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Abstract

A potential maximal clique of a graph is a vertex set that induces a maximal
clique in some minimal triangulation of that graph. It is known that if these
objects can be listed in polynomial time for a class of graphs, the treewidth and
the minimum fill-in are polynomially tractable for these graphs. We show here
that the potential maximal cliques of a graph can be generated in polynomial
time in the number of minimal separators of the graph. Thus, the treewidth and
the minimum fill-in are polynomially tractable for all graphs with polynomial
number of minimal separators.

Keywords: treewidth, minimum fill-in, minimal separators, potential maximal cliques

Résumé

Une clique maximale potentielle d’un graphe est un ensemble de sommets qui
induit une clique maximale dans au moins une triangulation minimale de ce
graphe. Il a été prouvé que si ces objets peuvent étre énumérés en temps po-
lynomial pour une classe de graphes, la largeur arborescente et la complétion
minimale sont calculables en temps polynomial pour ces graphes. Nous mon-
trons ici que les cliques maximales potentielles d’un graphe peuvent étre géné-
rées en temps polynomial par rapport au nombre de ses séparateurs minimaux.
En conséquence, la largeur arborescente et la complétion minimale sont calcu-
lables en temps polynomial pour tous les graphes ayant un nombre polynomial
de séparateurs minimaux.

Mots-clés: largeur arborescente, complétion minimale, séparateurs minimaux, cliques
maximales potentielles



1 Introduction

The notion of treewidth was introduced at the beginning of the eighties by Robertson and
Seymour [25, 26] in the framework of their graph minor theory. A graph H is a minor of a
graph G if we can obtain H from G by using the following operations: discard a vertex, discard
an edge, merge the endpoints of an edge in a single vertex. Among the deep results obtained
by Robertson and Seymour, we can cite this one: every class of graphs closed by minoration
which does not contain all the planar graphs has bounded treewidth.

A graph is chordal or triangulated if every cycle of length greater or equal to four has a
chord, i.e. edge between two non-consecutive vertices of the cycle. A triangulation of a graph is
a chordal embedding, that is a supergraph, on the same vertex set, which is triangulated. The
treewidth problem is to find a triangulation such that the size of the biggest clique is as small
as possible. Another closed problem is the minimum fill-in problem. Here we have to find a
triangulation of the graph such that the number of the added edges is minimum. In both cases
we can restrict to minimal triangulations, i.e. triangulations with a set of edges minimal by
inclusion.

The treewidth and the minimum fill-in play an important role in various areas of computer
science e.g. sparse matrix factorization [27], and algorithmic graph theory [3, 14, 2, 8]. For an
extensive survey of these applications see also [5, 7].

Computing the treewidth is equivalent to find a tree decomposition, that is a tree such that
each node of the tree is labeled by a vertex set of the graph. The labels of the nodes must
respect some constraints: every vertex of the graph must appear in some label, the endpoints
of an edge must appear in a same label, if a same vertex is in two different labels it must be in
all the labels on the unique path of the tree connecting the two occurrences of the vertex. The
width of the tree decomposition is then the size of the largest label minus one, and the treewidth
is the smallest width over all the tree decompositions of the graph. Many graph problems that
model real-life problems are intractable in the sense that they are NP-hard. If we deal with
a class of graphs of bounded treewidth most of these problems become polynomial and even
linear e.g. maximum independent set, hamiltonian circuit or Steiner tree. There are two ways
to solve problems when the treewidth is bounded, the first uses dynamic programming [5, 16]
and the second is based upon reduction techniques [2, §].

Unfortunately the computation of the treewidth and of the minimum fill-in of a graph
are NP-hard [1, 30] even for co-bipartite graphs. However, a polynomial time approximation
algorithm with O(logn) performance ratio is described in [9]. The problem of the existence
of a polynomial approximation of the treewidth within a multiplicative constant remains still
open. For any fixed constant k, there exist polynomial algorithms finding a tree decomposition
of width at most k if such a decomposition exists. Arnborg et al. [1] gave the first algorithm
that solves this problem in O(n**2) time. Since numerous improvements have been done on
the domain until the linear time algorithm of Bodlaender [6]. Notice that the constant hidden
by the O notation is doubly exponential in k*. Some results for treewidth appeared in the
literature in connection with logic. The works by Arnborg et al. [2], Courcelle [13], Courcelle
and Mosbah [14] led to the conclusion that all the problems which are expressible in extended
monadic second order logic can be solved in linear time for graphs of bounded treewidth.

There exist several classes of graphs with unbounded treewidth for which we can solve
polynomially the problem of the treewidth and the minimum fill-in. Among them there are
the chordal bipartite graphs [19, 12], circle and circular-arc graphs [28, 23], AT-free graphs
with polynomial number of minimal separators [22]. Most of these algorithms use the fact that
these classes of graphs have a polynomial number of minimal separators. It was conjectured in
[17, 18] that the treewidth and the minimum fill-in should be tractable in polynomial time for
all the graphs having a polynomial number of minimal separators. We solve here this ESA’93
conjecture.

The crucial interplay between the minimal separators of a graph and the minimal trian-



gulations was pointed out by Kloks, Kratsch and Miiller in [21], these results were concluded
in Parra and Scheffler [24]. Two minimal separators S and T cross if T intersects two con-
nected components of G\ S, otherwise they are parallel. The result of [24] states that a minimal
triangulation is obtained by considering a maximal set of pairwise parallel separators and by
completing them i.e. by adding all the missing edges inside each separator. However this
characterization gives no algorithmic information about how we should construct a minimal
triangulation in order to minimize the cliquesize or the fill-in.

Trying to solve this later conjecture, we studied in [10, 11] the notion of potential mazimal
clique. A vertex set K is a potential maximal clique if it appears as a maximal clique in
some minimal triangulation. In [10], we characterized a potential maximal clique in terms
of the mazximal sets of neighbor separators, which are the minimal separators contained in it.
We designed an algorithm which takes as input the graph and the maximal sets of neighbor
separators and which computes the treewidth in polynomial time in the size of the input.
For all the classes mentioned above we can list the maximal sets of neighbor separators in
polynomial time, so we unified all the previous algorithms. Actually, the previous algorithms
compute the maximal sets of neighbor separators in an implicit manner. In [11], we gave a new
characterization of the potential maximal cliques avoiding the minimal separators. This allowed
us to design a new algorithm that, given a graph and its potential maximal cliques, computes
the treewidth and the minimum fill-in in polynomial time. Moreover this approach permitted
us to solve the two problems for a new class of graphs, namely the weakly triangulated graphs.
It was probably the last natural class of graphs with polynomial number of minimal separators
for which the two problems remained open.

This paper is devoted to solve the ESA’93 conjecture, that is the treewidth and the minimum
fill-in are polynomially tractable for the whole class of graphs having a polynomial number of
minimal separators. Recall that if we are able to generate all the potential maximal cliques
of any graph in polynomial time in the number of its minimal separators, then the treewidth
and the minimum fill-in are also computable in polynomial time in the number of minimal
separators. We define the notion of active separator for a potential maximal clique which leads
to two results. First, the number of potential maximal cliques is polynomially bounded by
the number of minimal separators. Secondly, we are able to enumerate the potential maximal
cliques in polynomial time in their number. These results reinforce our conviction that the
potential maximal cliques are the pertinent objects to study when dealing with treewidth and
minimum fill-in.

2 Preliminaries

Throughout this paper we consider finite, simple, undirected and connected graphs.

Let G = (V, E) be a graph. We will denote by n and m the number of vertices, respectively
the number of edges of G. For a vertex set V' C V of G, we denote by Ng (V') the neighborhood
of V' in G\V' —so Ng(V') CV\V".

A subset S C V is an a, b-separator for two nonadjacent vertices a,b € V if the removal
of S from the graph separates a and b in different connected components. S is a minimal
a, b-separator if no proper subset of S separates a and b. We say that S is a minimal separator
of G if there are two vertices a and b such that S is a minimal a,b-separator. Notice that a
minimal separator can be strictly included in another one. We denote by Ag the set of all
minimal separators of G.

Let G be a graph and S a minimal separator of G. We note Cg(S) the set of connected
components of G\S. A component C € Ci(S) is a full component associated to S if every vertex
of S is adjacent to some vertex of C, i.e. Ng(C) = S. The following lemmas (see [15] for a
proof) provide different characterizations of a minimal separator:



Lemma 1 A set S of vertices of G is a minimal a,b-separator if and only if a and b are in
different full components of S.

Lemma 2 Let G be a graph and S be an a, b-separator of G. Then S is a minimal a, b-separator
if and only if for any vertex x of S there is a path from a to b that intersects S only in x.

If C € C(S), we say that (S,C) =S UC is a block associated to S. A block (S, C) is called
full if C' is a full component associated to S.

Let now G = (V, E) be a graph and G' = G[V'] an induced subgraph of G. We will compare
the minimal separators of G and G'.

Lemma 3 Let G be a graph and V' C V a vertex set of G. If S is a minimal a,b-separator
of the induced subgraph G' = G[V'], then there is a minimal a,b-separator T of G such that
TNV =S5.

Proof. Let 8" = SU (V\V'). Clearly, S’ is an a,b-separator in G. Let T be any minimal
a, b-separator contained in S’. We have to prove that S C T. Let x be any vertex of S and
suppose that z ¢ T. Since S is a minimal a, b-separator of G', we have a path p joining a and
b in G' that intersects S only in z (see lemma 2). But u is also a path of G, that avoids T,
contradicting the fact that T is an a, b-separator. It follows that S C T. Clearly, TNV’ C S
by construction of T, so TNV' = S. S

The next corollary follows directly from lemma 3.

Corollary 1 Let G = (V,E) be a graph and a be a vertex of G. Consider the graph G' =
G[V\{a}]. Then for any minimal separator S' of G', we have that S or SU{a} is a minimal
separator of G. In particular, |Ag| > |Ag|.

3 Potential maximal cliques and maximal sets of neighbor
separators

The potential mazimal cliqgues are the central object of this paper. We present in this section
some known results about the potential maximal cliques of a graph (see also [10, 11, 29]).

Definition 1 A wvertex set Q of a graph G is called a potential maximal clique if there is a
minimal triangulation H of G such that ) is a mazimal clique of H.

We denote by Ilg the set of potential maximal cliques of the graph G.

A potential maximal clique {2 is strongly related to the minimal separators contained in {2.
In particular, any minimal separator of G is contained in some potential maximal clique of G.
The number |IIg| of potential maximal cliques of G is at least |Ag|/n.

If K is a vertex set of G, we denote by Ag(K) the minimal separators of G included in K.

Definition 2 A set S of minimal separators of a graph G is called maximal set of neighbor
separators if there is a potential mazimal clique Q of G such that S = Ag(Q). We also say that
S borders Q in G.

We proved in [11] that the potential maximal cliques of a graph are sufficient for computing
the treewidth and the minimum fill-in of that graph.

Theorem 1 Given a graph G and its potential mazimal cligues llg, we can compute the
treewidth and the minimum fill-in of G in O(n?|Ag| x |Ilg|) time.



Let now K be a set of vertices of a graph G. We denote by C4 (K),...,C,(K) the connected
components of G\K. We denote by S;(K) the vertices of K adjacent to at least one vertex of
C;(K). When no confusion is possible we will simply speak of C; and S;. If S;(K) = K we
say that C;(K) is a full component associated to K. Finally, we denote by Sg(K) the set of
all S;(K) in the graph G, i.e. S¢(K) is formed by the neighborhoods, in the graph G, of the
connected components of G\ K.

Counsider graph G = (V, E) and a vertex set X C V. We denote by Gx the graph obtained
from G by completing X, i.e. by adding an edge between every pair of non-adjacent vertices of
X. If ¥ ={Xq,...,Xp} is a set of subsets of V, Gx is the graph obtained by completing all
the elements of X

Theorem 2 Let K CV be a set of vertices. K is a potential maximal clique if and only if :
1. G\K has no full components associated to K.
2. Gsg(r)[K] is a clique.

Moreover, if K is a potential mazimal clique, then Sg(K) is the mazimal set of neighbor sepa-
rators bordering K, i.e. Sq(K) = Ag(K).

For example, in figure 1, the vertex sets {b, c,e, g} and {b, d, e} are potential maximal cliques
of the graph of figure 1a and the vertices {z,y, z, ¢} form a potential maximal clique of the graph
of figure 10.

@ (b)

Figure 1: Potential maximal cliques

Remark 1 If K is a potential mazimal clique of G, for any pair of vertices x and y of K either
x and y are adjacent in G or they are connected by a path entirely contained in some C; of
G\K except for © and y. The second case comes from the fact that if x and y are not adjacent
in G they must belong to the same S; to ensure that K becomes a clique after the completion
of Sq(K). When we will refer to this property we will say that x and y are connected via the
connected component C;.

Remark 2 Consider a minimal separator S contained in a potential mazimal clique Q. Let us
compare the connected components of G\S and the connected components of G\Q (see [11] for
the proofs). The set Q\S is contained in a full component Cq associated to S. All the other
connected components of G\S are also connected components of G\Q2. Conversely, a connected
component C of G\Q is either a connected component of G\S (in which case Na(C) C S) or
it is contained in Cq (in which case Ng(C) € S).



Remark 3 Unlike the minimal separators, a potential mazimal cligue ' cannot be strictly
included in another potential maximal clique Q. Indeed, for any proper subset Q' of a potential
mazimal clique Q, the difference Q\Q' is in a full component associated to V.

Theorem 2 leads to a polynomial algorithm that, given a vertex set of a graph G, decides if
K is a potential maximal clique of G.

Corollary 2 Given a vertex set K of a graph G, we can recognize in O(nm) time if K is a
potential maximal cliqgue of G.

Proof. We can compute in linear time the connected components C; of G\K and their neigh-
borhoods S;. We can also verify in linear time that G\ K has no full components associated to
K.

For each x € K, we compute all the vertices y € K that are adjacent to z in G or connected
to x via a C; in linear time (we have to search the neighborhood of x and the connected
components C; with x € S;). So we can verify in O(nm) time if K satisfies the conditions of
theorem 2. o

4 Potential maximal cliques and active separators

Theorem 2 tells us that if Q is a potential maximal clique of a graph G, then Q is a clique in
Gag (o). We will divide the minimal separators of Ag (Q) into two classes: those which create
edges in Ga, (), which are called actives, and the others, which are called inactives. More
precisely:

Definition 3 Let Q be a potential mazimal clique of a graph G and let S C Q be a minimal
separator of G. We say that S is an active separator for 0 if Q is not a clique in the graph
Gac@)\{s}, obtained from G by completing all the minimal separators contained in €2, except
S. Otherwise, S is called inactive for ().

Proposition 1 Let Q be a potential mazimal cligue of G and S C Q a minimal separator,
active for Q. Let (S,Cq) be the block associated to S containing Q and let x,y € Q be two
non-adjacent vertices of Ga,)\(sy. Then Q\S is an minimal x,y-separator in G[CqU{z,y}].

Proof. Remark that the vertices z and y, non-adjacent in Ga (0)\{s}, exist by definition of an
active separator. Moreover, since G (q) is a clique, we must have z,y € S.

Let us prove first that Q\S is a z, y-separator in the graph G' = G[Cq U {z,y}]. Suppose
that « and y are in a same connected component C,, of G'\(Q\S). Let C = Cyy\{z,y}.
Clearly, C C Cq is a connected component of G\). Let T be the neighborhood of C in G.
By theorem 2, T' is a minimal separator of G, contained in 2. By construction of 7', we have
xz,y € T. Notice that T' # S, otherwise S would separate C' and (2, contradicting the fact that
C C Cq (see remark 2). It follows that T is a minimal separator of Ag(?), different from S
and containing r and y. This contradicts the fact that x and y are not adjacent in Ga )\ (s}
We can conclude that Q\S is an x, y-separator of G'.

We prove now that 2\S in a minimal z, y-separator of G'. We will show that, for any vertex
z € Q\S, there is a path u joining = and y in G' and such that p intersects Q\S only in z. By
theorem 2, z and 2 are adjacent in G (q), 50 = and 2 are adjacent in G or they are connected
via a connected component C; of G\2. Notice that C; C Cq: indeed, if C; ¢ Cq, then C; will
be contained in some connected component D of G\S, different from Cq. According to remark
2, we would have Ng(C;) C Ng(D) C S, contradicting z € S;. In both cases we have a path p’
from x to z in G’, that intersects Q\S only in 2.

For the same reasons, z and y are adjacent in G, or there is a connected component C; of
G\Q such that C; C Cq and z,y € S; = Ng(Cj). This gives us a path p from z to y in G,



such that p”" N (Q\S) = {z}. Remark that C; # Cj, otherwise we would have a path from 2
to y in C; U {z,y}, contradicting the fact that Q\S separates z and y in G'. So the paths p'
and p'" are disjoint except for z, and their concatenation is a path p, joining z and y in G' and
intersecting Q\S only in z. We conclude by lemma 2 that Q\S is a minimal separator of G'. ©

By proposition 1, the set 7" = Q\S is a minimal separator of the subgraph of G induced by
Cq U{z,y}. By lemma 3, there is a separator T of G such that 7/ C T and TN Cq = T'. We
deduce:

Theorem 3 Let Q) be a potential mazimal clique and S be a minimal separator, active for ).
Let (S,Cq) be the block associated to S containing Q. There is a minimal separator T of G
such that @ = SU (T N Cq).

It follows easily that the number of potential maximal cliques containing at least one active
separator is polynomially bounded in the number of minimal separators of G. More exactly
number of these potential maximal cliques is bounded by the number of blocks (S, Cq) multi-
plied by the number of minimal separators T, so by n|Ag|? . Clearly, these potential maximal
cliques have a simple structure and can be computed directly from the minimal separators of

the graph.
Nevertheless, a potential maximal clique may not have active separators. For example
in figure 2, the potential maximal clique Q@ = {a,c,b’,d'} contains the minimal separators

{a,V',d'}, {c,b',d'}, {a,c,b'} and {a,c,d'}, but no one of them is active for 2. Let us make a
first observation about the potential maximal cliques containing inactive minimal separators.

o' P

d c

Figure 2: Active and inactive separators

Proposition 2 Let Q be a potential mazimal clique and S C Q a minimal separator which is
inactive for Q. Let Dy, ..., D, be the full components associated to S that do not intersect €.
Then 2 is a potential mazimal clique of the graph G\ UY_, D;.

Proof. Let G' = G\ UY_; D;. The connected components of G'\Q are exactly the connected
components of G\, except for D1,..., Dy, and their neighborhoods in G’ are the same as in
G. Tt follows that the set Sgr () of the neighborhoods of the connected components of G'\§2
is exactly Ag(Q)\{S}. Clearly, G'\Q has no full components associated to . Since S is not
active for Q, we deduce that 2 is a clique in G:,;G, @) So, by theorem 2, ) is a potential maximal

clique of G'. o

5 Removing a vertex

Let G = (V, E) be a graph and a be a vertex of G. We denote by G’ the graph obtained from
G by removing a, i.e. G' = G[V\{a}]. We will show here how to obtain the potential maximal



cliques of G using the minimal separators of G and G’ and the potential maximal cliques of G'.
By corollary 1, we know that G has at least as many minimal separators as G': for any minimal
separator S of G', either S is a minimal separator of G, or S'U {a} is a minimal separator of
G. Tt will follow that the potential maximal cliques of a graph can be computed in polynomial
time in the size of the graph and the number of its minimal separators.

Proposition 3 Let Q be a potential mazimal clique of G such that a € Q. Then Q' = Q\{a}
is either a potential mazimal clique of G' or a minimal separator of G.

Proof. Let Ci,...,Cp be the connected components of G\Q and S; be the neighborhood of
C; in G. We denote as usual by Sz(Q2) the set of all the S;’s. Remark that the connected
components of G'\ (2\{a}) are exactly C4, ..., C), and their neighborhoods in G’ are respectively
Si\{a},...,Sp\{a}. Since Q2 is a clique in G, () (by theorem 2), it follows that Q' = Q\{a}
is a clique in chl @) I G'\' has no full components associated to ', then €' is a potential
maximal clique of G', according to theorem 2. Suppose now that Cj is a full component
associated to Q' in G’. Since C] is not a full component associated to  in G, it follows that
Ng(Cy) = Q. Thus, ' is a minimal separator of G, by theorem 2. o

Lemma 4 Let G be a graph and G be any induced subgraph of G. Consider a potential mazimal
cligue Q of G. Suppose that for any connected component C' of G\G, its neighborhood N¢g(C')
is strictly contained in Q. Then Q is also a potential mazimal clique of G.

Proof. Let C' be any connected component of G\G’ . We denote by V the set of vertices of G.
We want to prove that € is a potential maximal clique of the graph G’ = G[V UC]. Indeed, the
connected components of G'\Q are the connected components of G\Q plus C. The set Sz, (Q)
of their neighborhoods consists in {Ng(C)} US5(Q). Since Ng(C) is strictly contained in €,
é'\ﬂ has no full components associated to . Obviously 2 is a clique in ég@r(ﬂ)’ so ) is a

potential maximal clique of G. R
The result follows by an easy induction on the number of connected components of G\G. ¢

Proposition 4 Let Q be a potential maximal clique of G such that a € Q. Let C, be the
connected component of G\Q containing a and let S be the minimal separator of Q such that
S =N(C,).

If Q is not a potential mazimal clique of G' = G[V\{a}], then S is active for Q. Moreover,
S is not a minimal separator of G'.

Proof. Suppose that S is not active for ). Let D,..., D, the full components associated to S
in G that do not intersect 2. One of them, say D1, is C,. Let G" be the graph obtained from G
by removing the vertices of Dy U...UD,. According to proposition 2, ) is a potential maximal
clique of G"”. Notice that G" is also an induced graph of G’. Any connected component C' of
G'\G" is contained in some D;, and its neighborhood in G' is included in S = Ng(D;). Thus,
N¢i (C) is strictly contained in Q. It follows from lemma 4 that €2 is a potential maximal clique
of G', contradicting our hypothesis. We deduce that, in the graph G, S is an active separator
for Q.

It remains to show that S is not a minimal separator of G’. We prove that if S is a minimal
separator of G', then 2 would be a potential maximal clique of G'. Let C4,....Cp,Cy be the
connected components of G\Q2 and let Si,...,S,,S be their neighborhoods in G. Then the
connected components of G'\Q are C1,...,Cp,C1,...,Cy, with C} C C,. Their neighborhoods
in G' are respectively Si,...,8,,51,...,S;, with §{ € S. In particular, G'\Q has no full
component associated to Q and Sg'(2) contains every element of Si(2), except possibly S.
Suppose that S is a minimal separator of G’ and let D be a full component associated to S in
G', different from Cq. By remark 2, D is also a connected component of G'\(2, so S = Ng (D)
is an element of S/ (€2). Therefore, S¢(€2) C S (€2), so Q2 is a clique in the graph G, (2).



We can conclude by theorem 2 that €2 is a potential maximal clique of G’, contradicting our
choice of €. It follows that S is not a minimal separator of G'. o

The following theorem, that comes directly from propositions 3 and 4 and theorem 3, shows
us how to obtain the potential maximal cliques of G from the potential maximal cliques of G’
and the minimal separators of G.

Theorem 4 Let 2 be a potential mazimal cliqgue of G and let G' = G\{a}. Then one of the
following cases holds:

1. Q@ =Q'U{a}, where Q' is a potential mazimal clique of G'.
Q=Q, where Q' is a potential mazimal clique of G'.

Q= SU{a}, where S is a minimal separator of G.

o

Q=SU(CNT), where S is a minimal separator of G, C is a connected component of
G\S and T is a minimal separator of G. Moreover, S does not contain a and S is not a
minimal separator of G'.

Corollary 3 Let G be a graph, a be a vertex of G and G' = G\{a}. The number |Ilg| of
potential mazimal cliques of G is polynomially bounded in the number || of potential mazimal
cliqgues of G', the number |A¢g| of minimal separators of G and the size n of G.

More precisely, |Ilg| < [llg/| + n(|Ac| — |Aar )| Ag| + [Ag].

Proof. We will count the potential maximal cliques of the graph G corresponding to each case
of theorem 4.

Notice that for a potential maximal clique €' of G', only one of ' and Q' U {a} can be a
potential maximal clique of GG: indeed, a potential maximal clique of a graph cannot be strictly
included in another one (see remark 3). So the number of potential maximal cliques of type 1
and 2 of G is bounded by [IIg/|.

The number of potential maximal cliques of type 3 is clearly bounded by |Ag|.

Let us count now the number of potential maximal cliques of type 4, that can be written as
SU(T'NnC). By lemma 3, for any minimal separator S’ of G', we have that S’ or S’ U {a} is a
minimal separator of G. Clearly, the number of minimal separators of G of type S’ or S’ U {a}
with S’ € Ag is at least |Ags|. Our minimal separator S does not contain a and is not a
minimal separator of G', so S is not of type S" or S’ U {a}, with S’ € Ags. It follows that the
number of minimal separators S that we can choose is at most |Ag| —|Ags|. For each minimal
separator S, we have at most n connected components C' of G\ S and at most |Ag| separators
T, so the number of potential maximal cliques of type 4 is at most n(|Ag| — |[Ag|)|Ag|. ¢

Let now aj,as,...,a, be an arbitrary ordering of the vertices of G. We denote by G; the
graph G[{ai,...,a;}], so G,, = G and G, has a single vertex. By corollary 3 we have that
for any i,1 < i < n, Ug,,| < |Hg,| + n(|Ag.;| — |[Ac;|)|AGi4 | + |Ag,,|- Notice that
|Ac;| < |Ag,,, |, in particular each graph G; has at most |Ag| minimal separators. Clearly,
the graph GG; has a unique potential maximal clique. It follows directly that the graph G has
at most n|Ag|? + n|Ag| + 1 potential maximal cliques.

Proposition 5 The number of the potential mazimal cliques of a graph is polynomially bounded
in the number of its minimal separators and in the size of the graph.
More precisely, a graph G has at most n|Ag|? + n|Ag| + 1 potential mazimal cliques.

We give now an algorithm computing the potential maximal cliques of a graph. We suppose
that we have a function IS _PMC(Q, G), that returns TRU E if © is a potential maximal clique
of G, FALSE otherwise.



function ONE MORE VERTEX
Input: the graphs G, G' and a vertex a such that G' = G\{a};
the potential maximal cliques IIg of G', the minimal separators Agr, Ag of G’ and G.
Output: the potential maximal cliques Il of G.
begin
HG — (Z)
for each p.m.c. O € g
if IS_PMC(Y,G) then
IIg « Ilg U {Q'}
else
if IS PMC(Q' U{a},G) then
g + Mg U {QU{a}}
end_if
end_if
end_for
for each minimal separator S € Ag
if IS PMC(SU{a},G) then
Mg «+ HgU{SU{a}}
end_if
if (a ¢ S and S ¢ Agr) then
for each T € A¢g
for each full component C associated to S in G
if IS PMC(SU(TNC),G) then
g« Mgu{SU(TNC)}

end_if
end_for
end_for
end_if
end_for
return Il

end

Table 1: Computing the p.m.c.’s of G from the p.m.c.’s of G' = G\{a}

The function ONE _MORE _V ERTEX of table 1 computes the potential maximal cliques
of a graph G from the potential maximal cliques of a graph G’ = G\{a}. This function is based
on theorem 4. The main program, presented in table 2, successively computes the potential
maximal cliques of the graphs G; = G[{a1,...a;}]. Notice that we can compute the vertex
ordering such that each of the graphs G; is connected.

Theorem 5 The potential mazimal cliques of a graph can be listed in polynomial time in its
size and the number of its minimal separators.
More exactly, the potential mazimal cliques of a graph are computable in O(n*m|Ag|?) time.

Proof. Let us analyze the complexity of the algorithm. The sets of vertex sets, like Il and Ag,
will be represented by trees, in such manner that the adjunction of a new element and testing
that a vertex set belongs to our set will be done in linear time (see for example [20]). We also
know by corollary 2 that a call of the function I.S_PMC takes O(nm) time.

We start with the cost of one execution of the function ONE MORE VERTEX.
The cost of the first for loop is at most |II;|nm. But we can strongly reduce this complexity,
using a different test for verifying that Q', respectively Q' U {a} are potential maximal cliques



main program
Input: a graph G
Output: the potential maximal cliques IIg of G
begin
let {a1,...,an} be the vertices of G
g, < {{a1}}
AGl «0
fori=1,n—-1
compute Ag,,,
Hg,., =ONE_MORE_VERTEX(G;,Giy1,1la,;,Aq;, Ag
end_for
g =g,
end

i+1)

Table 2: Algorithm computing the potential maximal cliques

of G. Suppose that we want to check if a potential maximal clique Q' of G’ is also a potential
maximal clique of G. Any connected component C’ of G'\Q' is contained in some connected
component C of G\ and we have Ng: (C) C Ng(C). Since ' is a clique in the graph G s, (o),
V' is a clique in the graph Gs, (o). Therefore, all we have to check is that G\Q' has no full
connected components associated to ', which can be done in linear time. Suppose now that €'
is a potential maximal clique of G’ and let us verify if Q = Q'U{a} is a potential maximal clique
of G. Clearly, the connected components of G\ are the same as the connected components
of G'\Q¥'. The neighborhood N¢(C) of a connected component of G\ is either Ng:(C) or
Neg (C) U {a}. Tt follows that G\ has no full components associated to © and that any two
vertices z,y € ' are adjacent in G, (q)- It remains to check that, in the graph Gs (), a is
adjacent to any vertex x € '. This test can be done in linear time: by searching Ng(a) and
the connected components C; of G\Q with a € S;, we compute the vertices of )’ adjacent to a
in G or connected to a via C;. We conclude that the cost of the first for loop is O(m|lg|),
where Il = O(n|Ag|?).

In the second for loop, computing the potential maximal cliques of type 3, i.e. of type
SU{a}, costs O(nm|Ag]|) time. This is due to the cost of the Ag calls to function IS PMC.
Remark that here we could also test in linear time if Q = SU {a} is a potential maximal clique
of G. Since S C Ng(C) for some connected component of G\ (see proof of proposition 3), we
only have to test that G\ has no full components associated to © and that a is adjacent in
Gss (o) to every z € S. Anyway, this will not change the global complexity of the algorithm.

The call to function IS _PMC in the inner loop is done n|Ag|(|]Ag|—|Agr|) times. Indeed,
we have shown in the proof of corollary 3 that the number of minimal separators S € Ag such
that @ ¢ S and S € Ag is at most |Ag| — |Agr|. The number of iteration of the second and
third loop are clearly |Ag| and respectively n. So the cost of all the calls to function IS PMC
will be O(n’>m|Ag|(|Ac| — |Ag|)-

So one execution of the the function ONE_MORE _V ERTEX takes at most O(nm|Ag|?+
n’m|Ag|(|Ag| — |Agr|) time.

We can compute now the complexity of the main program. Computing the minimal sep-
arators of a graph G can be done in O(n3|Ag|) time, using the algorithm of Berry, Bordat
and Cogis [4]. If we do this calculus one time for each graph G;, this would take O(n*|Ag|).
But notice that each graph G; is an induced subgraph of G. Consequently, for each minimal
separator S; of G;, there is a minimal separator S of G such that S; = SN {ay,...a1}. We
can compute first the minimal separators of the input graph G, in O(n3|Ag|) time. For com-
puting the minimal separators of a graph G;, we will take each S € Ag and we will verify if
S; =SnN{ay,...a;} is a minimal separator of G;. A verification of type S; € Ag, can be done
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in linear time: it is sufficient to test that G;\S; has at least two full components associated to
S; (see lemma 1). Therefore, computing the minimal separators of all the graphs G; will not
exceed O(n3|Ag|) steps.

Remember that the i-th call of the function ONE _MORE VERTEX costs at most
O(nm|Ag,,, | +n°m|Aq, ., |(|Aci,. | — |Ac,|) time. Using the fact that for all 4, |Ag,| < |Agl,
it follows that the n calls of the function ONE_MORE_VERTEX will take O(n?*m|Ag|?)
steps.

We conclude that the global complexity of the algorithm is O(n*m|Ag|?). o

We deduce directly from theorem 1, proposition 5 and theorem 5:

Theorem 6 The treewidth and the minimum fill-in of a graph can be computed in polynomial
time in the size of the graph and the number of its minimal separators. The complexity of the
algorithm is O(n3|Ag|® + n’m|Ag|?).

6 Conclusion

The notion of potential maximal clique seems to be very useful for the study of the treewidth and
the minimum fill-in problems. We proved in [11] that the potential maximal cliques are sufficient
for computing the treewidth and the minimum fill-in of a graph. In this paper, we enumerate
the potential maximal cliques in polynomial time in the number of minimum separators of the
input graph. In particular, this gives a polynomial algorithm computing the treewidth and the
minimum fill-in for all the graphs with polynomial number of minimal separators.

A class of graphs may have an exponential number of minimal separators and consequently
an exponential number of potential maximal cliques. Notice that there is no such class of
graphs for which the treewidth problem has been solved in polynomial time, except the graphs
of bounded treewidth. For example, the problem is still open for the planar graphs. We think
that a polynomial number of well-chosen potential maximal cliques could permit to compute
or at least approximate the treewidth for classes of graphs with “many” minimal separators.
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