Skip to main content

Topology-Oriented Approach to Robust Geometric Computation

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1741))

Included in the following conference series:

Abstract

The topology-oriented approach is a principle for translating geometric algorithms into practically valid computer software. In this principle, the highest priority is placed on the topological consistency of the geometric objects; numerical values are used as lower-priority information. The resulting software is completely robust in the sense that no matter how large numerical errors arise, the algorithm never fail. The basic idea of this approach and various examples are surveyed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Benouamer, D. Michelucci and B. Peroche: Error-free boundary evaluation using lazy rational arithmetic-A detailed implementation. Proceedings of the 2nd Symposium on Solid Modeling and Applications, Montreal, 1993, pp. 115–126.

    Google Scholar 

  2. S. Fortune: Stable maintenance of point-set triangulations in two dimensions. Proceedings of the 30th IEEE Annual Symposium on Foundations of Computer Science, Research Triangle Park, California, 1989, pp. 494–499.

    Chapter  Google Scholar 

  3. S. Fortune and C. von Wyk: Efficient exact arithmetic for computational geometry. Proceedings of the 9th ACM Annual Symposium on Computational Geometry, San Diego, 1993, pp. 163–172.

    Google Scholar 

  4. L. Guibas, D. Salesin and J. Stolfi: Epsilon geometry-Building robust algorithms from imprecise computations. Proc. 5th ACM Annual Symposium on Computational Geometry (Saarbrücken, May 1989), pp. 208–217.

    Google Scholar 

  5. C. M. Hoffmann: The problems of accuracy and robustness in geometric computation. IEEE Computer, vol. 22, no. 3 (March 1989), pp. 31–41.

    Google Scholar 

  6. C. M. Hoffmann: Geometric and Solid Modeling. Morgan Kaufmann Publisher, San Mateo, 1989.

    Google Scholar 

  7. T. Imai: A topology-oriented algorithm for the Voronoi diagram of polygon. Proceedings of the 8th Canadian Conference on Computational Geometry, 1996, pp. 107–112.

    Google Scholar 

  8. H. Inagaki, K. Sugihara and N. Sugie, N.: Numerically robust incremental algorithm for constructing three-dimensional Voronoi diagrams. Proceedings of the 4th Canadian Conference Computational Geometry, Newfoundland, August 1992, pp. 334–339.

    Google Scholar 

  9. M. Karasick, D. Lieber and L. R. Nackman: Efficient Delaunay triangulation using rational arithmetic. ACM Transactions on Graphics, vol. 10 (1991), pp. 71–91.

    Google Scholar 

  10. V. Milenkovic: Verifiable implementations of geometric algorithms using finite precision arithmetic. Artificial Intelligence, vol. 37 (1988), pp. 377–401.

    Google Scholar 

  11. T. Minakawa and K. Sugihara: Topology oriented vs. exact arithmetic—experience in implementing the three-dimensional convex hull algorithm. H. W. Leong, H. Imai and S. Jain (eds.): Algorithms and Computation, 8th International Symposium, ISAAC’97 (Lecture Notes in Computer Science 1350), (December, 1997, Singapore), pp. 273–282.

    Google Scholar 

  12. T. Minakawa and K. Sugihara: Topology-oriented construction of three-dimensional convex hulls. Optimization Methods and Software, vol. 10 (1998), pp. 357–371.

    Google Scholar 

  13. Y. Oishi and K. Sugihara: Topology-oriented divide-and-conquer algorithm for Voronoi diagrams. Computer Vision, Graphics, and Image Processing: Graphical Models and Image Processing, vol. 57 (1995), pp. 303–314.

    Google Scholar 

  14. T. Ottmann, G. Thiemt and C. Ullrich: Numerical stability of geometric algorithms. Proceedings of the 3rd ACM Annual Symposium on Computational Geometry, Waterloo, 1987, pp. 119–125.

    Google Scholar 

  15. P. Schorn: Robust algorithms in a program library for geometric computation. Dissertation submitted to the Swiss Federal Institute of Technology (ETH) Zürich for the degree of Doctor of Technical Sciences, 1991.

    Google Scholar 

  16. M. Segal and C. H. Sequin: Consistent calculations for solid modeling. Proceedings of the ACM Annual Symposium on Computational Geometry, Baltimore, 1985, pp. 29–38.

    Google Scholar 

  17. K. Sugihara: A simple method for avoiding numerical errors and degeneracy in Voronoi diagram construction. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E75-A (1992), pp. 468–477.

    Google Scholar 

  18. K. Sugihara: Approximation of generalized Voronoi diagrams by ordinary Voronoi diagrams. CVGIP: Graphical Models and Image Processing, vol. 55 (1993), pp. 522–531.

    Google Scholar 

  19. K. Sugihara: A robust and consistent algorithm for intersecting convex polyhedra. Computer Graphics Forum, EUROGRAPHICS’94, Oslo, 1994, pp. C–45–C–54.

    Google Scholar 

  20. K. Sugihara: Robust gift wrapping for the three-dimensional convex hull. J. Computer and System Sciences, vol. 49 (1994), pp. 391–407.

    Google Scholar 

  21. K. Sugihara: Experimental study on acceleration of an exact-arithmetic geometric algorithm. Proceedings of the 1997 International Conference on Shape Modeling and Applications, Aizu-Wakamatsu, 1997, pp. 160–168.

    Google Scholar 

  22. K. Sugihara and H. Inagaki: Why is the 3d Delaunay triangulation difficult to construct? Information Processing Letters, vol. 54 (1995), pp. 275–280.

    Google Scholar 

  23. K. Sugihara and M. Iri: A solid modelling system free from topological inconsistency. Journal of Information Processing, vol. 12 (1989), pp. 380–393.

    Google Scholar 

  24. K. Sugihara and M. Iri: Construction of the Voronoi diagram for “one million” generators in single-precision arithmetic. Proceedings of the IEEE, vol. 80 (1992), pp. 1471–1484.

    Google Scholar 

  25. K. Sugihara and M. Iri: A robust topology-oriented incremental algorithm for Voronoi diagrams. International Journal of Computational Geometry and Applications, vol. 4 (1994), pp. 179–228.

    Google Scholar 

  26. C. K. Yap: The exact computation paradigm. D.-Z. Du and F. Hwang (eds.): Computing in Euclidean Geometry, 2nd edition. World Scientific, Singapore, 1995, pp. 452–492.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sugihara, K. (1999). Topology-Oriented Approach to Robust Geometric Computation. In: Algorithms and Computation. ISAAC 1999. Lecture Notes in Computer Science, vol 1741. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46632-0_36

Download citation

  • DOI: https://doi.org/10.1007/3-540-46632-0_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66916-6

  • Online ISBN: 978-3-540-46632-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics