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Binary Exponential Ba
ko� is Stable for High Arrival RatesHesham Al-Ammal� Leslie Ann Goldbergy Phil Ma
KenziezJuly 28, 1999Abstra
tGoodman, Greenberg, Madras and Mar
h gave a lower bound of n�
(logn) for themaximum arriaval rate for whi
h the n-user binary exponential ba
ko� proto
ol is stable.Thus, they showed that the proto
ol is stable as long as the arrival rate is at mostn�
(log n). We improve the lower bound, showing that the proto
ol is stable for arrivalrates up to O(n�:9).Classi�
ation of topi
: Algorithms and data stru
tures (distributed algorithms)1 Introdu
tionA multiple-a

ess 
hannel is a broad
ast 
hannel that allows multiple users to 
ommuni
atewith ea
h other by sending messages onto the 
hannel. If two or more users simultaneouslysend messages, then the messages interfere with ea
h other (
ollide), and the messages arenot transmitted su

essfully. The 
hannel is not 
entrally 
ontrolled. Instead, the users use a
ontention-resolution proto
ol to resolve 
ollisions. Thus, after a 
ollision, ea
h user involvedin the 
ollision waits a random amount of time (whi
h is determined by the proto
ol) beforere-sending. Perhaps the best-known 
ontention-resolution proto
ol is the Ethernet proto
olof Met
alfe and Boggs [9℄. The Ethernet proto
ol is based on the following simple binaryexponential ba
ko� proto
ol. Time is divided into dis
rete units 
alled steps. If the i'thuser has a message to send during a given step, then it sends this message with probability2�bi , where bi denotes the number of 
ollisions that this message has already had. Withprobability 1 � 2�bi , user i does not send during the step. The Ethernet proto
ol is basedon binary exponential ba
ko�, but some modi�
ations are made to make it easier to build.See [6, 9℄ for details.H�astad, Leighton and Rogo� [6℄ have studied the performan
e of the binary exponentialba
ko� proto
ol in the following natural model. The system 
onsists of n users. Ea
h usermaintains a queue of messages that it wishes to send. At the beginning of the t'th time step,�hesham�d
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the length of the queue of the i'th user is denoted qi(t) and the number of times that themessage at the head of its queue has 
ollided is denoted bi(t). At the beginning of the t'thstep, ea
h queue re
eives 0 or 1 new messages. In parti
ular, a new message is added tothe end of ea
h queue independently with probability �=n, where � is the arrival rate of thesystem. After the new messages are added to the queues, ea
h user makes an independentde
ision about whether or not to send the message at the head of its queue, using the binaryexponential ba
ko� proto
ol. (If the message at the head of the i'th queue has never beensent before then bi = 0, so it is now sent. Otherwise, bi = bi(t), so it is sent independentlywith probability 2�bi(t).) If exa
tly one message is sent (so there are no 
ollisions), then thismessage is delivered su

essfully, and it leaves its queue. Otherwise, the messages that aresent 
ollide and no messages are delivered su

essfully.Sin
e the arrivals are modelled by a sto
hasti
 pro
ess, the evolution of the whole sys-tem over time 
an be viewed as a Markov 
hain in whi
h the state just before step t isX(t) = ((q1(t); : : : ; qn(t)); (b1(t); : : : ; bn(t))) and the next state is X(t + 1). One measure ofthe performan
e of the system is the expe
tation of the random variable Tret, whi
h is the num-ber of steps required for the system to return to the start state X(0) = ((0; : : : ; 0); (0; : : : ; 0)).H�astad et al. [6℄ proved that if the arrival rate is too high, then the system is unstable, in thesense that the expe
ted re
urren
e time is in�nite.Theorem 1 (H�astad, Leighton, and Rogo�) Suppose that for some positive �, � � 12+�.Suppose that n is suÆ
iently large (as a fun
tion of �). Then E[Tret℄ =1.On the other hand, Goodman, Greenberg, Madras and Mar
h [5℄ showed that if the arrivalrate is suÆ
iently low, then the system is stable.Theorem 2 (Goodman, Greenberg, Madras and Mar
h) There is a positive 
onstant �su
h that E[Tret℄ is �nite for the n-user system, provided that � < 1n� log n .While Goodman, Greenberg, Madras, and Mar
h's result is the only known stabilityresult for the �nitely-many-users binary-exponential-ba
ko� proto
ol, their upper bound (� <1n� log n ) is very small. In this paper, we narrow the gap between the two results. In parti
ular,we prove the following theorem.Theorem 3 There is a positive 
onstant � su
h that, as long as n is suÆ
iently large and� < 1�n:9 then E[Tret℄ is �nite for the n-user system.The point of Theorem 3 is to show that n-user Binary Exponential Ba
ko� is stable forarrival rates whi
h grow faster asymptoti
ally than 1=n. That is, the purpose of the result isto show that, for positive 
onstants � and �, � < 1�n1�� guarantees stability. We have 
hosen� = :1 for 
on
reteness. We believe that the same methods 
ould be used for slightly largervalues of �, but an interesting (and diÆ
ult) question raised by this work is whether the sameresult would be true for � = 1. That is, is there a 
onstant � su
h that the n-user system isstable whenever � < 1�?The organisation of the paper is as follows. In Se
tion 2 we summarise other related work.In Se
tion 3 we give the proof of Theorem 3.
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2 Related WorkWe now summarize some other related work. We start by observing that the results in The-orem 1 and 2 
an be extended to more general models. For example, the result of Goodmanet al. 
an be extended to a more general model of sto
hasti
 arrivals in whi
h the expe
tednumber of arrivals at user i at time t (
onditioned on all events up to time t) is a quantity,�i, and Pi �i is required to be equal to �. The result of H�astad et al. 
an be extended tosmall values of n, provided that � > :568 + 1=(4n � 2). The instability result of H�astad etal. implies that, when � is suÆ
iently large, the expe
ted average waiting time of messages isin�nite.Next, we mention that the binary exponential ba
ko� proto
ol is known to be unstablein the in�nitely-many-users Poisson-arrivals model. Kelly and Ma
Phee [7, 8℄ showed this for� < ln 2 and Aldous [1℄ showed that it holds for all positive �.Finally, we mention that, while the goal of this paper is to understand the binary-exponential ba
ko� proto
ol, on whi
h Ethernet is based, there are other a
knowledgement-based proto
ols whi
h are known to be stable in the same model for larger arrival rates. Inparti
ular, H�astad et al. have shown that polynomial-ba
ko� proto
ols are stable as long as� < 1. The expe
ted waiting time of messages is high in polynomial-ba
ko� proto
ols, butRaghavan and Upfal [10℄ have given a proto
ol that is stable for � < 1=10, in whi
h theexpe
ted waiting time of every message is O(log n), provided that the users are given a rea-sonably good estimate of logn. Finally, Goldberg, Ma
Kenzie, Paterson and Srinivasan [4℄have given a proto
ol that is stable for � < 1=e, in whi
h the expe
ted average messagewaiting-time is O(1), provided that the users are given an upper bound on n.We 
on
lude by observing that the te
hnique of Goldberg and Ma
Kenzie [3℄ 
an be usedto extend Theorem 3 so that it applies to a non-geometri
 version of binary-exponentialba
ko�, whi
h is 
loser to the version used in the Ethernet. (Instead of de
iding whether tosend on ea
h step independently with probability 2�bi , the user simply 
hooses the number ofsteps to wait before sending uniformly at random from [1; : : : ; 2bi ℄.) The ideas are the sameas those used in the proof that follows, but the details are messier. Our result 
an also beextended along the lines of [6℄ to show that, when � is suÆ
iently low, the expe
ted averagemessage waiting time is �nite.3 The stability proofIn order to prove Theorem 3, let � = 1�0n:9 , where �0 � �. We will now de�ne the relevantpotential fun
tion. Let f(X(t)) be the following fun
tion of the state just before step t.f(X(t)) = �n1:8 nXi=1 qi(t) + nXi=1 2bi(t):We will use the following generalisation of Foster's theorem [2℄. Note that the Markov 
hain Xsatis�es the initial 
onditions of the theorem. That is, it is time-homogeneous, irredu
ible,and aperiodi
 and has a 
ountable state spa
e.
3



Theorem 4 (Foster; Fayolle, Malyshev, Menshikov) A time-homogeneous irredu
ible ape-riodi
 Markov 
hain X with a 
ountable state spa
e A is positive re
urrent i� there exists apositive fun
tion f(�), � 2 A, a number � > 0, a positive integer-valued fun
tion k(�), � 2 A,and a �nite set C � A, su
h that the following inequalities hold.E[f(X(t + k(X(t)))) � f(X(t)) j X(t) = �℄ � ��k(�); � 62 C (1)E[f(X(t+ k(X(t)))) j X(t) = �)℄ < 1; � 2 C: (2)We use the following notation, where � = 3. For a state X(t), let m(X(t)) denote thenumber of users i with qi(t) > 0 and bi(t) < lg �+lg n, and let m0(X(t)) denote the number ofusers i with qi(t) > 0 and bi(t) < :8 lg n+1. We will take � to be 1� 2=� and C to be the set
onsisting of the single state ((0; : : : ; 0); (0; : : : ; 0)). We de�ne k(((0; : : : ; 0); (0; : : : ; 0))) = 1,so Equation 2 is satis�ed. For every state � 62 C, we will de�ne k(�) in su
h a way thatEquation 1 is also satis�ed. We give the details in three 
ases.3.1 Case 1: m0(X(t)) = 0 and m(X(t)) < n:8.For every state � su
h that m0(�) = 0 and m(�) < n:8 we de�ne k(�) = 1. We wish to showthat, if � 6= ((0; : : : ; 0); (0; : : : ; 0)) and X(t) = �, then E[f(X(t + 1) � f(X(t))℄ � ��. Ourgeneral approa
h is the same as the approa
h used in the proof of Lemma 5.7 of [6℄. For
onvenien
e, we use m as shorthand for m(X(t)) and we use ` to denote the number of users iwith qi(t) > 0. Without loss of generality, we assume that these are users 1; : : : ; `. We use pito denote the probability that user i sends on step t. (So pi = 2�bi(t) if i 2 [1; : : : ; `℄ andpi = �=n otherwise.) We let T denote Qni=1(1 � pi) and we let S denote Pni=1 pi1�pi . Notethat the expe
ted number of su

esses at step t is ST . Let Ia;i;t be the 0=1 indi
ator randomvariable whi
h is 1 i� there is an arrival at user i during step t and let Is;i;t be the 0=1 indi
atorrandom variable whi
h is 1 i� user i su

eeds in sending a message at step t. ThenE[f(X(t+ 1)� f(X(t))℄ = �n1:8 nXi=1 (E[Ia;i;t℄�E[Is;i;t℄) + nXi=1 �E[2bi(t+1)℄� 2bi(t)� ;= �n1:8�� �n1:8ST + nXi=1 �2bi(t)�i � (2bi(t) � 1)�i� ; (3)= �n1:8�� �n1:8ST + nXi=1�2bi(t)pi(1� T1� pi )� (2bi(t) � 1)pi T1� pi� ;= �n1:8�� �n1:8ST + X̀i=1(1� T1� pi ) + nXi=`+1 �n(1� T1� pi )� `T;= �n1:8�� �n1:8ST + `� `T + (n� `)�n � T 0�X̀i=1 11� pi + nXi=`+1 pi1� pi1A ;= �n1:8�� �n1:8ST + `� `T + (n� `)�n � ST � `T;= �n1:8�+ `+ (n� `)�n � T ((�n1:8 + 1)S + 2`); (4)4



where �i in Equality 3 denotes the probability that user i 
ollides at step t and �i denotes theprobability that user i sends su

essfully at step t. We now �nd lower bounds for S and T .First, S = nXi=1 pi1� pi= X̀i=1 2�bi(t)1� 2�bi(t)!+ �(n� `)n� �� mXi=1� 1�n� 1�+ �(n� `)n� �= m�n� 1 + �(n� `)n� � : (5)Next, T = nYi=1(1� pi)� (1� 12n:8 )m(1� 1�n)`�m(1� �n)n�`� 1� m2n:8 � `�m�n � �(n� `)n (6)Combining Equations 4, 5 and 6, we get the following equation.E[f(X(t+ 1)� f(X(t))℄ � �n1:8�+ `+ (n� `)�n � (7)�1� m2n:8 � `�m�n � �(n� `)n ��(�n1:8 + 1)� m�n� 1 + �(n� `)n� � �+ 2`� :We will let g(m; `) be the quantity in Equation 7 plus � and we will show that g(m; `) isnegative for all values of 0 � m < n:8 and all ` � m. In parti
ular, for every �xed positivevalue of m, we will show that1. g(m;m) is negative,2. g(m;n) is negative, and3. �2�`2 g(m; `) > 0. (g(m; `) is 
on
ave up as a fun
tion of ` for the �xed value of m so g(m; `)is negative for all ` 2 [m;n℄.)We will handle the 
ase m = 0 similarly ex
ept that m = ` = 0 
orresponds to the start state,so we will repla
e Item 1 with the following for m = 0.1'. g(0; 1) is negative.The details of the proof are now merely 
al
ulations. We in
lude them in Appendix A for
ompleteness. 5



3.2 Case 2: m(X(t)) � n:8 or m0(X(t)) > n:4.For every state � su
h that m(�) � n:8 or m0(�) > n:4, we will de�ne an integer k (whi
hdepends upon �) and we will show that, if X(t) = �, then E[f(X(t + k) � f(X(t))℄ � ��k,where � = 1� 2=�.For 
onvenien
e, we will usem as shorthand form(X(t)) andm0 as shorthand form0(X(t)).If m � n:8 then we will de�ne r = m, W = m1=4dlg re2�8, A =W , b = lg � + lgn and v = n.Otherwise, we will de�ne r = m0, W = dlg re2�8, A = 0, b = :8 lg n + 1, and v = 2dn:8e.In either 
ase, we will de�ne k = 4(r + v)dlg re. Let � be the set of steps ft; : : : ; t + k � 1gand let S be the random variable whi
h denotes the number of su

esses that the system hasduring � . Let p denote Pr(S �W ). Then we haveE[f(X(t + k)� f(X(t))℄ � �n1:8�k � �n1:8E[S℄ + nXi=1 t+kXt0=t+1E[2bi(t0) � 2bi(t0�1)℄� �n1:8�k � �n1:8Wp+ kn� ��k;where the �nal inequality holds as long as �p � 213 and n is suÆ
iently big. Thus, it suÆ
esto �nd a positive lower bound for p whi
h is independent of n. We do this with plenty tospare. In parti
ular, we show that p � 1� 5� 10�5.We start with a te
hni
al lemma, whi
h des
ribes the behaviour of a single user.Lemma 5 Let j be a positive integer, and let Æ be a positive integer whi
h is at least 2.Suppose that qi(t) > 0. Then, with probability at least 1 � dlg jejÆ=(2 ln 2) , either user i su

eeds insteps [t; : : : ; t+ Æjdlg je � 1℄, or bi(t+ Æjdlg je) � dlg je.Proof: Suppose that user i is running in an externally-jammed 
hannel (so every sendresults in a 
ollision). Let Xz denote the number of steps t0 2 [t; : : : ; t + dÆj lg(j)e℄ withbi(t0) = z. We 
laim that Pr(Xz > Ædlg je2z�1) < j�Æ=(2 ln 2). This proves the lemmasin
e Pdlg je�1z=0 Ædlg je2z�1 � Æjdlg je. To prove the 
laim, note that X0 � 1, so Pr(X0 >Ædlg je2�1) = 0 < j�Æ=(2 ln 2). For z > 0, note thatPr(Xz > Ædlg je2z�1) � (1� 2�z)Ædlg je2z�1 < j�Æ=(2 ln 2): 2Next, we de�ne some events. We will show that the events are likely to o

ur, and, if theydo o

ur, then S is likely to be at leastW . This will allow us to 
on
lude that p � 1�5�10�5,whi
h will �nish Case 2. We start by de�ning B = dW e+ dAe, k0 = 4rdlg re, k00 = 4BdlgBeand �0 = ft; : : : ; t + k0 � 1g. Let � 0(i) be the set of all t0 2 � su
h that bi(t0) = 0 and either(1) qi(t0) > 0 or (2) there is an arrival at user i at t0. Let �2 be the set of all t0 2 � su
h thatjf(t00; i) j t00 2 � 0(i) and t00 < t0gj � B. Finally, let �1 be the set of all t0 2 � � �0 � �2 su
hthat, for some i, � 0(i) \ [t0 � k00 + 1; t0℄ 6= ;. We 
an now de�ne the events E1{E4.E1. There are at most A arrivals during � .E2. Every station with qi(t) > 0 and bi(t) < b either sends su

essfully during �0 or hasbi(t+ k0) � dlg re. 6



E3. Every station with qi(t) > 0 and bi(t) < b has bi(t0) � b+ lg(r)=2 + 3 for all t0 2 � .E4. For all t0 2 � 0(i) and all t00 > t0 su
h that t00 2 � � �1 � �2, bi(t0) � dlgBe.Next, we show that E1{E4 are likely to o

ur.Lemma 6 If n is suÆ
iently large then Pr(E1) � 10�5.Proof: The expe
ted number of arrivals in � is �k. If m � n:8, then A = m1=4dlg re2�8 �2�k. By a Cherno� bound, the probability that there are this many arrivals is at moste��k=3 � 10�5. Otherwise, A = 0 and �k = o(1). Thus, Pr(E1) � (1� �=n)nk � 1� �k �1� 10�5. 2Lemma 7 If n is suÆ
iently large then Pr(E2) � 10�5.Proof: Apply Lemma 5 to ea
h of the r users with Æ = 4 and j = r. Then Pr(E2) �r dlg rer2=(ln 2) � 10�5. 2Lemma 8 If n is suÆ
iently large then Pr(E3) � 10�5.Proof: Let y = l dlg re4 m. Note that 2y � lg r2 + 3. Suppose that user i has bi(t0) > b + 2y.Then this user sent when its ba
ko� 
ounter was db + ze for all z 2 fy; : : : ; 2y � 1g. Theprobability of su
h a send on any parti
ular step is at most 12b2y . Thus, the probability thatit makes all y of the sends is at most ky!� 12b2y�y � � ke2by2y�y � 10�5=r:Thus, the probability that any of the r users obtains su
h a big ba
ko� 
ounter is at most 10�5.2Lemma 9 If n is suÆ
iently large then Pr(E4) � 10�5.Proof: We 
an apply Lemma 5 separately to ea
h of the (up to B) pairs (t0; i) with Æ = 4and j = B. The probability that there is a failure is at most BdlgBeB2=(ln 2) � 10�5. 2We now wish to show that Pr(S < W j E1 ^ E2 ^ E3 ^ E4) � 10�5. We begin with thefollowing lemma.Lemma 10 Given any �xed sequen
e of states X(t); : : : ;X(t+ z) whi
h does not violate E2or E4, and satis�es t+ z 2 � � �0 � �1� �2, qi(t+ z) > 0, and bi(t+ z) � b+ lg(r)=2 + 3, theprobability that user i su

eeds at step t+ z is at least 12102br1=2 .Proof: The 
onditions in the lemma imply the following.� There are no users j with bj(t+ z) < dlgBe.� There are at most B users j with bj(t+ z) < dlg re.7



� There are at most r +B users j with bj(t+ z) < b.� There are at most m+B users j with bj(t+ z) < lg � + lgn.Thus, the probability that user i su

eeds is at least2�(b+lg(r)=2+3)�1� 1B�B�1� 1r�r�1� 12b�m�r�1� 1�n�n�m�B� 12br1=223 14 14 14 �1� n�m�B�n �� 12102br1=2 : 2Corollary 11 Given any �xed sequen
e of states X(t); : : : ;X(t + z) whi
h does not violateE2, E3, or E4, and satis�es t+ z 2 � � �0 � �1 � �2, the probability that some user su

eedsat step t+ z is at least r�B2102br1=2 � 1213n:6 .Proof: Sin
e t+ z 62 �2, at least r �B of the users i with qi(t) > 0 and bi(t) < b have notsu

eeded before step t+ z. Sin
e E3 holds, ea
h of these has bi(t+ z) � b+ lg(r)=2 + 3. Forall i and i0, the event that user i su

eeds at step t+ z is disjoint with the event that user i0su

eeds at step t+ z. 2Lemma 12 If n is suÆ
iently large then Pr(S < W j E1 ^ E2 ^ E3 ^ E4) � 10�5:Proof: If E1 is satis�ed then �2 does not start until there have been at least W su

esses.Sin
e j� � �0 � �1j � k � k0 � Bk00 � vdlg re=2, Corollary 11 shows that the probability ofhaving fewer than W su

esses is at most the probability of having fewer than W su

essesin vdlg re=2 Bernoulli trials with su

ess probability 1213n:6 . Sin
e W is at most half of theexpe
ted number of su

esses, a Cherno� bound shows that the probability of having fewerthan W su

esses is at most exp(�vdlg re217n:6 ) � 10�5. 2We 
on
lude Case 2 by observing that p is at least 1�Pr(E1)�Pr(E2)�Pr(E3)�Pr(E4)�Pr(S < W j E1 ^ E2 ^ E3 ^ E4). By Lemmas 6, 7, 8, 9, and 12, this is at least 1� 5� 10�5.3.3 Case 3: 0 < m0(X(t)) � n:4 and m(X(t)) < n:8.For every state � su
h that 0 < m0(�) � n:4 andm(�) < n:8, we will de�ne k = 32m0(�)dlgm0(�)e+dn:8e. We will show that, ifX(t) = �, then E[f(X(t+k)�f(X(t))℄ � ��k. On
e again, we willusem as shorthand for m(X(T )) andm0 as shorthand for m0(X(t)). Let � = ft; : : : ; t+k�1g,let S be the number of su

esses that the system has in � . Let p denote Pr(S � 1). As inCase 2, E[f(X(t + k) � f(X(t))℄ � �n1:8�k � �n1:8p + kn, and this is at most ��k as longas �p > 9. Thus, we will �nish by �nding a positive lower bound for p whi
h is independentof n.Sin
e m0 > 0, there is a user 
 su
h that b
(t) < :8 lg n + 1. Let k0 = 32m0dlgm0e and�0 = ft; : : : ; t+ k0 � 1g. We will now de�ne some events, as in Case 2.E1. There are no arrivals during � . 8



E2. Every station with qi(t) > 0 and bi(t) < :8 lg n+ 1 either sends su

essfully during �0 orhas bi(t+ k0) � dlgm0e.E3. b
(t0) < :8 lgn+ 7 for all t0 2 � .Lemma 13 If n is suÆ
iently large then Pr(E1) � 10�5.Proof: As in the proof of Lemma 6,Pr(E1) � �1� �n�nk � 1� �k � 1� 10�5: 2Lemma 14 Pr(E2) � 10�5.Proof: We use lemma 5 with Æ = 32 and j = m0 to getPr(E3) � m0 � dlgm0e(m0)16= ln(2) � 10�5: (8)2Lemma 15 If n is suÆ
iently large then Pr(E3) � 10�5.Proof: Let y = 6, and suppose that user 
 sends with ba
ko� b
 = d:8 lg n + re forr 2 f1; : : : ; 6g. The probability of this happening isPr(E3) �  k6! 6Yr=1 2�d:8 lg ne�r� �ke6 �6� 1n:8�2�P6r=1 r� � 2en:86n:823�6� 10�5: 2Lemma 16 Given any �xed sequen
e of states X(t); : : : ;X(t+ z) whi
h does not violate E1,E2, or E3 su
h that t+ z 2 � � �0 and there are no su

esses during steps [t; : : : ; t + z � 1℄,the probability that user 
 su

eeds at step t+ z is at least 1212n:8 .Proof: The 
onditions in the statement of the lemma imply the following.� q
(t+ z) > 0 and b
(t+ z) < :8 lgn+ 7.� There are no users j with bj(t+ z) < dlgm0e.� There are at most m0 users j with bj(t+ z) < :8 lg n+ 1.9



� There are at most m users j with bj(t+ z) < lg � + lgn.� There will be no arrivals on step t+ z.The probability of su

ess for user 
 is at least2�(:8 lgn+7)�1� 1m0�m0�1� 12n:8�m�m0�1� 1�n�n�m� 127n:8 14 14 12� 1212n:8 : 2Lemma 17 If n is suÆ
iently large then Pr(S < 1 j E1 ^E2 ^E3) � e�1=212 .Proof: Lemma 16 implies that the probability of having no su

esses is at most the prob-ability of having no su

esses in j� � �0j Bernoulli trials, ea
h with su

ess probability 1212n:8 .Sin
e j� � �0j � n:8, this probability is at most�1� 1212n:8�n:8 � e�1=212 : 2We 
on
lude Case 3 by observing that p is at least 1�Pr(E1)�Pr(E2)�Pr(E3)�Pr(S <1 j E1^E2^E3). By Lemmas 13, 14, 15, and 17, this is at least 1�3�10�5�e�1=212 � :0002:Referen
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4 Appendix A: The Cal
ulations for Case 1.1. g(m;m) is negative: g(m;m) � 2�0n1:9(�n� 1)(�0n1:9 � 1) is equal to the following.� 2m� 4m2 + 2n+ 6mn+ 2�mn+ 6�m2n+ 2�0m2n1:1 + 2�0�n1:9 + 2�0m2n1:9� 2n2 � 2�n2 � 8�mn2 � �0mn2:1 � 3�0�m2n2:1 + 2�n2:8 + 2�mn2:8 + 2��m2n2:8� 2�0�� n2:9 � 2�0mn2:9 + 2�0�mn2:9 � 4�0�m2n2:9 + 2�n3 � �02m2n3 + �0�mn3:1� 2��0m2n3:7 � 2�n3:8 � 2��n3:8 � 2�02�n3:8 � 4 ��mn3:8 � ��0mn3:9 + 4�0�mn3:9� ��0�m2n3:9 + 2�02�m2n4 + 2��0mn4:7 + 2 ��0�mn4:7 + 2��n4:8 + 2�02��n4:8� 2�02�mn4:8 + ��02m2n4:8 + ��0�mn4:9 � 2��02mn5:6The dominant term is �2��02mn5:6. Note that there is a positive term (��02m2n4:8) whi
h
ould be half this big if m is as big as n:8 (the upper bound for Case 1), but all other termsare asymptoti
ally smaller.2. g(m;n) is negative: g(m;n) � 2�0�n(�n� 1) is equal to the following.� 2�0m2 + �0�m2n:2 � 2�0��n+ 6�0mn� 2�0�mn� 2�0�mn1:2� 2��0m2n1:8 � 2��n1:9 � 4�0n2 + 2�0�n2 + 2�0�2�n2� 4�0�mn2 + ��0�m2n2 + 2�0�2mn2:2 + 2��0mn2:8 � 2��0�mn2:8 + 2��2n2:9+ 4�0�n3 � 2�0�2n3Sin
e � > 2, the term �2�0�2n3 dominates +4�0�n3. For the same reason, the term�2��0�mn2:8 dominates the two terms +2��0mn2:8 and +��0�m2n2. The other termsare asymptoti
ally smaller.3. �2�`2 g(m; `) > 0: �2�`2 g(m; `) = 2� 1�n � �n� 2� (�n1:8 + 1)�n� � ! :1'. g(0; 1) is negative: g(0; 1) � �0�n1:9(�0n1:9 � 1) is equal to the following.+ 4� � 3�0n:9 � 5�n+ ��n1:8 + �0n1:9 � �0�m1=9 � �0��n1:9+ �n2 � ��0n2:7 + 2�02n2:8 � 3��n2:8 + 2�0�n2:9 + ��0n3:7+ ��0�n3:7 + ��n3:8 � �02�n3:8 + �02��n3:8Sin
e �0(1 � �) � �(1 � �) > 1, the term ��02�(1 � �)n3:8 dominates the term +��n3:8.The other terms are asymptoti
ally smaller.
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