Skip to main content

The Complexity of Planarity Testing

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1770))

Abstract

We clarify the computational complexity of planarity testing, by showing that planarity testing is hard for L, and lies in SL. This nearly settles the question, since it is widely conjectured that L = SL [25]. The upper bound of SL matches the lower bound of L in the context of (nonuniform) circuit complexity, since L/poly is equal to SL/poly.

Similarly, we show that a planar embedding, when one exists, can be found in FL SL.

Previously, these problems were known to reside in the complexity class AC 1, via a O(log n) time CRCW PRAM algorithm [22], although planarity checking for degree-three graphs had been shown to be in SL [23, 20].

Supported in part by NSF grant CCR-9734918.

Part of this work was done when this author was supported by the NSF grant CCR-9734918 on a visit to Rutgers University during summer 1999.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovász, and C. Rackoff. Random walks, universal traversal sequences, and the complexity of maze problems. In Proceedings of the 20th Annual Symposium on Foundations of Computer Science, pages 218–223. IEEE, 1979.

    Google Scholar 

  2. C. Àlvarez and R. Greenlaw. A compendium of problems complete for symmetric logarithmic space. Technical Report ECCC-TR96-039, Electronic Colloquium on Computational Complexity, 1996.

    Google Scholar 

  3. R. Armoni, A. Ta-Shma, A. Wigderson, and S. Zhou. \( SL \subseteq L^{\tfrac{4} {3}} \). In Proceedings of the 29th Annual Symposium on Theory of Computing, pages 230–239. ACM, 1997.

    Google Scholar 

  4. K. Booth and G. Lueker. Testing for the consecutive ones property, interval graphs, and graph planarity using pq-tree algorithms. Journal of Computer and System Sciences, 13:335–379, 1976.

    MATH  MathSciNet  Google Scholar 

  5. A. Chandra, L. Stockmeyer, and U. Vishkin. Constant depth reducibility. SIAM Journal on Computing, 13(2):423–439, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. A. Cook and P. McKenzie. Problems complete for L. Journal of Algorithms, 8:385–394, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  7. K. Etessami. Counting quantifiers, successor relations, and logarithmic space. Journal of Computer and System Sciences, 54(3):400–411, Jun 1997.

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Even and R. Tarjan. Computing an st-numbering. Theoretical Computer Science, 2:339–344, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Gál and A. Wigderson. Boolean vs. arithmetic complexity classes: randomized reductions. Random Structures and Algorithms, 9:99–111, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Hopcroft and R. Tarjan. Efficient planarity testing. Journal of the ACM, 21:549–568, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  11. N. Immerman. Nondeterministic space is closed under complementation. SIAM Journal on Computing, 17(5):935–938, Oct 1988.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. Ja’Ja’ and J. Simon. Parallel algorithms in graph theory: Planarity testing. SIAM Journal on Computing, 11:314–328, 1982.

    Article  MathSciNet  Google Scholar 

  13. J. Ja’Ja’ and J. Simon. Space effcient algorithms for some graph-theoretic problems. Acta Informatica, 17:411–423, 1982.

    Article  MathSciNet  Google Scholar 

  14. M. Karchmer and A. Wigderson. On span programs. In Proceedings of the 8th Conference on Structure in Complexity Theory, pages 102–111. IEEE Computer Society Press, 1993.

    Google Scholar 

  15. R. M. Karp and R. J. Lipton. Turing machines that take advice. L’ Ensignement Mathématique, 28:191–210, 1982.

    MATH  MathSciNet  Google Scholar 

  16. A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing in graphs. In Theory of Graphs: International Symposium, pages 215–232, New York, 1967. Gordon and Breach.

    Google Scholar 

  17. M. Mahajan, P. R. Subramanya, and V. Vinay. A combinatorial algorithm for Pfaffians. In Proceedings of the Fifth Annual International Computing and Combinatorics Conference COCOON, LNCS Volume 1627, pages 134–143. Springer-Verlag, 1999. DIMACS Technical Report 99-39.

    Google Scholar 

  18. Y. Maon, B. Schieber, and U. Vishkin. Parallel ear decomposition search (EDS) and st-numbering in graphs. Theoretical Computer Science, 47:277–296, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  19. N. Nisan, E. Szemeredi, and A. Wigderson. Undirected connectivity in O(log1.5 n) space. In Proceedings of the 33rd Annual Smposium on Foundations of Computer Science, pages 24–29. IEEE Computer Society Press, 1992.

    Google Scholar 

  20. N. Nisan and A. Ta-Shma. Symmetric Logspace is closed under complement. Chicago Journal of Theoretical Computer Science, 1995.

    Google Scholar 

  21. V. Ramachandran. Parallel open ear decomposition with applications to graph biconnectivity and triconnectivity. In J. Reif, editor, Synthesis of Parallel Algorithms. Morgan Kaumann, 1993.

    Google Scholar 

  22. V. Ramachandran and J. Reif. Planarity testing in parallel. Journal of Computer and System Sciences, 49:517–561, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  23. J. Reif. Symmetric complementation. Journal of the ACM, 31(2):401–421, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  24. K. Reinhardt and E. Allender. Making nondeterminism unambiguous. In 38 th IEEE Symposium on Foundations of Computer Science (FOCS), pages 244–253, 1997. to appear in SIAM J. Comput.

    Google Scholar 

  25. M. Saks. Randomization and derandomization in space-bounded computation. In Proceedings of the 11th Annual Conference on Computational Complexity, pages 128–149. IEEE Computer Society, 1996.

    Google Scholar 

  26. W. J. Savitch. Relationships between nondeterministic and deterministic tape complexities. Journal of Computer and System Sciences, 4(2):177–192, April 1970.

    MATH  MathSciNet  Google Scholar 

  27. R. Szelepcsényi. The method of forced enumeration for nondeterministic automata. Acta Informatica, 26(3):279–284, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  28. W. T. Tutte. Toward a theory of crossing numbers. Journal of Combinatorial Theory, 8:45–53, 1970.

    Article  MATH  MathSciNet  Google Scholar 

  29. H. Whitney. Non-separable and planar graphs. Transactions of the American Mathematical Society, 34:339–362, 1932.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Allender, E., Mahajan, M. (2000). The Complexity of Planarity Testing. In: Reichel, H., Tison, S. (eds) STACS 2000. STACS 2000. Lecture Notes in Computer Science, vol 1770. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46541-3_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-46541-3_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67141-1

  • Online ISBN: 978-3-540-46541-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics