
A Framework for Circular Drawings
of Networks?

Janet M. Six and Ioannis G. Tollis

CAD & Visualization Lab
Department of Computer Science
The University of Texas at Dallas

P.O. Box 830688, EC 31
Richardson, TX 75083-0688

{janet,tollis}@utdallas.edu

Abstract. Drawings of graphs which show the inherent strengths and
weaknesses of structures with clustered views would be advantageous
additions to many network design tools. In this paper we present a fra-
mework for producing circular drawings of networks represented by non-
biconnected graphs. Furthermore, the drawings produced by these tech-
niques clearly show the biconnectivity structure of the given networks.
We also include results of an extensive experimental study which shows
our approach to significantly outperform the current state of the art.

1 Introduction

Graphs are used to represent many kinds of information structures: computer,
telecommunication, and social networks, entity-relationship diagrams, data flow
charts, resource allocation maps, and much more. Graph Drawing researchers
develop techniques which embed graphs onto a two or three-dimensional surface
where nodes are represented by circles or polygons and edges by polygonal chains
of line segments. The input to a graph drawing algorithm is a graph, G = (V, E),
where V is the set of n nodes and E is the set of m edges, while the output is a
set of layout coordinates for each graph element. See [3,4] for a comprehensive
annotated bibliography and introduction to the area.

A circular graph drawing (see Figure 1 for an example) is an embedding of
a graph with the following characteristics: the graph is partitioned into clusters,
the nodes of each cluster are placed onto the circumference of an individual
embedding circle, and each edge is drawn as a straight line.

Tools for the design and manipulation of telecommunication networks can
be strengthened with the addition of a circular drawing component which shows
clustered views of those information structures. See [11] for a comprehensive
discussion of telecommunication network design algorithms. The partitioning of
the graph into clusters can show structural information such as biconnectivity
? Research supported in part by the Texas Advanced Research Program under grant

number 009741-040.

J. Kratochv́ıl (Ed.): GD’99, LNCS 1731, pp. 107–116, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



108 J.M. Six and I.G. Tollis

e

g

h

a

c

d

b

f

j

i

Fig. 1. A circular drawing as produced by our algorithm.

characteristics or can highlight semantic qualities of the network such as sub-
nets. Emphasizing natural group structures within the topology of the network
is vital to pin-point strengths and weaknesses within that design. It is essential
that the number of crossings within the drawing of each cluster remain low and
that nodes have good proximity to their neighbors. Researchers have produced
several circular drawing techniques [2,6,10,12,17], some of which have been in-
tegrated into commercial tools. The resulting drawings can be compared with
each other by counting the number of edge crossings. These drawings are often
visually complex with respect to the number of edge crossings. In fact, the pro-
blem of producing a circular drawing with a minimum number of crossings was
proven to be NP-Complete in [13]. In [15] we present a technique for producing
circular drawings of biconnected graphs on a single embedding circle and an ex-
perimental study which shows the technique to perform well. A refined version
of this approach is discussed in [16]. In this paper, we introduce a framework
of efficient techniques to produce circular drawings of nonbiconnected networks.
These algorithms require at most O(m) time and have been designed to produce
drawings which clearly show biconnectivity.

2 Circular Drawings of Biconnected Graphs

In this section we present a summary of an algorithm for obtaining circular
drawings of biconnected networks such that all the nodes are placed onto the
circumference of a single embedding circle. In addition, we include the results of
an experimental study which shows this technique to be a significant improve-
ment over the current state of the art.

In order to find a circular drawing with a lower number of crossings than
previous techniques, we have developed an algorithm which tends to place edges
toward the outside of the embedding circle. This characteristic means that there
are not many edges in the middle of the drawing to be crossed and also that
nodes are placed near their neighbors. In fact, this algorithm tries to maximize
the number of edges appearing on the circumference of the embedding circle.
This is achieved by selectively removing some edges and then building a DFS-
based node ordering of the resulting graph. The number of crossings can then
be further reduced with a postprocessing step.



A Framework for Circular Drawings of Networks 109

In order to selectively remove some edges, Algorithm CIRCULAR visits the
nodes in a wave-like fashion. Define a pair edge to be incident to two nodes which
share at least one neighbor. Each time a node is processed, pair edges induced by
the current node are found and placed into a removal list, a “thread” of edges
is run through its neighbors to maintain biconnectivity and then the node is
deleted. After all of the nodes have been processed, the graph is restored to its
original topology and then the removal list edges are removed. It is this selective
edge removal that causes the behavior of edge placement towards the perimeter
of the embedding circle. Subsequent to the edge removal, CIRCULAR conducts
a depth-first search (DFS) and places the nodes in a longest path of the DFS
tree around the embedding circle. Finally, the remaining nodes are nicely merged
into this ordering. The time complexity of CIRCULAR is O(m) where m is the
number of edges. Please see [15,16] for further details of the algorithm and its
analysis. The algorithm has the following interesting property:

Theorem 1. Given a biconnected graph, G, if G admits a circular layout with
zero crossings, then CIRCULAR produces a circular drawing with zero crossings
in O(n) time.

A graph G is outerplanar if and only if G can be drawn on the plane such
that all nodes lie on the boundary of a single face and no two edges cross [9].
This fact implies that the set of biconnected graphs which admit a plane circular
drawing is exactly the set of outerplanar graphs. Given an outerplanar graph,
CIRCULAR will produce a plane circular drawing since the edge removal portion
of the technique is inspired by the algorithm for recognizing outerplanar graphs
in [14].

By Theorem 1, if a zero-crossing layout exists for an input biconnected graph,
then CIRCULAR will find it, however if the input graph does not admit a plane
drawing, we offer in [15,16] a heuristic technique to iteratively reduce the number
of crossings. We have implemented our technique for building circular drawings
of biconnected graphs, CIRCULAR, in C++ and run experiments over a set
of 10,328 biconnected graphs from [5]. The average number of crossings in the
drawings produced by our O(m) time CIRCULAR technique is about 15% less
than that of the O(n2) time GLT technique [6,10]. Performing the postprocessing
step improves upon the average number of crossings of GLT drawings by 30%.

3 Circular Drawings of Nonbiconnected Graphs

Graphs are not always biconnected, therefore it is important for a graph drawing
tool to provide a component which visualizes nonbiconnected graphs. In this
section we present techniques for drawing nonbiconnected graphs. Furthermore,
these drawings will clearly show the biconnected components.

3.1 Drawings of Nonbiconnected Graphs

Given a nonbiconnected graph, G, we can decompose the structure into biconnec-
ted components in O(m) time. By definition, the biconnected components will



110 J.M. Six and I.G. Tollis

be connected via bridges or articulation points and this superstructure will form
a block-cut point tree. Taking advantage of this inherent structure, we first lay-
out the biconnected components of the block-cut point tree with a radial layout
technique similar to [1,7,8], then layout each biconnected component of the net-
work with a variant of the CIRCULAR algorithm. See Figure 2. This technique
is called CIRCULAR - with Radial.

B1

B2 B3 B4

B5 B6 B7 B8

B1

B4

B2 B3

B7B8

B6

B5

Fig. 2. The illustration on the left shows the block-cut point tree of a non-biconnected
graph. The small black tree nodes represent articulation points and the small white
tree nodes represent bridges. The right illustration is a drawing of the same graph
where the block-cut point tree is laid out with a radial tree layout technique.

CIRCULAR - with Radial must address several issues in order to produce
good quality circular drawings: articulation points can appear in multiple bi-
connected components of the block-cut point tree, the nodes of the block-cut
point tree can represent biconnected components of differing size, and the nodes
of each biconnected component should be visualized such that the articulation
points appear in good position and also there is a low number of edge crossings.
We will address each of these issues in turn.

Assignment of Articulation Points: Define a strict articulation point
as an articulation point which is not adjacent to a bridge. Strict articulation
points are duplicated in more than one biconnected component of the block-cut
point tree, but of course each node should appear only once in a drawing of
that graph. Therefore, we offer three approaches in which the articulation point
will appear only once in the drawing. The first approach assigns each strict
articulation point to the biconnected component which is closest to the root in
the block-cut point tree. This biconnected component will be the parent of the
other biconnected components, see Figure 3(a). The second approach assigns
the articulation point to the biconnected component which contains the most
neighbors of that articulation point, see Figure 3(b). The third approach assigns
the articulation point to a position between its biconnected components, see
Figure 3(c). Placing a node in this manner will highlight the fact that this node
is an important articulation point. Following the assignment step, the duplicates
of a strict articulation point are removed from the blocks in the block-cut point
tree. We refer to the nodes adjacent to a removed strict articulation point in a



A Framework for Circular Drawings of Networks 111

biconnected component as inter-block nodes. In order to maintain biconnectivity
for the method which will layout this biconnected component, a thread is run
through the inter-block nodes. Due to space constraints, further discussion of
articulation point assignment is not given here.

(a) (b) (c)

Fig. 3. This figure shows examples of three approaches for the assignment of strict
articulation points to biconnected components. The black nodes are strict articulation
points.

Radial Layout of Trees With Differing Node Sizes: While performing
the layout of the block-cut point tree, we must consider that the biconnected
components may be of differing sizes. The radial layout algorithms presented
in [1,7,8] place the root at (0, 0) and the subtrees on concentric circles around
the origin. Also see [4] for a summary. These algorithms require linear time and
produce plane drawings. However, unlike our block-cut point trees, the nodes of
the trees laid out with [1,7,8] are all the same size. In order to produce radial
drawings of trees with differing node sizes, we introduce RADIAL - with Different
Node Sizes.

For each node, RADIAL - with Different Node Sizes must assign a ρ coordi-
nate, which is the distance from point (0, 0) to the placement of that node and
a θ coordinate which is the angle between the line from (0, 0) to (∞, 0) and the
line from (0, 0) to the placement of that node. The ρ coordinate of node v, ρ(v),
is defined to be ρ(u) + δ + du

2 + max(d1,d2,...,dk)
2 , where ρ(u) is the ρ coordinate

of the parent u of v, δ is the minimum distance allowed between two nodes, du

is the diameter of u, and max(d1, d2, ..., dk) is the maximum of the diameters of
all the children of u. In order to prevent edge crossings, each subtree must be
placed inside a wedge, and the width of each wedge must be restricted such that
it does not overlap a wedge of any other subtree. The θ coordinate of node v
depends on the widths of the descendants of v, not just the number of leaves as
in [1,7,8]. This assignment of coordinates leads to a layout of the form shown in
Figure 4.

Circular Layout of a Biconnected Component: After performing RADIAL
- with Different Node Sizes we have a layout of the block-cut point tree, and
need to visualize the nodes and edges of each biconnected component. The ra-
dial layout of the block-cut point tree should be considered while drawing each



112 J.M. Six and I.G. Tollis

Fig. 4. This illustration demonstrates a radial layout of a tree with differing size nodes.

biconnected component, see Figure 5. In order to reduce the number of cros-
sings caused by inter-biconnected component edges, CIRCULAR - with Radial
tries to place nodes which are adjacent to the parent biconnected component
(in the block-cut point tree) (these will be referred to as ancestor nodes) in the
arc between α and β and the nodes which are adjacent to child biconnected
components (descendant nodes) at points γ, δ, ε, etc. The size of the arc from α
to β is dependent on the distance of the biconnected component to the parent
in the radial layout of the block-cut point tree. The points γ, δ, and ε are placed
in the bottom half of the biconnected component layout. These special posi-
tions for the ancestor and descendant nodes are called ideal positions. Placing
the articulation points and inter-block nodes in this manner reduce the number
of crossings caused by inter-biconnected component edges going through a bi-
connected component. In fact, the only times that these edges do cause crossings
with this approach are when the number of ancestor or descendant nodes in the
biconnected component, Bi is more than about ni

2 , where ni is the number of
nodes in Bi. In those cases, the set of ideal positions includes all the positions
in the upper (respectively lower) half of the embedding circle and also positions
in the lower(upper) half which are as close as possible to the upper(lower) half.

a b

g
d e

Fig. 5. This figure shows the relation between the layout of the block-cut point tree
and the layout of an individual biconnected component.



A Framework for Circular Drawings of Networks 113

We present two techniques for the layout of each biconnected component such
that ideal positions of the ancestor and descendant nodes are considered. The
first step of each technique is to perform CIRCULAR on the current biconnected
component, Bi. This requires O(mi) time, where mi is the number of edges in
biconnected component Bi. Then we update this drawing such that the node
placement of the articulation points is considered.

The first technique, CLUSTER1, rotates the layout of the biconnected com-
ponent as found by CIRCULAR such that a maximum number of ancestor and
descendant nodes are placed close to their ideal positions. Then, the remaining
ancestor and descendant nodes are moved to the closest ideal position. Algorithm
Cluster1 requires O(mi) time. See Figure 6(b) for an example.

The second technique, Cluster2 is an alternative technique which may lead
to layouts with fewer edge crossings. The first steps of Algorithm Cluster2 are
the same as that of Cluster1. During the placement of ancestor and descendant
nodes which are not in ideal positions, each such node, v, is placed in an ideal
position and if the number of edge crossings added exceeds a threshold T1 or the
movement of v exceeds a threshold T2, then the size of the embedding circle is
increased such that node v can be placed in an ideal position without changing
the relative order between v and its neighbors on the embedding circle. See
Figure 6(c) for an example. The time required for Algorithm Cluster2 is O(mi)
if the threshold T2 (based on node movement) is used or O(mi ∗ k), where k is
the number of ancestor and descendant nodes in the cluster, if the threshold T1
(based on the number of crossings) is used.

u

(b)(a)

v

v

u

v

arc
empty

(c)

Fig. 6. This figure demonstrates Algorithms Cluster1 and Cluster2. The black nodes
are descendant nodes and the white nodes are ancestor nodes. (a) drawing produced
by CIRCULAR; (b) the rotated drawing of part (a) produced by Cluster1. (c) the
resulting drawing of part (a) produced by Cluster2.

3.2 Algorithm CIRCULAR - with Radial

Now we present a comprehensive technique for obtaining circular layouts of
nonbiconnected graphs. First the input graph, G, is decomposed into a block-
cut point tree, T . If G is not biconnected, then we layout the root cluster with
CIRCULAR in order to produce a drawing of the root cluster with a low number
of edge crossings. Next a radial layout of each subtree of the root cluster is



114 J.M. Six and I.G. Tollis

placed in previously computed wedges around that cluster. See [16] for more
details. Then drawings of each biconnected component are produced. Finally,
the biconnected component drawings are translated to their final coordinates
according to the radial layout of their parent subtrees.

Algorithm 31 Algorithm CIRCULAR - with Radial

Input: Any graph, G.
Output: A circular drawing of G.

1. Decompose G into a block-cut point tree, T .
2. If G has only one biconnected component
3. Perform CIRCULAR on G.
4. Else
5. Assign the strict articulation points to a biconnected component.
6. Layout the root cluster of T with CIRCULAR.
7. For each subtree, S, of the root cluster
8. Perform the ρ coordinate assignment phase of RADIAL -

with Different Node Sizes on S.
9. For each biconnected component, Bi, of S

10. Layout Bi with Cluster1 or Cluster2 taking into
account the radii defined for the superstructure
tree in Step 8.

11. Considering the order of the subtrees defined during the
layout of biconnected components in Step 10, perform
the θ coordinate assignment phase of RADIAL - with
Different Node Sizes on S.

12. Translate and rotate the clusters of S according to the radial
layout of S.

The time complexity of CIRCULAR - with Radial is O(m) if the biconnec-
ted components are laid out with Cluster1 or O(m ∗ k), where k is the total
number of ancestor and descendant nodes in the graph, if Cluster2 is the algo-
rithm chosen. Regardless of the choice of these two algorithms for the layout of
each biconnected component, the biconnectivity structure is clearly shown in the
drawings produced by CIRCULAR - with Radial since the block-cut point tree
superstructure is laid out with a tree layout method that prevents the drawings
of any two biconnected components from overlapping. Furthermore, the layout
of each biconnected component is based on a technique which has been shown
to perform very well with respect to producing drawings with a low number of
crossings.

3.3 Implementation and Experiments

We have implemented CIRCULAR - with RADIAL with postprocessing in C++
and run preliminary experiments with 11,399 graphs from [5]. The plot in Fi-
gure 7 shows the average number of edge crossings produced by the circular



A Framework for Circular Drawings of Networks 115

layout component of Tom Sawyer Software’s Graph Layout Toolkit (GLT),
and CIRCULAR - with Radial. As is shown by these results, the average num-
ber of crossings in the drawings produced by our technique is about 35% less
than that of the GLT technique [6,10]. Sample drawings from both the GLT and
CIRCULAR - with Radial are shown in Figure 8.

0

50

100

150

200

250

300

350

10 20 30 40 50 60 70 80 90 100

N
um

be
r 

of
 E

dg
e 

C
ro

ss
in

gs

Size Of Graph

CIRCULAR - with Radial
GLT

Fig. 7. This plot shows the average number of edge crossings produced by CIRCULAR
and the Graph Layout Toolkit over 11,399 graphs from [5].

1

15

14

3

30

11

16

8 27

9 28

17 24

7 23

6 18

19 26

20 4

12 13

10 25

21 5

2 22

29

(a) (b) (c)

Fig. 8. Example output from the GLT and CIRCULAR - with RADIAL. (a) one of the
graphs from [5] as drawn with the GLT; (b) drawing of the graph in (a) as produced by
CIRCULAR - with RADIAL; (c) a sample drawing from CIRCULAR - with RADIAL.

Acknowledgements

We would like to thank Tom Kurien and Yong “Bruce” Zhao for helpful discus-
sions and their skilled implementation of software components for this project.



116 J.M. Six and I.G. Tollis

References

1. M. A. Bernard, On the Automated Drawing of Graphs, Proc. 3rd Caribbean Conf.
on Combinatorics and Computing, pp. 43-55, 1994.

2. F. Brandenburg, Graph Clustering 1: Cycles of Cliques, Proc. GD ’97, Rome, Italy,
Lecture Notes in Computer Science 1353, Springer-Verlag, pp. 158-168, 1998.

3. G. Di Battista, P. Eades, R. Tamassia and I. Tollis, Algorithms for Drawing Graphs:
An Annotated Bibliography, Computational Geometry: Theory and Applications,
4(5), pp. 235-282, 1994. Also available at http://www.utdallas.edu/∼tollis.

4. G. Di Battista, P. Eades, R. Tamassia and I. Tollis, Graph Drawing: Algorithms
for the Visualization of Graphs, Prentice-Hall, Englewood Cliffs, NJ, 1999.

5. G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, F. Vargiu and
L. Vismara, An Experimental Comparison of Four Graph Drawing Algorithms,
Computational Geometry: Theory and Applications, 7(5-6), pp.303-26, 1997. Also
available at http://www.cs.brown.edu/people/rt.

6. U. Doğrusöz, B. Madden and P. Madden, Circular Layout in the Graph Layout
Toolkit, Proc. GD ’96, Berkeley, California, Lecture Notes in Computer Science
1190, Springer-Verlag, pp. 92-100, 1997.

7. P. D. Eades, Drawing Free Trees, Bulletin of the Institute for Combinatorics and
its Applications, 5, pp. 10-36, 1992.

8. C. Esposito, Graph Graphics: Theory and Practice, Comput. Math. Appl., 15(4),
pp.247-253, 1988.

9. F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
10. G. Kar, B. Madden and R. Gilbert, Heuristic Layout Algorithms for Network

Presentation Services, IEEE Network, 11, pp. 29-36, 1988.
11. A. Kershenbaum, Telecommunications Network Design Algorithms, McGraw-Hill,

1993.
12. V. Krebs, Visualizing Human Networks, Release 1.0: Esther Dyson’s Monthly Re-

port, pp. 1-25, February 12, 1996.
13. S. Masuda, T. Kashiwabara, K. Nakajima and T. Fujisawa, On the NP-

Completeness of a Computer Network Layout Problem, Proc. IEEE 1987 Interna-
tional Symposium on Circuits and Systems, Philadelphia, PA, pp.292-295, 1987.

14. S. Mitchell, Linear Algorithms to Recognize Outerplanar and Maximal Outerplanar
Graphs, Information Processing Letters, 9(5), pp. 229-232, 1979.

15. J. M. Six and I. G. Tollis, Circular Drawings of Biconnected Graphs, Proc. of
ALENEX ’99, Baltimore, MD, To appear, 1999.

16. J. M. Six and I. G. Tollis, Algorithms for Drawing Circular Visualizations of Net-
works, Manuscript, 1999.

17. I. G. Tollis and C. Xia, Drawing Telecommunication Networks, Proc. GD ’94,
Princeton. New Jersey, Lecture Notes in Computer Science 894, Springer-Verlag,
pp. 206-217, 1994.


	Introduction
	Circular Drawings of Biconnected Graphs
	Circular Drawings of Nonbiconnected Graphs
	Drawings of Nonbiconnected Graphs
	Algorithm CIRCULAR - with Radial
	Implementation and Experiments


