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Abstract. Fast browsing and retrieval of geographically referenced in-
formation requires the allocation of data on different storage devices for
concurrent retrieval. By dividing the two-dimensional space into tiles, a
system can allow users to specify regions of interest using a query rectan-
gle and then retrieving information related to tiles covered by the query.
Suppose that there are m 1/O devices. A tile is labeled by 7 if the data
corresponding to this area is stored in the ith I/O device. A labeling is
efficient if the difference of the numbers of occurrences of distinct labels
in any given rectangle is small. Except for some simple cases this dis-
crepancy exceeds 1. In the present paper constructions are given to make

~this discrepancy small relative to m. The constructions use latin squares
and a lower bound is given, which shows that the constructions are best
possible under certain conditions.

1 Introduction

Todays information systems often use the two dimensional screen as a tool for
retrieval of detailed data that is associated with a specific part of the screen. A
standard example is a geographic database, where first a low resolution map is
displayed on the screen and then the user specifies a part of the map that is to be
displayed in higher resolution. Another application is when pictures of famous
historical monuments or sightseeing spots of an area are to be displayed. Efficient
support of such queries is quite important for image databases in particular, and
for browsing geographically referenced information in general. In the Alexandria
Digital Library project [7] a large satellite image is divided into tiles and each
tile is decomposed using wavelet decomposition [8]. A wavelet decomposition of
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an image results in a lower resolution image of the original one together with
higher order coefficients that can be used to retrieve higher resolution versions of
the same image. Similar approaches are common to other systems for browsing
large image databases [4,5]. A user would usually browse the lower resolution
images fast and then specify areas to be displayed in higher resolution. This
requires the retrieval of the higher resolution components for the various tiles
that overlap with the specific region. For a more detailed review of the current
state of art the reader is referred to [1].

In the present paper the model introduced in [1] is analised further. It is
assumed that data is associated with the tiles of a two-dimensional grid. The data
corresponding to individual tiles is usually large, so it is preferable to store them
on parallel I/O devices in such a way, that for a given query, retrieval from these
parallel devices can occur concurrently. The ideal situation, when information
related to each individual tile could be stored on a distinct I/O device and
hence data for any query could be retreived concurrently is not realizable in
general, because the number of tiles is usually much larger than the number of
I/O devices available. Thus, the only hope is to "spread out” data as evenly as
possible. In the following, a measure of optimality of data allocation is defined as
smallest possible discrepancy in the number of access requests for different 1/0O
devices for any rectangular set of tiles. Upper bounds for this discrepancy are
derived that give simple, but efficient allocation methods. These upper bounds
are shown to be best assymptotycally for certain types of data allocation. This
could be viewed as a generalization of strict optimality of [1].

2 The General Model

Let R be an ny x ng array, whose elements (i,j) where 0 <:<mn; —1and 0 <
j < ng —1 are called tiles. Each tile is supposed to contain detailed information
on the area it covers. For example, if the array is a low resolution image of a
geographic region, the higher resolution wavelet coefficients may be associated
with the individual tiles. Given two tiles (i1, 71) and (i2, j2), where i; < i5 and
j1 < ja, two dimensional query is defined by

R[(41,41), (i2, 52)] = {(4,5): 41 £ 4 < i3 and §1 < 5 < 5a).

This represents a rectangle, whose opposite corners are (i1, j1) and (is, j2) and
area is (ip —41+41) (jo —j1+1), the number of tiles contained in the rectangle. To
each tile (i,7) in R is assigned a number f(i,7) from the set {1,2,...,m}. The
number f(i, j) refers to one of m available I/O devices on which the information
related to the given tile is stored. f is called an m-assignment for R. The degree
of k (1 < k < m) with respect to rectangle R[(i1, j1), (i2, j2)] is

dh,jl,iz,jz(k) = H(Zaj) € R[(ilajl): (7:2,_72)]3 f(l,]) = k}',

that is the number of ocurrences of k as assignments to tiles in the rectangle.
An m-assignment is called d-discrepancy assignment iff for any given rectangle



Rl(i1,71), (42, 52)]

5(i13j13 iQ’jQ) = mkax dil,jhiz,jz (k) - mkin dil,jl)i%jz (k) < d

holds. 6(i1, J1,142, j2) is called the discrepancy of the rectangle R|[(41, 71), (i2, j2)]-
Clearly, d-discrepancy m-assignments with small d are sought for efficient re-
trieval of data using as many I/O devices concurrently, as possible. The opti-
mality d(m) of m is the minimum d, such that a d-discrepancy m-assignment
exists for arbitrary ny and n,. 1-discrepancy m-assignments were called strictly
optimal in [1] and the following theorem was proved.

Theorem 2.1 (Abdel-Ghaffar,El1 Abbadi’97). A 1-discrepancy m-assign-
ment exists for an nq X ny array R iff one of the following conditions holds:

= min{nl,ng} = 2,

—me{1,2,3,5},

—m>ning — 2,

—m=mnyng —4 and min{ni,ny} =3,

—m =8 and n1 = ng = 4.

Corollary 2.1. d(m) > 2 if m & {1,2,3,5}.

Theorem 2.1 shows that strict optimality can be achieved only in very restricted
cases, hence it is natural to ask, how good an assignment can be in general, i.e.,
good upper bounds for d(m) are of interest. In the rest of the paper d-discrepancy
assignments are given, where d is of order of magnitude logm It is shown to be
best possible apart from a multiplicative constant, if the assignment is of latin
square type.

Because d(m) is defined as the lowest discrepancy that can be achieved for
arbitrary n; and ns, we will consider m assignments for an co x oo array, like
an infinite checkerboard covering the plane. In other words, an m-assignment is
amap f: ZZ x ZZ — {1,2,...,m}.

The proof of Theorem 2.1 and most of the previous results use modular
assignments, i.e. maps of type f(¢,7) = ai+ 5 mod m. Our methods are
different: good assignments are constructed for pm provided good ones exist for
some m via blow up technique. This results in d(m) = O(logm) for m = p*.
Then using special transversals in latin squares the construction is extended for
all values of m.

3 The Blow Up

The following construction is crucial in the proofs. Let M be an m-assignment,
i.e., an oo X oo array, whose rows and columns are indexed by ZZ. Furthermore,
let A(p) be an oo x p array, whose rows are indexed by ZZ and each row is a per-
mutation of {1,2,...,p}. The blow up A(pM) of M by A(p) is defined as follows.
In each column of M the i entries are replaced by i x rows of A(p), i.e.,each1x1
entry ¢ becomes a 1 x p block, a permutation of {(z,1), (¢,2),...,(¢,p)}. Each ¢



entry of the given column is mapped this way to a row of A(p), different entries
to different rows, and consecutive entries to consecutive rows. For example, if

123 456...p

A(p)_456...p1 93

then the substitution of the 1 x 1 blocks of i-entries are as follows (* denotes
entries different from 1)

il——) (8, 1) 05, 2) « o 12, B

i (i,4) (5,5) .- (4,3)

This substitution is performed for each different entries i (1 <i < m), indepen-
dently of each other, thus replacing each column of M with p columns, whose
entries are from {1,2,...,m} x {1,2,...p}.

Let us recall that the discrepancy of the (possibly infinite) array M, §(M) is
defined as the supremum of §(M’) for finite subrectangles M’ of M.

Theorem 3.1. Let M be an co x oo m-assignment array of discrepancy 6(M).

Suppose that A(p) is a co X p array whose rows are permutations of {1,2;:. 14, p}
of discrepancy §(A(p)). Then

0(A(pM)) < 6(M) + 6 6(A(p)).

Proof (of Theorem 3.1). Consider a rectangle R in A(pM). It can be decomposed
into three parts A, B and C, where B consists of complete blown up columns, A
is the "left chunk”, and C is the "right chunk”, i.e, they consist of only a part
of a blow up of one column, respectively, see Figure 1. Let A’, B’ and C’ denote
corresponding entries of M. Notice, that A’ and C’ are single columns. Let # x

denote the number of a-entries in the block X of an array. Then the following
are immediate facts.

(1) [#ai — Fagl, |[#5i— #5174l |#ci—H#cj| < 5(M)

() [#ai+ #pi—H#ad—#pl, |#1+H#Hcoi— #5J — #erj| < 5(M)
Ell ) |#ari+#pi+ H#Hei— Haj—H#55 —H#od| < 5(M)

(

i
iv) #pii=#p(i,k) for k=1,2,...,p

V) |#aBc(i,k) — #aBc(, )| < |[#apc(i k) — #apc(5,1)| + |[#aBc(,1) —
#aBc(d,1)]



<p :p =p =p <p

Now

(vi)|[#aBc(i, k) — #aBc(i,1)] < |#a40G, k) — #a4(, D]+ |#80, k) — #B(4,1)| +
[#c (i, k) — #c(i,1)] < 6(A(p)) +0+ 6(A(p))

by definition of §(A(p)) and by (iv). Also, |#aBc (%, ) —#HaBc (4, )| < |#ac(i,l)—
(

#ac(4, V)| + |#pB:1 — #p5J| by (iv). Assume A has a columns (0 < a < p) and C
has ¢ columns (0 < ¢ < p). Then

i~ 3(AD) S #ali D) < % Hai = S(A))

is obtained using the fact that the expected number of (¢,1)’s in A is % o
size of the array = “—ﬁf'—"'—i. Thus,

(ki i) ok }59 (#cii — #crj) — 48(A(p)) <
< #Hac(i,l) — #4043, 1) <
< g (#ari — Ha05)+ 5 (#ori — #crd) + 45(A(p))

a
by

Again, using (iv) the following is obtained.

(vii) & (#ari — Fard) + 5 (FFori — #c0d) + (#pi — #8:7) — 45(A(p))
< #aBc(i,l) — #apc (4, 1).

If #40i —#45 > 0 and #cii — #crj > 0 then from (vil) (#p1— #BJ) —
46(A(p)) < #aBc(i,l) — #apc(4, 1) follows, which in turn, using (i) implies
that

—§(M) — 46(A(p)) < #apc(i,l) — #aBc (4, 1).



FOI' #Al’i—#Arj < 0 and #Cfi—#cfj < O we get #A’i_#A’j S % (#Ati — #A’j)
and #cit — #corj < % (#c1t — #c+j) so inequality (vi) becomes #4/pcri —
ftarpicj —40(A(p)) < #aBc(i,l) — #4Bc (7, 1), which again results in

—0(M) — 406(A(p)) < #aBc(i,1) — #aBc(4,1)

using (i). By similar arguments for the remaining two cases using A’B’ or B'C",
respectively,

(viil) —8(M) — 46(A(p)) < #aBo(isl) — #aBc(4,1) < 6(M) + 45(A(p))

is obtained. Combining (v), (vi), and (viii) we deduce

[#aBc(i, k) — #apc (4, 1) < (M) +66(A(p))

which proves the result. O

Corollary 3.1. If the prime factorization of m is m = p7* p§? ...p* then

k
d(m) <Y 6e;d(A(ps)).

i=1

In particular, for m = 28 d(m) = O(logm).

Theorem 3.1 suggests finding A(p) arrays for all prime p of low discrepancy.
Clearly, for small p one can do that. For arbitrary p the modular assignment
f(i,5) = si+j mod p where s = [,/p] gives §(A(p)) = O(\/p) (To be strict, we
should replace symbol 0 with p in this case). We only sketch the simple proof of
this observation, because in the next section a better upper bound is proved by
a different method.

Let A(p) given by the above f. Because s and p are relative primes, each
consecutive p entries in a column are permutations of {0,1,...,p — 1}. Thus,
calculating the discrepancy it is enough to consider only rectangles with at most
p rows. A(p) is tiled with ”"L” shaped tiles (see Figure 2)

5° p—1
82 —g8®—g+182—54+9 ... —1

B s+1 s+2 ...28—1
0 1 D Joe Be=1

Each such tile contains every different entry exactly once. A rectangle of at most
p rows cuts O(,/p) such tiles, each cut tile adds at most one to the discrepancy
of the rectangle.

This construction and Corollary 3.1 gives d(m) = O(y/m) for all m.
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Figure 2.

4 Latin Square Type Assignments

In the previous section a construction was given that allows ” multiplication”, i.e.
if good assignments for m and p are given, then a good one can be generated for
pm. In this section we show how to ”add”. To this end, we consider assignments
of latin square type. Let us recall that a latin square is an m X m array consisting
of m different symbols, such that each symbol occurs in each row and column
exactly once. An m-assignment is called latin square type, if

[, 5) = fi+m,4) = f(i,5 +m) *)

and the array M = [f(z, j)] i=1,2,..,m forms a latin square. In this case M is

called the generator of the asmgnment The discrepancy of such an assignment,
denoted by §(M), is clearly attained by a rectangle whose number of rows and
columns, respectively, is not larger than m.

A transversal of an m x m latin square M = [f(4, j)] =12,...m IS a set of

pairwise distinct entries {f(i1,71), f(¢2,792), -« .y f (4m, Im)} such that in each row
and column there is exactly one of them. In other words, {i1,%2,...,%m} and
{j1,72y.-.,Jm} are both permutations of {1,2,...,m}.

The discrepancy of an entry in a rectangle R of an m-assignment is the
maximum deviation of the number of occurrences of that entry in any sub-
rectangle of R from the expected value, that is from -;L—th of the area of the



subrectangle. That is, the discrepancy of entry k in subrectangle R[(a, b), (c, d)]
is | (c — a)(d — b) — dgp,c,a(k)|. Clearly, an m-assignment is of low discrepan-
cy iff each entry is of low discrepancy in every rectangle. The discrepancy of a
transversal in a latin square defined similarly, namely the maximum deviation
of the number of entries (positions) of the transversal in a subregtangle of the
latin square from the ;{;th of the area of the subrectangle. This is extended for
the m-assignment generated by the latin square by extending the transversal via

(*). The next definition allows formulating a strong enough induction hypotheses
that can be carried over.

Definition 4.1. Number m is said to have property O if there exists a m x m
latin square M that generates an c log m discrepancy m-assignment, such that M
has a transversal of discrepancy ¢ logm, where ¢ and ¢; are absolute constants.

Theorem 4.1. If m has property O, then so do 3m, 3m + 1, 3m + 2, as well.

Proof (of Theorem 4.1). The idea of the proof is as follows. Let M be the m x m
latin square showing that m has property O. First, M is blown up to a 3m x 3m
latin square B by Theorem 3.1. Then using a transversal of M, three new ones
of B are constructed. B is extended to a (3m 4+ 1) x (3m + 1) latin square C
by putting symbol 3m + 1 to the positions of one of the transversals and to
entry (3m + 1,3m + 1), while the original entries of the transversal are placed
in column and row 3m + 1, respectively. Using that C has two transversals left,
one can extend it with one more column and row, and preserve one transversal
to carry over the induction.

Let A(3) be the oo x 3 matrix generated by the latin square

L:

b W
W~ o
Ll IV

Then 6(A(3M)) < 6(M)+6, by Theorem 3.1. Also, it is generated by the 3mx3m
latin square

[123] x M
B=| [B12]xM
231 x M
L has three transversals:
L A H
¥ e & [ &
R i S

the circle, the triangle and the square transversals. The product of any of these
and a transversal of M yields a transversal for B that are also called circle,
triangle and square transversals, respectively.

In order to prove the statement for 3m we need to show that any of these
product transversals has low discrepancy. Consider a subrectangle R of the 3m-
assignment generated by B. We may assume without loss of generality, that R



has at most 3m columns. R can be decomposed in the same way as in the proof
of Theorem 3.1 into 3 parts: R = SUT UV, where T consists of the fully blown
up parts, while S and V consist of 1 or 2 extra columns on the left-hand side and
right-hand side, respectively. Because T is a fully blown up part, the product
transversal has the same number of entries in 7', as the transversal of M has in
the subrectangle, which is blown up to T. That is, the density of the product
transversal in 7' is just 1/3rd of that of the original, which is needed exactly.
The parts S and V add at most 4 to the discrepancy of the product tranversal,
so it has O(log 3m) discrepancy.

Now, from B a (3m + 1) x (3m + 1) latin square C' is constructed as follows.
Take the square transversal of B. For each entry ¢ of it at position (%, ) we replace
it by 3m + 1 and place t’s in positions (3m + 1, j) and (z,3m + 1). Furthermore,
let the (3m + 1,3m + 1) entry of C be 3m + 1.

The 3m+1-assignment generated by C has discrepancy O(log(3m+1)), since
each entry has low discrepancy. In order to obtain a transversal of C use the
triangle (or circle) transversal of B and add the 3m + 1 entry in lower right (i.e.
in position (3m + 1,3m + 1)).

We would like to repeat this construction to go from 3m + 1 to 3m + 2 by
using a transversal of C. However, to find a transversal of the resulting latin
square D, such a transversal of C is needed that does not include the lower right

entry. To this end, let us consider an entry i of the low discrepancy transversal
of M. After the blow up, this becomes

(3,1) (,2) (4,3)
G,3) G,1) (,2)

,2) (i,3) (1)

in B. It is transformed further in C to

(,1)  (52) 3m+1 ... (4,3)
_(_1_3_1 3m2+ 1 (z',zz) o (z’,zz)
3m5+ 1 (z',:3) (i,:l) >, (i,:2)
(_zi) (z',:1) (i,:3) 3_m_—j—__1_

Here the single underlined entries are from the triangle transversal. Instead of
them, take the doubly underlined entries from this part of C' together with the
rest of the triangle transversal to obtain (3m + 2) x (3m + 2) latin square D in
the same way as C' was generated from B. This new transversal is also of low



discrepancy, because it is a slight perturbation of the triangle transversal, which
is of low discrepancy. Hence, D generates a O(log(3m + 2)) discrepancy 3m + 2-
assignment. The only thing left to finish the proof is to find a good transversal
of D. Now, in D we have

{4 1) (4,2) 3m+2 ... (4,3) 3m+1
(1,3) 3m+1 (4,2) ... 3m+2 (31)
Iml Im+2 1) . (§3) (2,3)
Im+2 (i,1) (,3) ... 3m+1 (1,2)
(4,2) (¢,3) 3m+1 ... (i,1) 3m+2
The underlined entries and the rest of the triangle transversal from the rest of
B forms a low discrepancy transversal of D. O

Corollary 4.1.
d(m) = O(log m)
for all m > 0. O

5 A Lower Bound

In this section we use the following deep result of Schmidt [6] to prove that
Theorem 4.1-is best possible for latin square type assignments.

Theorem 5.1. Let P be an arbitrary set of N points in the unit square [0,1)2.

Then there exisits a rectangle B C [0,1)% with sides parallel to the coordinate
azes such that

|PNB|— N area(B)| > clog N (%)

where ¢ 18 an absolute constant.

To prove a lower bound for the discrepancy of an assignment it is enough to
consider a finite part of it, in our case, the generating lating square.

Theorem 5.2. Let M be an mxm latin square. Then any entry has discrepancy
at least c logm, where ¢ is an absolute constant.

Proof (of Theorem 5.2). Let us partition the unit square into m? little squares
of side 1/m. Consider entry ¢t of M and put a point in the center of the little
square in the ith row and jth column if the (7, j) entry of M is equal to t. Apply
Theorem 5.1 with N = m to find subrectangle B. We may assume without loss
of generality, that B’s sides coincide with the sides of some little squares, so B
corresponds to some R|a, b, ¢, d] subrectangle of M. The number of points in B
is equal to dgp,c,a(t), while N area(B) = m <=2 42 5o inequality (**) states
that the deviation of entry ¢ from the expected value in the subrectangle of M
corresponding to B is at least ¢ logm. O



6 Conclusions, Open Problems

We have shown that the optimality of every m is O(log m). However, the lower
bound works only for latin square type assignments. Thus, it is natural to ask,
whether it holds in general?

In the proof of Theorem 4.1 triple-fold blow-up is used. One might ask why
was it neccessary, could not the proof be done using only double blow-up? The
reason for the seemingly more complicated induction is that transversals of the
3 x 3 latin square are essentially used, however, a 2 x 2 latin square does not
have any.

Applying the blow up for p = 2 the the obtained assignments are generated
by the following latin squares for m =2t t =1, 2, 3, 4:

1 2 3 45 6 7 8

5 6 7 8 1 2 3 4

1 .2 8% 4 3 4.1.-2°"7.8 5.8

1 2 3 41 2 T 8.5.68.3 4 1. 3

T | 2 1 4 3 2 1.4.3 6 5 8 7

4 3 2 1 6 8- 8 7:2-1 4. 8

48 2:-1. 8 7-6-5

L & T8 85 4.8 2.1 |
L1779 "% "4 "B 6 T B .9 10 1T 312 13 14 16 167
g 10 11 1213 14 15508 -8 B8 4+ 8 @€ ‘T B
- & & I8 8418 94 1516 %1011 12
1% 24 15 1% -wWoh 12 &5 8-7T B CAF R 4
8- 4 T .2 ¥ 8B B'® 117 -9 1015 .16 13 14
W a2 9 .18 15 18 1814 % 4 1 2 T & B B
B 5 B 8 4 1'% 15 316 .13 14 11 1 © 10
15 16 13 14 11 12 ®'i0p 7 88 5 6 3 4 1 32
g ‘1.4 % 6 5 ® ¥ 10 9 Iz 11 14 13 16 15
16 9 12 11 14 13 16 15 2 1 4 8 6 B 8 7
6 F B ¥ = 1 4 § 714 13 16 18 10 B9 182 1ii
14 13 16 15 10 9 12 11 6 5 88 T 2 1 4 3
A 5 9. 1-8B % 6.5 12 14 106 98 16 15314 13
19 11 10-9 18 15 14 13 4 8 2 1--8 7 & B8
B % & 5. 4 3 3 1 16 15 14 13 12 11 10 @
16 5 14 18 12 11 Ww 9 &8 -7 6 53 4 & 2 1|

The discrepancies are 1, 2, 2, 3, respectively. Studying the pattern of these latin
squares one can find an explicit, non-recursive method for constructing them,
starting from the first row [1,2,...,2¢]. We strongly believe that for m = 2* our
construction is best possible.

Theorem 5.2 works also for modular assignments, as well. However, there are
not known bounds for their performance, in general. The construction for A(p),

p prime, gives an O(y/m) upper bound, for certain m’s. The question is, whether
the lower, or the upper bound is sharp in that case?



In the present paper we studied low discrepancy allocation of two-dimensional
data. It is natural to extend the scope of investigations to higher dimensions.
For example, one can have a database of temperature distribution in a three-
dimensional body. How well can three- (or higher-) dimensional data distributed?
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