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Abstract. The existing literature gives efficient algorithms for mapping
trees or less restrictively outerplanar graphs on a given set of points in a
plane, so that the edges are drawn planar and as straight lines. We relax
the latter requirement and allow very few bends on each edge while
considering general plane graphs. Our results show two algorithms for
mapping four-connected plane graphs with at most one bend per edge
and for mapping general plane graphs with at most two bends per edge.
Furthermore we give a point set, where for arbitrary plane graphs it is
NP-complete to decide whether there is an mapping such that each edge
has at most one bend.

1 Introduction

We consider a problem that already has some tradition in computational geo-
metry and graph drawing. Originally, the problem was how to map a given tree
T of n vertices at a given set of points S in the plane such that the edges can
be drawn straightline and without any crossings. Variants of this problem have
been explored, either with or without keeping the position of one specific node
fixed [13,10,2].

Generalizing the graph class, but still using the required straightline planar
drawing, Gritzmann et al. [9] proved that outerplanar graphs can be drawn with-
out any bends. In the consequent papers [3] and [1], efficient implementations
have been developed. The latest result in [1] is an O(n - log® n) time algorithm
to find a straightline drawing for such a graph. Astonishingly enough, the case
for more general graphs has not been considered systematically. It is at exactly
this point that we start.

Another similar scenario has been considered by Pach and Wenger [12]. Here
the mapping of the vertices to the points is already fixed. The authors prove that
O(n) bends per edge are sufficient and that we can not expect to significantly
improve the worst case bound for the maximum number of bends per edge.

We consider just the first scenario where the mapping of the vertices to
the points is not yet fixed. On the other hand, we preserve the given planar
embedding of the graph. In the next section, a simple scheme is presented, that
provides drawings with at most one bend per edge for a large class of graphs.
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Next we generalize the technique so that it will work for any planar graph and
produces drawings with at most two bends per edge. In section 4, we give a
class of graphs and a set of points, where we can prove that there is at least one
edge with two bends. Finally, we extend the techniques developed so far to a
simple proof to the expected NP-completeness result, namely to decide whether
a drawing can be found where each edge has at most one bend.

Throughout this paper, we deal with triangulated embedded (plane) graphs,
only in the last section do we discuss a more general case. Of course, we always
require the drawings to be planar, even if it is not explicitly stated.

2 A Basic Technique

In this section, we present the basic technique for the mapping. Let G = (V, E)
be any plane graph with a hamiltonian cycle C, such that C' has at least one edge,
say e, on the outer face of G. We call such a property ’external hamiltonicity’
and a corresponding cycle ’external hamiltonian’. Let S be any set of points
D1,D2, .., Pn, With p; = (;, y;). Assume the plane is rotated in such a way to make
the xz-coordinates of the points pairwise different. Furthermore assume that the
points are ordered with increasing z-coordinates. Now we map the hamiltonian
cycle C' to the points p1, ..., p, so that the edge e = (v, w), is assigned in such a
way that v = p,, and w = p;. All edges on C with the exception of e can be drawn
as a straight line so that they extend monotonically in x-direction. The edge e
is drawn from the rightmost point p, to the leftmost point p; with one bend
located at a place existing very high above all the other points. Nevertheless
we choose the segments of e such that their slopes are the same and they are
cone-shaped. The slopes of e is determined by the maximal slope of the edges
on the hamiltonian path C' — e. This also determines the place where the bend
of e is located. The remaining edges are drawn each with exactly one bend such
that all the segments have the same slopes as the segments of e. They will run in
parallel. This is more because of aesthetic reasons and to simplify the arguments
about avoiding some possible crossings. The edges inside of C' are drawn above
the polygonal chain C' — e, and the edges outside are drawn below. Edges inside
and outside of C' do not cross since they are separated by C' — e. Any two edges
inside of C' do not intersect because of planarity. The same holds for the edges
outside. The slopes for the segments of the edges not in C have been chosen large
enough such that edges in C' cannot interfer with edges not in C. This roughly
indicates that planarity is preserved.

Note that the area may be much larger than the area R occupied by the
point set. More precisly, let us assume that the minimal enclosing rectangle R
is a square of width W and § is the minimal distance in x-direction between
any two points. A short analysis shows that the resulting height might be at
least W/4 - W, while the width remains the same. This means that if we assume
integer-coordinates (§ = 1), we achieve an area of W? for the drawing.

Note that if we would allow 2 bends per edge, we could easily draw the edges
in an orthogonal way and keep the area linear in the size of the point set.
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Fig. 1. The basic construction

Theorem 1. Let S be an arbitrary set of n points and G be any plane graph
with an external hamiltonian cycle and n vertices. Then G can be drawn planar
with a mapping of the vertices to the points such that each edge has at most one
bend.

3 The General Case

In order to apply the technique above we need to find an external hamiltonian
cycle, namely a hamiltonian cycle including an edge on the outer face. Testing
all possible edges e = (v, w) on the outer face, we could request a hamiltonian
path, which is a well-known NP-complete problem even on planar graphs. On
the other hand, we know of a linear-time algorithm to find external hamiltonian
cycles by Chiba and Nishizeki [5], if the graph is four-connected. Since the graphs
we consider are triangulated, the problematic cases appear if there are separating
triangles, namely cycles of length 3 which do not circumscribe single faces. Only
such graphs may not contain external hamiltonian cycles.

First of all, we give a reduction to the four-connected case which will finally
lead to drawings with at most two bends per edge. Then, in the following section
we present a small plane graph without any external hamiltonian cycle and a
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Fig. 2. Wasting and saving some area

point set, and we prove that any planar drawing of this graph on this point set
must have at least one edge with 2 bends. This indicates that our simple tech-
nique is reasonably good and it will not normally be beaten by other algorithms
with respect to the maximal number of bends per edge.

Assume G is a plane triangulated graph which is not four-connected. Let e =
(v, w) be an edge of any particular separation triangle which clearly exists. Edge e
lies near two triangular faces (v, w, s) and (v, w, t). We destroy those triangles by
inserting a dummy vertex z on e and connecting z by edges to the vertices v, w, s
and t. Note that by each single operation, the number of separation triangles
decreases and no such triangles are created anew. The dummy vertices z do not
appear in any separating triangle. We perform this operation until all separating
triangles are destroyed. The separating triangles can be efficiently found by the
algorithm of Chiba and Nishizeki [4]. Then the new graph G’ is four-connected.

We now apply the technique described above to G’. The only modification is
the handling of the dummy vertices z. Figure 3 gives an example.

Let C’ be the external hamiltonian cycle as found by the algorithm of Chiba
and Nishizeki. Clearly, C’ visits z, and immediately before and afterwards, it
visits two vertices a,b € {v,w,s,t}. We place a new dummy point p, exactly
between the points assigned to a and b.

Then the graph can be drawn as described above. Finally, we remove the
edges (s,z) and (t, z) and join the (at most) two segments of (v, z) and (z,w).
This immediately gives a drawing with at most 3 bends per edge, since there is
at most one dummy vertex on each edge.

Lemma 1. Given an arbitrary plane graph with n vertices and a set of n points
in the plane. In time O(nlogn), we can find a mapping of the vertices to the
points, so that the edges can be drawn planar and with at most 3 bends each.
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1 23 4 5 6 721 8 9 1022 11 12

1 23 4 5 6 721 8 9 1022 11 12

Fig. 3. An example for the construction of graphs without external hamiltonian cycle.
Vertices z1 and z2 are dummies. They arise when destroying the separating triangles.
The figures to the right indicate the solutions with three and two bends respectively.

Markus Eiglsperger suggested a way of saving one bend (out of three) by
drawing some of the segments of the edges vertically. In the third part of Figure
3, we indicate the idea.

Lemma 2. Given a solution with at most three bends for each edge constructed
by the algorithms above, we can modify the drawing so that it remains planar and
the mazimal number of bends is two. The used area might grow exponentially.

Proof: Let P be the designated hamiltonian path along the points p1,...pn
such that the edges (p;, pi+1) are drawn as a straight line. P induces a partition
of the drawing plane into an upper and a lower part. Note that for each edge
e with two or three bends there is a dummy vertex d. placed on an the edge
(pi, pixr1) where the edge e crosses path P. Following the construction above,
it is clear that each edge crosses P once at most, hence the two segments of e
incident to the dummy vertex d. may be able to be drawn vertically. We discuss
now the implications of such operations:

We consider just the section in the upper part of the drawing, the lower part
is handled analogously. Let e be the edge under consideration with segments s;
and so where so ends at dummy vertex d.. Let a; and as be the angles indicating
the slopes of the segments as shown in figure 4.

Stretching s; such that a;; remains the same, the angle as increases to 90° and
the segment sy becomes vertical. We will call it s, now. Planarity is eventually
violated if there are some segments s with angle 3 crossing the cone between s
and s,. We can correct this easily by rotating the segment s such that 3 also
increases. This process is iterated if necessary. Obviously it ends after at most m
steps since we only proceed from left to right and never backtrack. The proper
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Fig. 4. The configuration before and after rotating segment ss in vertical position.

nesting of the edges (halfedges) in the upper part of the drawing ensures that
for each edge only m rotations are necessary, implying a quadratic running time.

Combined with a corresponding process for the lower part we end when the
segments incident to any dummy vertices are vertical and the corresponding
bend is saved.

In the second part of the proof we sketch a situation where the area grows ex-
ponentially. The next figure shows two nested edges with corresponding dummy
vertices on different sides (left and right).

We assume that the slopes are at 45° to start with and the points and bends
lie on integer coordinates. When we perform the modifications described above,
so that the segments incident to the dummy vertices become vertical, the drawing
grows by more than a factor of two.

Now assume that we have n/2 of such pairs nested, as indicated in the next
figure. Consider the i-th pair from the inside. The drawing of G;_1 includes an
axis-parallel rectangle R; determined by the length of the vertical segments of
the edges from the i — 1-th pair. Next, we see that the two edges from pair ¢ have
to circle around this rectangle using only two bends and one vertical segment
in the middle. It follows quite easily that the lengths of these segments must be
quite large compared to the height of the rectangle R;_; and that a new rectangle
R; of height at least twice as large as the height of R;_; results. Hence, we can
conclude that the height of the drawing grows exponentially, at the very least.

We conclude with a note regarding the runtime. Clearly the first part of the
construction works in linear time, since we can use the linear time algorithm of
Chiba/Nishizeki [4] to determine the separating triangles. Then the saving of the
third bends by rotating some of the segments might cause a quadratic number
of steps.
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i-th pair

Fig. 5. The recursive definition of the graph with exponential height.

Theorem 2. Any plane graph can be mapped on any given point set in the plane
and can be drawn with at most three bends per edge in linear time and with at
most two bends per edge in quadratic time.

4 The Lower Bound

Next, we show that this bound is optimal in the worst case. Consider the follo-
wing triangulated graph discussed in the example from the last figure.

Fig. 6. The candidate for the lower bound proof.

Although there is a hamiltonian path in G, there is no external hamiltonian
path. We try to map G on a set of 12 points with the same y-coordinate Y. This
point set has the property that each edge with only one bend must lie completely



172 M. Kaufmann and R. Wiese

Fig. 7. Edge (b, f) needs two bends in this drawing.

above or completely below the Y-line. Any edge segment that crosses the Y-line
must belong to an at-least-two bend edge.

Let x1,...,x, be the xz-coordinates of the points in increasing order. Since
the outer face of G is a triangle with vertices a, b, ¢ it is clear that in any one bend
drawing {x1,212} C {za,xp, 2.} (With x,, we mean the z-coordinate vertex a
is mapped to). We examine the case where 1 = x., 12 = x,. Both of the other
cases are similar or symmetric. Next we want to draw the outer face. For that
we map b to xp, (1 < xp < x12) and draw the outer face edges such that (a, c)
bends above the Y-line and (a,b), (b, c) bend below. Next we draw the edges
of the triangles b,d,a and b, c,d. Without loss of generality, we map vertex d
to x4, (x4 < x4 < xp) and draw (a,d), (d,c) with a bend above the Y-line. We
draw the edge (d,b) with a bend above the Y-line and show that one edge within
triangle {b, d, a} cannot be drawn with only one bend (since {b, ¢, d} and {b,d, a}
are symmetric, we could show the same for {b, ¢, d} if we would draw edge (d, b)
with no bend or a bend below the Y-line).

Now we want to draw the edges from d to e, f and h. Since we do not want
to change the embedding and edge (d,b) bends above the Y-line, these edges
must also bend above the Y-line and the xz-coordinates of their end points must
obey the order z, < =, < x5 < . < x.. Next we draw the edges from a to
e, f and g. Since (d, e) bends above the Y-line the edges (a, f) and (a,g) must
bend below the Y-line. The order of the coordinates is nearly fixed by now:
Tqg < xp < Tg,Tp < Tp < Te < Te. Now we are at a point where we cannot draw
edge (b, f) without letting it cross the Y-line, since (d, h) and (a, g) have their
bends in opposite directions. See Figure 7.
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5 The NP-Completeness Result

In this section we prove

Theorem 3. Given any plane graph G with n vertices and n points on a line.
The mapping problem of the vertices at the points so that the edges are drawn
planar and with at most one bend each is NP-complete.

Proof: The external-hamiltonian-cycle problem for plane graphs is NP-comp-
lete since it can be used to solve the hamiltonian-cycle problem for plane graphs
by an iteration over all faces of the embedding.

We call a plane graph G = (V| E) (external) hamiltonian-extensible if some
edges E’ can be inserted without destroying planarity enabling G’ = (V, EUE")
to become (external) hamiltonian. The problem as to whether a given planar
graph G can be made (external) hamiltonian by inserting at most k > 0 edges is
clearly NP-complete since its variant with & = 0 is equivalent to the (external)
hamiltonian-cycle problem for planar graphs.

The equivalence of the external-hamiltonian-cycle problem and the 1-bend
drawability can be seen as follows: As in the lower bound example we take n
points with the same y-coordinate. If G is external-hamiltonian extensible, we
take the cycle C' and apply the basic technique to achieve 1-bend drawings.
On the other hand, if G has a mapping on the points of the horizontal line L
such that a 1-bend drawing D(G) exists, there is clearly no edge which crosses
line L. Otherwise, it would bend twice. Hence we can easily extend G by edges
between any point p; and p;4+1 for ¢ = 1,...,7 — 1 such that this extension
induces a hamiltonian path. The last (external) edge between p,, and p; can also
be inserted if it does not already exist.

6 Discussion

One might argue that we are cheating regarding the lower bound example since
all points with the same y-coordinate contradict the commonly used assumption
of a general position of the points. On the other hand, the scenario seems quite
realistic. If the objects (vertices) are required to be arranged in linear order
horizontally or vertically, we get exactly the given set of points which we have
already proved to be hard. Open problems:

1. Improve the area bounds, especially for the general case.

2. Extend the lower bound proof and the NP-completeness result to a set of
points in general position.

3. Note that the complexity of the no-bend variant is still open, although NP-
completeness is also conjectured [1].
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