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Abstract. It is shown how one can draw graphs on surfaces of nega-
tive Euler characteristic by using hyperbolic geometry and hyperbolic
circle packing representations. The same approach applies to drawings
of hyperbolic tessellations.

1 Introduction

The purpose of this note is to offer a new approach for drawing graphs embedded
in a surface Σ with negative Euler characteristic. Each such embedding can be
changed by a homeomorphism to an embedding in a Riemann surface Σ0 homeo-
morphic to Σ of constant negative curvature κ < 0 (say κ = −1) such that all
edges of the graph become “straight line segments” (i.e., geodesic segments) on
Σ0. To get such a representation, we suggest using the primal-dual circle packing
algorithm (abbreviated PDCP) which is presented in [9] (originally introduced
by Lovász, see [3]) for the Euclidean plane and in [8] (see also [4], [5]) for the
hyperbolic case treated in this paper. The PDCP algorithm determines a con-
vex embedding in Σ0 if (the universal cover of) the given graph G embedded in
Σ is 3-connected. By considering the universal cover Σ̃0 of Σ0, the problem of
drawing G on Σ0 transforms to the problem of drawing graphs in the hyperbolic
plane H

2 ≈ Σ̃0 and then identifying the fundamental domain of Σ0 in H
2.

In Sections 2 and 3 we present two basic models of the hyperbolic plane — the
upper half-plane and the unit disk model. Further on, we present the relation
between the Euclidean and the hyperbolic geometry of the upper half-plane
which enables us to develop the basic graph drawing primitives for drawings in
H

2. At the end we add a few examples.
It is to be hoped that our approach will stimulate further research related

to drawings of graphs in the hyperbolic geometry. Our main motivation for this
type of graph drawings are representations of graphs embedded in higher genus
surfaces and drawings of hyperbolic tessellations. A related application to draw
and navigate Internet sites and their connections using hyperbolic geometry was
explored by Munzner [11].

For further reading on the hyperbolic geometry we refer the reader to [6],
[12], [13], [14], [15].
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2 The Poincaré Half-Plane

The Euclidean plane R
2 is endowed with the Euclidean metric

ds2 = dx2 + dy2.

It is convenient to identify R
2 with C, the set of all complex numbers, so that

the point (x, y) ∈ R
2 is identified with z = x + iy ∈ C.

The Poincaré half-plane H
2 = {(x, y) ∈ R

2 | y > 0} is the upper half-plane
endowed with the hyperbolic metric

ds2 =
dx2 + dy2

y2 .

If γ(t) = x(t) + iy(t), a ≤ t ≤ b, is a C1-curve in H
2, then its hyperbolic length

`(γ) is defined as

`(γ) =
∫

γ

√
dx2 + dy2

y
. (1)

The geodesic lines of H
2 (also called hyperbolic straight lines) are either

(a) Euclidean semicircles with the center on the x-axis, or
(b) Euclidean straight lines in H

2 which are perpendicular to the x-axis.

See Figure 1.

Fig. 1. Geodesic lines in H
2

For any two points z, w ∈ H
2, there is a unique hyperbolic straight line P

containing them. The hyperbolic distance of z and w, denoted by distH(z, w), is
the hyperbolic length of the segment of P from z to w.

If A, B, C are points in H
2, then the hyperbolic line segments joining A, B,

and C determine the hyperbolic triangle ∆(ABC). In Figure 1, one of such
triangles is displayed.

Theorem 1. The rigid motions of H
2 are precisely the transformations of the

following forms:

(a) f(z) =
az + b

cz + d
or (b) f(z) =

−az + b

−cz + d

where a, b, c, d are real numbers and ad − bc > 0.
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Let us mention two special cases. The hyperbolic rotation of H
2 by the angle

2ϑ about the point i = (0, 1) is the mapping

Rϑ(z) =
cos ϑ z + sinϑ

− sinϑ z + cos ϑ
. (2)

The translation which maps (a, b) ∈ H
2 to the point (c, d) ∈ H

2 is the map

Ta,b,c,d(z) =
dz + (bc − ad)

b
. (3)

Two geometric figures A, B in H
2 (subsets of H

2) are congruent if there is a
rigid motion of H

2 which transforms A into B.
Let z = (x, y) ∈ H

2 and r ∈ R
+. The (hyperbolic) circle of radius r centered

at z is the set

C(z, r) = {w ∈ H
2 | distH(z, w) ≤ r}. (4)

The Euclidean circle of radius r centered at z is defined as the set

CE(z, r) = {w ∈ C : |z − w| ≤ r}. (5)

Theorem 2. Every hyperbolic circle is also a Euclidean circle. If z = (x, y) ∈
H

2 and r ∈ R
+, then C(z, r) = CE(z′, r′) where z′ = x + iy′, y′ = y ch(r),

r′ = y sh(r).

Proof. We shall give only the proof of the second statement. Let z1 = (x, y1)
and z2 = (x, y2) be the points in H

2 at hyperbolic distance r from z which
have the same first coordinate x as z and where y1 < y < y2. By (1) we easily
get y1 = y exp(−r) and y2 = y exp(r). This implies that the Euclidean circle
CE(z′, r′) has radius r′ = (y2 − y1)/2 = y sh(r) and center z′ = (x, (y1 + y2)/2),
so that y′ = y ch(r).

If A, B, C are points in H
2, then the hyperbolic line segments joining A, B,

and C determine the hyperbolic triangle ∆(ABC). In Figure 1 one of such tri-
angles is displayed. It is well known that the sum of the angles α, β, γ of a
hyperbolic triangle is always less that π. It is also known that for any posi-
tive real numbers α, β, γ whose sum is < π there is a hyperbolic triangle with
angles α, β, γ. Moreover, any two such triangles are congruent and have the same
hyperbolic area (which is equal to π − α − β − γ).

Suppose that ∆ is a hyperbolic triangle with angles α, β, γ and lengths of its
sides equal to a, b, c (where the side of length a is opposite the angle α, etc.).
These quantities are then related by the Hyperbolic Law of Cosines

cos α =
ch b · ch c − ch a

sh b · sh c
and ch a =

cos β · cos γ + cos α

sinβ · sin γ
(6)

and by the Hyperbolic Law of Sines
sinα

sh a
=

sinβ

sh b
=

sin γ

sh c
(7)

In the special case where γ = π
2 (the right triangle), we get

ch c = ch a · ch b = ctg α · ctg β. (8)
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3 The Unit Disk Model of the Hyperbolic Plane

The Möbius transformation

U(z) =
iz + 1
z + i

(9)

maps H
2 bijectively onto the (open) unit disk D

2 in C. The inverse mapping is

U−1(w) =
iw − 1
−w + i

(10)

The geodesics of H
2 are mapped by U(z) onto circular arcs with their endpoints

on the boundary of D
2 which meet the boundary of D

2 perpendicularly, see
Figure 2 below.

Fig. 2. Geodesic lines in the hyperbolic unit disk model

The mapping U(z) determines the hyperbolic geometry on D
2 which has the

following Riemann metric

ds2 =
4(dx2 + dy2)
(1 − x2 − y2)2

. (11)

If γ(t) = x(t) + iy(t), a ≤ t ≤ b, is a C1-curve in D
2, then its hyperbolic length

`(γ) is defined as

`(γ) =
∫

γ

2
√

dx2 + dy2

1 − x2 − y2 . (12)

Theorem 3 below determines the rigid motions of D
2:

Theorem 3. The rigid motions of D
2 are precisely the transformations of the

following forms:

(a) g(z) =
az + c

cz + a
or (b) g(z) =

−az + c

−cz + a

where a and c are any complex numbers such that |a| > |c|.
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Observe that U(z) is a Möbius transformation. Since all Möbius transforma-
tions map circles (and halfspaces) to circles (and halfspaces), Theorem 2 implies:

Theorem 4. Every hyperbolic circle in D
2 of radius r and with center w ∈

D
2 corresponding to the hyperbolic disk metric (11) is also a Euclidean circle

CE(w′, r′), where w′ = −4 er y
−(1+er)2+(−1+er)2 y2

w
|w| and r′ = (−1+e2 r) (−1+y2)

−(1+er)2+(−1+er)2 y2 .

4 Hyperbolic Primal Dual Circle Packings

Let Σ be a surface. A map on Σ is a pair (G, Σ) where G is a connected graph
that is 2-cell embedded in Σ. Given a map M = (G, Σ), a circle packing of M is
a set of (geodesic) circles in a Riemannian surface Σ0 of constant curvature that
is homeomorphic to Σ, one circle for each vertex of G, such that the following
conditions are fulfilled:

(i) the interiors of circles are pairwise disjoint open disks,
(ii) for each edge uv ∈ E(G), the circles corresponding to u and v touch, and
(iii) by putting a vertex vD in the centre of each circle D and joining vD by

geodesics with all points on the boundary of D where the other circles touch
D (or where D touches itself), we get a map on Σ0 which is isomorphic to M .

Because of (iii) we also say to have a circle packing representation of M . The
obtained map on Σ0 is said to be a straight-line representation of M . Simul-
taneous circle packing representations of a map M and its dual map M∗ are
called a primal-dual circle packing representation of M if for any two edges

Fig. 3. The local rotation of G0
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Fig. 4. The circle packing of G0 in H
2
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e = uv ∈ E(M) and e∗ = u∗v∗ ∈ E(M∗) which are dual to each other, the
circles Cu, Cv corresponding to e touch at the same point as the circles Cu∗ , Cv∗

of e∗, and Cu, Cu∗ cross each other at that point perpendicularly. Having a
primal-dual circle packing representation, each pair of dual edges intersects at
the right angle. The obtained representations of the maps M and M∗ on Σ0 are
easily seen to be convex , i.e., if x, y are points in the same face F of M (or M∗),
then in F there is a geodesic (not necessarily a shortest one) joining x and y.

It was proved by Koebe [7], Andreev [1], [2], and Thurston [16] that if M
is a triangulation, then it admits a circle packing representation (some of these
results apply only for the 2-sphere). The proofs of Andreev and Thurston are
existential (using a fixed point theorem) but Colin de Verdière [4], [5] found a con-
structive proof by means of a convergent process. Mohar [8] found a polynomial
time algorithm that for a given map M (whose universal cover has 3-connected
graph) and for a given ε = 10−t finds an ε-approximation for a circle packing of
M into a surface of constant curvature (either +1, 0, or –1). The time used by
that algorithm is polynomial in the size of the input (= |V (M)| + |E(M)| + t).

5 Drawing Primitives

To draw graphs in the hyperbolic plane as suggested in the introduction we have
to implement drawing primitives for drawing (hyperbolic) circles and hyperbolic
line segments. We assume that we have a primitive for drawing Euclidean circles
and Euclidean circular arcs:

Circle(a,b,r): Draws the Euclidean circle with radius r centered at (a,b)∈
R

2.
CircularArc(a,b,r,α,β): Draws the circular arc of Circle(a,b,r) corre-

sponding to the angles from α to β.
LineSegment(a,b,c,d): Draws the Euclidean straight line segment from

(a,b) to (c,d).

Fig. 5. The circle packing of G0 in D
2
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We shall describe only the upper half-plane model. The unit disk model
primitives are obtained by simply applying the Möbius transformation (9).

5.1 Circles

HyperbolicCircle(x,y,r): Draws the hyperbolic circle with radius r centered
at (x,y)∈ H

2. This primitive can be expressed as Circle(x,y’,r’) where y’
and r’ are given by Theorem 2.

5.2 Hyperbolic Line Segments

HyperbolicLine(a,b,c,d): Draws the hyperbolic line segment from (a,b)∈ H
2

to (c,d)∈ H
2. If a = c, this is just a vertical line segment. Otherwise, this is the

circular arc of the Euclidean circle centered at (x, 0) where x = (c2 + d2 − a2 −
b2)/(2(c − a)).

HyperbolicLineTangent(a,b,α,l): Draws the hyperbolic line segment from
(a,b)∈ H

2 of length l which starts at (a,b) under the angle α with respect to
the x-axis. This operation is easiest to implement by using hyperbolic rigid
motions to determine the endpoint (c,d) of the segment (compose the trans-
lation Ta,b,0,1 defined by (3), the rotation Rϕ by the angle 2ϕ, ϕ = 1

2 (π
2 − α),

about the point i = (0, 1) ∈ H
2, determine the modified end of the line seg-

ment — the point on the y-axis above i at hyperbolic distance l, and map
back). Finally, we just draw HyperbolicLine(a,b,c,d). The same operation
can be done directly by using CircularArc(x,0,r,ϕ1,ϕ2) where x = a+b/ tg α,
r =

√
(x − a)2 + b2, ϕ1 = π

2 +α, and ϕ2 = 2 arctg(tg(π
4 + α

2 )/l). (Other formulae
apply if α ∈ {π

2 , 3π
2 }.)
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Fig. 6. The straight line drawing of G0 in H
2

6 Drawing in the Hyperbolic Plane

For the sake of simplicity we shall assume that G0 is a graph embedded in some
surface of negative Euler characteristic such that the graph of its universal cover
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is 3-connected. (Otherwise we extend G0 to a triangulation whose graph (and
the graph of the universal cover) is necessarily 3-connected.)

Drawing algorithm consists of the following steps:

(1) Input the graph G0 and the combinatorial description of its embedding Π0
(see, e.g., [10]).

(2) Determine the Π0-facial walks and construct the vertex-face incidence graph
G (cf. [8]).

(3) Determine the radii rv (v ∈ V (G)) of the primal-dual circle packing (cf. [8]).
(4) Start the BFS of the universal cover G̃ of G and draw its faces (respectively,

the edges of G0 or the circles of the circle packing of G0) one after another
until all the faces (respectively, edges or circles) have been drawn (at least)
once. Identifying the first drawing of each of the faces gives the fundamental
polygon of the surface.

(5) For a representation in the unit disk model, transform the drawing by app-
lying the mapping U(z) given by equation (9).

Fig. 7. The local rotation of G1

7 Examples

Let G0 be the graph with a single vertex v and with five loops a,b,c,d,e. Con-
sider its embedding determined by the local rotation shown in Figure 3. This
embedding has two facial walks, A = adbec and B = acebd. By Euler’s formula,
this is an embedding in the double torus. The vertex-face incidence graph has
three vertices v, A, B, 5 edges joining v and A, and 5 edges joining v and B. The
radii of the corresponding PDCP are rv = 1.61692, rA = rB = 1.06128. Circle
packings of G0 in the hyperbolic upper half-plane and in the hyperbolic disk are
shown in Figures 4 and 5, respectively. The corresponding straight line drawing
in the hyperbolic plane is presented in Figure 6.

Figures 8 and 9 show the circle packing representations of the map G1 shown
in Figure 7.
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Fig. 8. The circle packing of G1 in H
2

Fig. 9. The circle packing of G1 in D
2
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15. S. Stahl, The Poincaré Half-Plane, Jones and Barlett Publishers, Boston, London,
1993.

16. W. P. Thurston, The geometry and topology of 3-manifolds, Princeton Univ. Lect.
Notes, Princeton, NJ.


	Introduction
	The Poincar{{accent 19 e}} Half-Plane
	The Unit Disk Model of the Hyperbolic Plane
	Hyperbolic Primal Dual Circle Packings
	Drawing Primitives
	Circles
	Hyperbolic Line Segments

	Drawing in the Hyperbolic Plane
	Examples

