) <n?®.

For every state p such that 0 < m/(p) < n* and m(p) < n'®, we will define k = 32m/(p)[lgm’'(p)]+
[n-8]. We will show that, if X (t) = p, then E[f (X (t+k)—f(X(t))] < —ek. Once again, we will
use m as shorthand for m (X (T')) and m' as shorthand for m/(X (¢)). Let 7 = {¢t,...,t+k—1},
let S be the number of successes that the system has in 7. Let p denote Pr(S > 1). As in
Case 2, E[f(X(t+ k) — f(X(#))] < an'®\k — an'®p + kn, and this is at most —ek as long
as ap > 9. Thus, we will finish by finding a positive lower bound for p which is independent
of n.

Since m' > 0, there is a user vy such that b,(t) < .81gn + 1. Let &' = 32m/[lgm’] and
70 = {t,...,t + k' — 1}. We will now define some events, as in Case 2.

E1l. There are no arrivals during 7.



E2. Every station with ¢;(¢) > 0 and b;(t) < .81gn + 1 either sends successfully during 7y or
has b;(t + k') > [lgm/].

E3. b, (') < .8lgn+ 7 for all t’ € 7.
Lemma 13 If n is sufficiently large then Pr(E1) < 107°.

Proof: As in the proof of Lemma, 6,

A nk
Pr(El) > (1——) >1—-Me>1-10"".

n
O
Lemma 14 Pr(E2) < 107°.
Proof: We use lemma 5 with § =32 and 7 = m/ to get
0} ’ [lgm'] -5
O

Lemma 15 If n is sufficiently large then Pr(E3) < 107°.

Proof: Let y = 6, and suppose that user 7 sends with backoff b, = [.8Ign + r| for
r € {1,...,6}. The probability of this happening is

6
P’I’(E_3) < <Ig> H 2—]’.81gn]—r
r=1

< (5 ()

( 26’/7,'8 > 6
677,'823

< 107°.

N

a

Lemma 16 Given any fized sequence of states X (t),..., X (t + z) which does not violate E1,
E2, or E3 such that t + z € T — 1y and there are no successes during steps [t,...,t + z — 1],
the probability that user vy succeeds at step t + z is at least ﬁ

Proof: The conditions in the statement of the lemma imply the following.
o ¢ (t+2)>0and by(t+2) < .8lgn+T.
e There are no users j with b;(t + z) < [lgm'].

e There are at most m' users j with b;(t + z) < .81gn + 1.



e There are at most m users j with b;(t 4+ 2) <lg g+ Ign.
e There will be no arrivals on step ¢ + z.

The probability of success for user v is at least

1 m’ 1 m—m/ 1 \n—m
—(.81gn+T7) o - o
ren (-2 () ()

S 1 111
— 2Tn8442
S 1

= 912,.8"

Lemma 17 If n is sufficiently large then Pr(S < 1| E1 AN E2 A E3) < e /2"

Proof: Lemma 16 implies that the probability of having no successes is at most the prob-
ability of having no successes in |7 — 7| Bernoulli trials, each with success probability ﬁ
Since |7 — 79| > n'®, this probability is at most

.8

]_ n 1 212
(1 - 212n.8> <e V7
a

We conclude Case 3 by observing that p is at least 1 —Pr(E1) — Pr(E2) — Pr(E3) — Pr(S <
1| EIAE2AE3). By Lemmas 13, 14, 15, and 17, this is at least 1—3x 107° —e~ /2" > .0002.
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4 Appendix A: The Calculations for Case 1.

1. g(m,m) is negative:  g(m,m) x 2a/'n™?(Bn — 1)(a/n'? — 1) is equal to the following.

— 2m —4m? + 2n + 6mn + 28mn + 68m>*n + 2a'm +2d’en'? + 2a/m?n!?

— 202 —26n? — 8Bmn? — o'mn®! — 3/ m*n>t + 2a0n>® + 20mn>® + 208m>*n>®
— 2d/Be n?? — 2a/mn2? + 20/ Bmn2? — 4d/ Bm2n?0 + 2803 — o/*mZn® + o Bmn3!
— 2ad'm*n®" — 2am3® — 206038 — 20/ %en3® — 4 afmn?® — ad/mn®? + 4o/ frmn>?
— ad pm*n®? + 20/2ﬂm2n4 + 2aa'mn*" + 2 ad! Bran*" + 20608 + 2a'2ﬁ6n4'8

2 2 2
— 2d°mnt® + ad“mnt® + ad/ fmnt® — 200/ *mn®6

in.l

The dominant term is —2aa/>mn56. Note that there is a positive term (aa/*m2n*®) which
could be half this big if m is as big as n"® (the upper bound for Case 1), but all other terms
are asymptotically smaller.

2. g(m,n) is negative:  g(m,n) x 2a/Bn(Bn — 1) is equal to the following.

— 2a/'m? 4 o/ fm?n? — 20/ Ben + 6a'mn — 20/ fmn — 2a' mn!?

— 2ad'm?*n'® — 2080 — 4a'n® + 2d/Bn? + 2¢/ B%en’?
—  4d/Bmn® 4+ ad/ fm>n? 4 20/ FZmn?? + 200/ mn?® — 2ad/ fmn®® 4 2a6°n>°
+ 4d'Bn® — 24/ 3?03
Since 8 > 2, the term —20/3?n3 dominates +4a'Bn3. For the same reason, the term

—2aa/ fmn?® dominates the two terms +2aa/mn?® and +aa/fm?n?. The other terms
are asymptotically smaller.

3. %g(m,f) > 0:

1. g(0,1) is negative:  ¢(0,1) x o/An'?(a/n'? — 1) is equal to the following.

+ 48— 3/ — 580 + afn® + o'n'® — o/ Bm? — o Ben?
+ On® —adn®" + 20/%n28 — 3a8n®® + 24/ Bn*? + ad/n?7

+ aalﬂn3.7+aﬂn3.8 _0/2 n3.8 -I-OZIQISER&S

Since o/ (1 — €) > a(1 — €) > 1, the term —a/’4(1 — €)n®® dominates the term +afn3*.
The other terms are asymptotically smaller.
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