Skip to main content

Tilings: Recursivity and Regularity

  • Conference paper
  • First Online:
STACS 2000 (STACS 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1770))

Included in the following conference series:

Abstract

We establish a first step towards a “Rice theorem” for tilings: for non-trivial sets, it is undecidable to know whether two different tile sets produce the same tilings of the place. Then, we study quasiperiodicity functions associated with tilings. This function is a way to measure the regularity of tilings. We prove that, not only almost all recursive functions can be obtained as quasiperiodicity functions, but also, a function which overgrows any recursive function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Allauzen and B. Durand. Appendix A: “Tiling problems”. The classical decision problem (see [3]), pages 407–420, 1996.

    Google Scholar 

  2. R. Berger. The undecidability of the domino problem. Memoirs of the American Mathematical Society, 66, 1966.

    Google Scholar 

  3. E. Börger, E. Grädel, and Y. Gurevich. The classical decision problem. Springer-Verlag, 1996.

    Google Scholar 

  4. M. Delorme and J. Mazoyer, editors. Cellular automata: a Parallel model. Kluwer, 1999.

    Google Scholar 

  5. B. Durand. Inversion of 2d cellular automata: some complexity results. Theoretical Computer Science, 134:387–401, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  6. B. Durand. The surjectivity problem for 2D cellular automata. Journal of Computer and Systems Science, 49(3):718–725, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  7. B. Durand. A Random NP-complete problem for inversion of 2D cellular automata. Theoretical Computer Science, 148(1):19–32, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  8. B. Durand. Tilings and quasiperiodicity. In ICALP’97, volume 1256 of Lecture Notes in Computer Science, pages 65–75. Springer Verlag, July 1997.

    Google Scholar 

  9. B. Durand. Tilings and quasiperiodicity. Theoretical Computer Science, 221:61–75, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  10. H. Furstenberg. Recurrence in ergodic theory and combinatorial number theory. Princetown University Press, 1981.

    Google Scholar 

  11. Y. Gurevich. Average case completeness. Journal of Computer and System Sciences, 42:346–398, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  12. Y. Gurevich and I. Koriakov. A remark on Berger’s paper on the domino problem. Siberian Journal of Mathematics, 13:459–463, 1972. (in Russian).

    MATH  Google Scholar 

  13. K. Ingersent. Matching rules for quasicrystalline tilings, pages 185–212. World Scientific, 1991.

    Google Scholar 

  14. J. Kari. Reversibility and surjectivity problems of cellular automata. Journal of Computer and System Sciences, 48:149–182, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. Kari. Rice’s theorem for the limit set of cellular automata. Theoretical Computer Science, 127(2):229–254, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  16. L. Levin. Average case complete problems. SIAM J. Comput, 15(1):285–286, February 1986.

    Article  MATH  MathSciNet  Google Scholar 

  17. R.M. Robinson. Undecidability and nonperiodicity for tilings of the plane. Inventiones Mathematicae, 12:177–209, 1971.

    Article  MATH  MathSciNet  Google Scholar 

  18. P. van Embde Boas. Dominoes are forever. Research report 83-04, University of Amsterdam. Department of Mathematics., 1983.

    Google Scholar 

  19. H. Wang. Proving theorems by pattern recognition II. Bell System Technical Journal, 40:1–41, 1961.

    Google Scholar 

  20. H. Wang. Dominoes and the ∀∃∀-case of the decision problem. In Proc. Symp. on Mathematical Theory of Automata, pages 23–55. Brooklyn Polytechnic Institute, New York, 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cervelle, J., Durand, B. (2000). Tilings: Recursivity and Regularity. In: Reichel, H., Tison, S. (eds) STACS 2000. STACS 2000. Lecture Notes in Computer Science, vol 1770. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46541-3_41

Download citation

  • DOI: https://doi.org/10.1007/3-540-46541-3_41

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67141-1

  • Online ISBN: 978-3-540-46541-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics