
The Vertex-Exchange Graph: A New Concept
for Multi-level Crossing Minimisation

Patrick Healy and Ago Kuusik

Department of Computer Science and Information Systems
University of Limerick
Limerick, IRELAND

{Patrick.Healy, Ago.Kuusik}@ul.ie

Abstract. In this paper we consider the problems of testing a multi-
level graph for planarity and laying out a multi-level graph. We introduce
a new abstraction that we call a vertex-exchange graph. We demonstrate
how this concept can be used to solve these problems by providing clear
and simple algorithms for testing a multi-level graph for planarity and
laying out a multi-level graph when planar. We also show how the concept
can be used to solve other problems relating to multi-level graph layout.

1 Introduction

Multi-level crossing minimisation is a well-known problem in graph drawing.
Given a layered graph, the multi-level crossing minimisation (MLCM) problem is
to reorder vertices on each level so that the number of edge crossings is minimum.
The problem is NP -hard, even when there are only two layers and one layer is
fixed [4].

Despite the existence of an effective heuristic solution – the Sugiyama algo-
rithm [9] – little is known about the multi-level crossing minimisation problem
itself. In particular, questions like what is a graph’s crossing number (or bounds
on it), what are the subgraphs that can be embedded without any crossings, or
how does the ordering of one level influence edge crossings with adjacant levels,
do not have answers. We believe that one of the reasons why these questions are
still not answered is the lack of a theoretical mechanism giving a global view of
the problem. In this paper we propose such a mechanism, the vertex-exchange
graph. The vertex-exchange graph provides an understanding of how edge cros-
sings relate to each other, it facilitates calculation of a level planar embedding
(if it exists) and multi-level crossing minimisation, and can be used to determine
successively tighter lower bounds on the crossing number. It may also provide a
method for determining a tight upper bound on the number of crossings in the
graph.

A multi-level (layer) graph is one where the vertices are placed on discrete
levels and edges are allowed only between vertices of adjacent levels. Traditio-
nally, multi-level graph layout algorithms have had three steps [1]. The first
step creates a proper levelling of the graph, the second step finds a permutation

J. Kratochv́ıl (Ed.): GD’99, LNCS 1731, pp. 205–216, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

206 P. Healy and A. Kuusik

of vertices on levels minimising the edge crossings, and the final step balances
the layout by adjusting each vertex’s x-co-ordinate. The algorithm has many
refinements and modifications [1,3].

In this paper, we investigate the second step of the multi-level crossing mi-
nimisation – the permuting of vertices on levels. The most popular multi-level
crossing minimisation algorithm to date is the Sugiyama algorithm [9]. The al-
gorithm is actually a general framework which solves the multi-level crossing
minimisation problem as a series of one-level crossing minimisation problems:
levels are successively visited (this is called layer-by-layer sweep) and each le-
vel is ordered by some one-level crossing minimisation heuristics. Specific im-
plementations of Sugiyama algorithm differ in three aspects: one-level crossing
minimisation heuristics, sweeping directions, and stopping criterion.

The choice of the one-level crossing minimisation heuristic has a great in-
fluence on the algorithm’s speed and accuracy. The barycenter [9] and me-
dian [4] heuristics have been preferred the most although there is experimental
evidence [7] that the O(n log n)-time Split heuristic [2] is superior to the two
previous linear-time algorithms. In their experimental study [7] the authors also
compared several one-level techniques in the two-level crossing minimisation.
An interesting outcome was that the barycenter heuristic gave the best results
and it outperformed even the authors’ own Integer Linear Programming (ILP)
technique. This result suggests that the multi-level crossing minimisation is less
understood than one-level crossing minimisation.

On the other hand, there may exist good alternatives to the layer-by-layer
sweep algorithms. One of the already existing alternatives is an ILP approach by
Jünger et al. [6]. There exists also an evolutionary algorithmic approach by Utech
et al.[10] that, naturally, cannot be considered to solve the crossing problem level
by level. However it combines a solution to this problem with a solution to the
previous step (levelling) so we do not consider it to be a solution to the crossing
minimisation problem per se.

In the following section we introduce the vertex-exchange graph and use it
to derive sufficient conditions for level-planarity of a graph. In Sections 3 and 4,
respectively, we present algorithms for planarity testing of multi-level graphs and
layout of planar multi-level graphs. We then show a further application by using
it in an ILP formulation to find the embedding of a graph with the minimum
number of crossings. Section 6 concludes the paper.

2 The Vertex-Exchange Graph

As our paper deals with graphs already having a proper levelling, we define a
proper level graph formally.

Definition 1. A proper level graph is a graph G = (V, E), with vertex set V =
V1 ∪V2 ∪ . . .∪Vp, Vi ∩Vj = ∅, i 6= j, and edge set E = E1 ∪E2 ∪ . . .∪Ep−1, Ei ⊆
Vi × Vi+1.

In what follows, when we refer to a level graph we assume that it is a proper
level graph in addition.

The Vertex-Exchange Graph 207

We introduce the notation 〈v, w〉 for an unordered pair of same-level vertices
v and w: 〈v, w〉 ≡ 〈w, v〉. Analogously, for two edges e, f ∈ Er, 〈e, f〉 denotes a
pair of edges. In contrast, we denote an ordered pair of same-level vertices v and
w by [v, w], and [v, w] 6≡ [w, v]

2.1 Definition and Properties

We now define the vertex-exchange graph of G = (V, E) as follows.

Definition 2. The vertex-exchange graph of a level graph G = (V, E) is a graph
G = (V, E) with vertex set V = V1∪V2∪ . . .∪Vp, where Vr = {〈v, w〉 | v, w ∈ Vr},
and the edge set E = E1 ∪ E2 ∪ . . . ∪ Ep−1, where Er = {〈e, f〉 | e, f ∈ Er, e =
(t, u), f = (w, v), 〈t, w〉 ∈ Vr, 〈u, v〉 ∈ Vr+1}.

Informally, the vertices of the vertex-exchange graph are all distinct pairs of
same-level vertices of the original level graph. Two vertices of a vertex-exchange
graph are connected by an edge whenever the corresponding vertices of the ori-
ginal graph are connected by non-adjacent edges. Examples of vertex-exchange
graphs are shown in Figure 1.

ab
df

gi

hi

cf

ef

gh
ce

cd

de

+

-

-
-

+

+

+

+

+
+

+

+

b

c d

g i

a

e f

h

a

c e

b

d

f g h

abde ce

gh fh

fg

cd

- +

+

+

+
- +

+

(a)

(b)

Fig. 1. Examples of vertex-exchange graphs

208 P. Healy and A. Kuusik

From the definition of the vertex-exchange graph, we can immediately state
some simple properties.

Property 1. If the original graph is a p-level graph then its vertex-exchange graph
is also a p-level graph.

From this it follows that the vertex-exchange graph is bipartite.

Property 2. The vertex-exchange graph does not contain self-loops. Between two
vertices v = 〈v1, v2〉 and w = 〈w1, w2〉 there can exist at most two edges. If there
exists two edges, then {v1, v2, w1, w2} is the vertex set of a K2,2 subgraph. The
vertex-exchange graph of a K2,2-free level graph is simple.

Given an embedding π : V → Z of the original graph, we represent it as a
labelling of the vertex-exchange graph as follows. For each vertex 〈v, w〉 of the
vertex-exchange graph, we assign an ordered pair of vertices ordering(〈v, w〉) =
[v, w], if π(v) < π(w), and ordering(〈v, w〉) = [w, v] otherwise. Also, we label
each edge 〈e, f〉 by label(〈e, f〉) = ‘-’, if e and f cross in embedding π, otherwise
by label(〈e, f〉) = ‘+’.

Suppose we have a vertex-exchange graph, and we wish to determine which
labellings are valid. It turns out that not all labellings correspond to feasible
embeddings of the original level graph. There are the following constraints:

3-cycle — Vertex orderings must correspond to a feasible linear ordering, e.g.,
for vertices u, v, and w of the original graph, the configuration of vertex
orderings [u, v], [v, w], and [w, u] is invalid, because it signifies a “cyclic”
linear ordering π(u) < π(v) < π(w) < π(u).

vertex-edge — Edge labels and vertex orderings must be consistent. If there are
edges (v1, w1) and (v2, w2) in the original graph then the vertex-exchange
graph’s edge (〈v1, v2〉, 〈w1, w2〉) must have label ‘+’, if the vertex orderings
are [v1, v2] and [w1, w2] or [v2, v1] and [w2, w1]; and by ‘-’ for the 2 other
possible vertex orderings.

min-minus — If a level graph is level non-planar then every labelling of its
vertex-exchange graph must contain some edges labelled by ‘-’.

From constraint min-minus it follows that if there is a vertex exchange graph
with all edges labelled by ‘+’ then the input graph is level planar. We examine
now the constraint min-minus more closely to determine where unavoidable
‘-’-edges may occur.

2.2 Odd-Labelled Cycles

First, we describe formally when two vertices of a vertex-exchange graph are
adjacent. A path, a cycle and a connected component can be defined similarly.

Property 3. Two vertices v = 〈v1, v2〉 and w = 〈w1, w2〉 of vertex-exchange graph
G = (V, E) are adjacent if vertices v1 and v2 are on the same level of G and w1
and w2 are on the same level of G and the levels are adjacent and there exist
either edges (v1, w1) and (v2, w2) or (v1, w2) and (v2, w1) in the input graph.

The Vertex-Exchange Graph 209

Examples of even- and odd-labelled cycles can be found in Figure 1. The
cycle (ab, cd, gi, df) in Figure 1(a) is odd labelled, but the cycle (ab, cd, gh, de)
in Figure 1(b) is even-labelled.

To understand the importance of odd-labelled cycles we will describe here
briefly how a level planar embedding can be calculated by an algorithm based on
a depth-first search of the labelling of G of an initial embedding, π, of G. Further
details of the level planarity testing and level planar embedding algorithm are
given in Sections 3 and 4, respectively.

Firstly, we mark all the vertices of G as “unvisited.” We start from some
vertex v of G and mark it “unchanged” and maintain ordering [w1, w2]. Next,
we pick an adjacent vertex w of v; we keep the ordering ordering(w) = [w1, w2]
and mark w “unchanged” if (v, w) is a ‘+’-edge. Otherwise we reverse [w1, w2]
and mark w “reversed.” We repeat the procedure for all the “unvisited” adjacent
vertices, u, of w, reversing the vertex ordering of u if (w, u) is labelled ‘-’ and
maintaining the ordering if the edge is labelled ‘+’.

For instance, applying this algorithm for vertex-exchange graph in Figure 1(b),
starting from vertex fg, would result in de and gh being marked “reversed.” This
corresponds exactly to a level planar embedding.

It is not difficult to see that if a vertex-exchange graph contains an odd-
labelled cycle then conflicting markings of some vertex of the odd-labelled cycle
occur because the two paths along the cycle impose different markings. For
example, if we start from vertex ab in Figure 1(a), then gi would get different
marking by paths (ab, cd, gi) and (ab, df, gi). The next theorem shows that the
odd-labelled cycles in the vertex-exchange graph are the only causes of level
non-planarity.

Theorem 1. A level graph G is level planar if and only if the vertex-exchange
graph G of G does not contain any odd-labelled cycles.

Proof. Level planar ⇒ no odd labelled cycles. Every level planar graph has a level
planar embedding. The labelling of the vertex-exchange graph G corresponding
to a level planar embedding has all edge labels ‘+’, which means all cycles of G
are trivially even-labelled.

No odd-labelled cycles ⇒ level planar. Clearly, if G does not contain any odd-
labelled cycles, it is possible to reorder vertex pairs without any conflicts. Also,
due to the way the algorithm works, it is guaranteed that edge and vertex labels
match. What needs to be shown, is that the calculated vertex labels do not cause
any three-cycle conflicts.

Let us assume that we have a sequence of vertices a, b, and c on some level of
the input graph G. To have a three-cycle violation, there must be an even-labelled
path (〈a, b〉, . . . , 〈b, c〉) and an odd-labelled path (paths) (〈a, b〉, . . . , 〈a, c〉) and
(or) (〈b, c〉, . . . , 〈a, c〉) in the vertex-exchange graph. Next, let x be the vertex
of the even-labelled path corresponding to the highest or lowest vertex pair
〈x1, x2〉 of the input graph. Let y and 〈y1, y2〉 be those of an odd-labelled path.
Let (〈b, c〉, . . . , y) be an odd-labelled path and (y, . . . , 〈a, c〉) be an even-labelled
path. From the vertex-exchange graph we construct the input graph which will
be level non-planar.

210 P. Healy and A. Kuusik

The situation where (〈b, c〉, . . . , y) is the even-labelled path and (y, . . . , 〈a, c〉)
is the odd-labelled path can be proved in a similar fashion and likewise for the
cases where x ≡ y or the pairs share only one vertex such as x1 ≡ y2.

It is worthwhile noting that an alternative proof method of Theorem 1 is to
show that the vertex-exchange graphs of each type of minimal level non-planar
subgraphs [5] possess at least one odd-labelled cycle. (A minimal level non-planar
graph G = (V, E) is a non-planar graph such that G′ = (V, E \ {e}),∀e ∈ E is
planar.)

In fact, minimal level planar subgraphs are directly related to odd-labelled
cycles, as shown by the following theorem.

Theorem 2. Let C be an odd-labelled cycle in a vertex-exchange graph and C
be the subset of edges of the input graph which are mapped to the edges of C.
Then there exists a subset of edges F ⊆ C which is the edge set of a minimal
level non-planar subgraph.

Proof. Consider a graph G which includes exactly one level minimal non-planar
subgraph, H. Then, from Theorem 1, the vertex-exchange graph G of G has
at least one odd-labelled cycle. By the removal of any edge from H, the graph
G becomes level planar and, therefore, the odd labelled cycle disappears from
the vertex-exchange graph G. Hence, every edge of H maps to some edge of the
odd-labelled cycle C of G.

As an illustration of this theorem, consider cycle (cd, gi, df, hi, de, gh) in Fi-
gure 1(a). It corresponds to the subgraph with vertex set {c, d, e, f, g, h, i} of the
original graph. This subgraph is a 2-level minimal non-planar subgraph called a
double-claw.

3 Level Planarity Testing by the Vertex-Exchange Graph

The basic idea of the level planarity testing algorithm was given in the pre-
vious section. The algorithm consists of calling the depth first search routine
(Algorithm 1) for each connected component of a vertex-exchange graph. If each
component search returns ‘true’ then the whole vertex-exchange graph has no
odd-labelled cycles and the input graph is level planar.

We have used the following encoding for vertex labels. Each vertex v of the
vertex-exchange graph has an attribute value(v) which signifies the ordering
of the corresponding vertices of the input graph. Three values are possible for
value(v): unknown for not visited, true for the original ordering, and false for
reverse ordering. Note that we do not actually change any edge labels, because
they will finally be all ‘+’ for a level planar graph anyway.

Using the depth first search routine above we can achieve a bound of O(|V |2)
on the running time. Naively, the running time of the algorithm for an arbitrary
input graph, is O(|E|) = O(|E|2) – since the depth-first search visits each edge
exactly once. However, it would be foolish to apply the algorithm to arbitrary

The Vertex-Exchange Graph 211

Algorithm 1 LevelPlanarityDFS (G; v; b)

1: if value(v) = unknown then

2: value(v) = b

3: for all vertices w adjacent to v in G do

4: if label((v; w)) = `+' then

5: result = LevelPlanarityDFS (G; w; b)
6: else

7: result = LevelPlanarityDFS (G; w;:b)
8: end if

9: if result = false then

10: return false

11: end if

12: end for

13: else if value(v) 6= b then

14: return false

15: end if

16: return true

graphs because graphs with |E| > 2|V | − 4 cannot be planar by a corollary of
Euler’s formula for bipartite graphs. A vertex-exchange graph is bipartite and
planarity is a necessary condition for level planarity.

Consequently, when applying this algorithm, it makes sense to perform the
simple check that |E| ≤ 2|V | − 4 first.

Asymptotically, this algorithm does not compete with an efficient PQ-tree-
based linear-time algorithm by Leipert [8]. However, our algorithm has a good
trade-off between efficiency and conceptual simplicity. It can be understood and
implemented with reasonably small effort yet it can test level planarity of a
200-vertex graph in no more than 2 seconds1. So, we consider our algorithm
preferable in situations where the graphs are not very big and a PQ-tree library
is not available.

4 Layout Calculation of a Level Planar Graph

In addition to level planarity testing, Algorithm 1 can also be used to calculate
the layout of a level planar graph. After the completion of LevelPlanarityDFS ,
all the vertex values are either ‘true’ or ‘false’. The embedding can then be found
from these values by using a sorting algorithm.

However, the requirement that the 3-cycle constraints be satisfied is a com-
plication. As we have shown, 3-cycle constraints are automatically satisfied in a
connected component of a vertex-exchange graph. The 3-cycle constraints for-
med by the vertices belonging to different connected components need extra
care. Figure 2 provides an example graph where the 3-cycles cause a problem.

1 All experimental work was carried out on a 300MHz DEC AlphaStation.

212 P. Healy and A. Kuusik

For instance, if we assign vertex labels as follows:

value(〈a, b〉) = true ⇒ value(〈d, f〉) = false
value(〈d, e〉) = true
value(〈e, f〉) = true

then we get a 3-cycle violation since the latter two assignments imply
value(〈d, f〉) = true.

cf

cd

gh ce

-

+

+

+

ab df

de

ef

(a) (b)

ba

c d e f

g h

Fig. 2. A graph whose layout calculation has a 3-cycle problem (a); and its vertex-
exchange graph (b).

This complication is solved as follows. The vertex-exchange graph is divided
into connected components as in the level planarity testing case. Then, a table of
all those 3-cycles which possess vertices of different components is constructed.
There are 6 fields in the table: identifiers and values of all 3-cycle vertices. For
each table record, a mapping from each of the three participating vertices is
made. This permits location of an entry of the table of 3-cycles quickly (in
almost constant or logarithmic time depending on the implementation of the
map).

Another auxiliary data structure is the queue of component assignments. The
queue items have fields for vertex identifier, vertex value, and the component the
vertex belongs to. The queue is used for identifying the next component which
needs processing by LevelPlanarityDFS . Initially, the queue is empty.

Now whenever a vertex is assigned a value (line 2 of Algorithm 1), the table is
updated accordingly. If the update results in the assignment of a single remaining
vertex value constrained by the other two vertex values in a 3-cycle then the
remaining vertex identifier with its value and component identifier is inserted
into the queue. If a component has been processed by LevelPlanarityDFS and
the next component has to be selected and there is an item in the queue then the

The Vertex-Exchange Graph 213

component corresponding to the queue item is taken as the next one. The first
vertex to be assigned and its value is then taken from the queue item instead of
taking an arbitrary vertex and value. A minor technical detail is that for each
component we have a boolean value indicating whether it is processed or not in
order to avoid processing the same component twice.

The enhancements for keeping track of three-cycles unfortunately make the
level planar layout algorithm slower than the level planarity testing algorithm.
Since the 3-cycle table has O(|V |3) items then its construction – and, therefore,
the whole algorithm – has O(|V |3) running time.

5 Crossing Minimisation

Crossing minimisation of general level graphs is far more interesting than layout
calculation of level planar graphs from a practical perspective. As we observed
before, there are three different types of constraints which need to be satisfied
when minimising crossings using the vertex-exchange graph. Thus it is natural
to suggest Integer Linear Programming (ILP) as a convenient method to satisfy
a big variety of constraints. We will see below that properties of the vertex-
exchange graph play a role here also.

Jünger et al. [6] have proposed an ILP formulation of the crossing mini-
misation problem. They encode the problem using binary variables for linear
ordering. For notational convenience we will refer to a vertex v with π(v) = i as
vertex i and, similarly, an edge (v, w) with π(v) = i and π(w) = j as edge (i, j).

xr
ij =

{
1 if vertex i is placed before vertex j on level r,

0 if vertex i is placed after vertex j on level r.

and for the occurrence of a crossing:

cr
ijkl =

{
1 if edges (i, j) and (k, l) cross,
0 otherwise,

The inequalities represent 3-cycle constraints and the relation between linear
orderings of vertices and crossings (constraints 3-cycle and vertex-edge). The
whole ILP formulation is expressed as follows.

Minimise
p−1∑
r=1

∑
(i,j)(k,l)∈Er

cr
ijkl (1)

subject to

−cr
ijkl ≤ xr+1

jl − xr
ik ≤ cr

ijkl (i, j), (k, l) ∈ Er, j < l (2)

1 − cr
ijkl ≤ xr+1

jl + xr
ik ≤ 1 + cr

ijkl (i, j), (k, l) ∈ Er, j > l (3)

0 ≤ xr
ij + xr

jk − xr
ik ≤ 1 1 ≤ i < j < k ≤ |Vr| (4)

xr
ij , y

r
ij , c

r
ijkl ∈ {0, 1} . (5)

214 P. Healy and A. Kuusik

This ILP formulation can find the layout with minimum number of crossings
of medium-sized graphs (about 30-40 vertices and edges) in a few seconds. Howe-
ver, the authors suggest the need for additional inequalities in order to develop
a practically useful algorithm.

We propose to employ the odd-labelled cycles for additional inequalities. The
basic idea for additional constraints is that we switch the labelling of the edges of
a vertex-exchange graph deliberately so that all the cycles become even-labelled.
For the input graph, this means that we deliberately create some crossings. As
the goal is to have the minimum number of crossings in the final layout, we are
interested in as few edge-label switchings as possible. A switching of an edge
label means that we set a crossing variable cijkl = 1 for the edges (i, j) and (k, l)
of the input graph that the edge of the vertex-exchange graph is mapped from.

Fundamental cycles are of use in finding new equalities. A fundamental cycle
is defined as follows.

Definition 3. Given a simple path P = (u, . . . , w) in a spanning tree T of
G = (V, E), then if there is a chord (u, w) ∈ E, then C = P ∪ (u, w) is a
fundamental cycle of G.

We now make use of the following simple fact regarding fundamental cycles.

Lemma 1. If all the fundamental cycles of a vertex-exchange graph G are even-
labelled then all the cycles of G are even-labelled.

Proof. Omitted.

For convenience we will change our notation slightly. Let e be an edge belon-
ging to a fundamental cycle C. In terms of the original graph, let e = (〈i, k〉, 〈j, l〉)
for some i, j, k, and l. We will use ce to denote cijkl.

Now the constraints are expressed as follows. For each odd-labelled funda-
mental cycle C: ∑

e∈C
ce = 2kC + 1, 0 ≤ kC ≤ |C|/2 − 1 (6)

and for each even-labelled fundamental cycle C:∑
e∈C

ce = 2kC , 0 ≤ kC ≤ |C|/2 (7)

where ce ∈ {0, 1} and kC ∈ Z.
Equation (6) expresses the constraint that an odd-labelled cycle can have

only an odd number of switched labellings; equation (7) constrains to be even
the number of switched labellings that an even-labelled cycle can have.

Let C be an odd labelled cycle. Then it is possible to express constraint (6)
without the extra integer variables kC :

− |D| + 1 ≤ −
∑
e∈D

ce +
∑

e∈C\D
ce ≤ |C| − |D| − 1

∀D ⊂ C, |D| = 0, 2, . . . , 2b|C|/4c (8)

The Vertex-Exchange Graph 215

In the same way, (7) can be expanded.

− |D| + 1 ≤ −
∑
e∈D

ce +
∑

e∈C\D
ce ≤ |C| − |D| − 1

∀D ⊂ C, |D| = 1, 3, . . . , 2b(|C| − 2)/4c + 1 (9)

In general, this transformation does not seem to be very efficient because the
number of inequalities for one cycle becomes

∑|C|/4
i=1

(|C|
2i

)
= O(2|C|). Nonetheless,

practical results show that for each fundamental odd-labelled cycle C the single
inequality

∑
e∈C ce ≥ 1 alone decreases the number of branch-and-bound nodes

visited by the ILP solver.

5.1 Crossing Number Bounds

We have implemented the new ILP formulation, and we have observed that
the size of the branch-and-bound tree with new equalities and inequalities is
approximately half of that of the original formulation. One of the reasons why
the new constraints have such influence can be explained by the improved lower
bound calculation. It is easy to see that the LP-relaxation of the original ILP (1)–
(5) results always with objective value 0, all cijkl = 0, and all xij = 0.5. The
new cycle constraints do not allow this, since they force some crossing variables
to take non-zero values.

Thus, repeated addition of constraints derived from the vertex-exchange
graph provide a sequence of improved lower bounds for the crossing number.

We have also observed in our work that the number of crossings in any
embedding of G is always less than or equal to the number of odd-labelled
fundamental cycles. Thus we make the following conjecture.

Conjecture 1. The crossing number of a graph, G, is bounded from above by the
number of odd-labelled fundamental cycles of its vertex-exchange graph G.

6 Conclusions

In this paper we have proposed a new technique for analysing proper level gra-
phs. The technique – which we call the vertex-exchange graph – admits in an
obvious way a method for testing the planarity of (proper) level graphs. Alt-
hough not asymptotically optimal its conceptual straightforwardness and ease
of coding may make the algorithm a viable alternative to known optimal algo-
rithms. Building on this algorithm we have shown how the layout of a planar
level graph can be determined. To the best of our knowledge this is the first
algorithm that does not lay out such a graph in a level-by-level fashion.

We presented a further application of this idea by using it in an ILP for-
mulation of crossing minimisation. This yielded an improving sequence of lower
bounds on the crossing number. Although we do not show it here, under certain
conditions these constraints can be shown to be facet defining for the polytope.

216 P. Healy and A. Kuusik

Though we have shown several uses of the vertex-exchange graph, we believe
others applications exist. For instance, it would be interesting to investigate how
the vertex-exchange graph can be employed by heuristic crossing minimisation
algorithms. Also, our conjecture that the number of odd-labelled fundamental
cycles is an upper bound on the crossing number of the levelled graph would be
an interesting and important result.

References

1. G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing, Algorithms
for the Visualization of Graphs. Prentice Hall, 1999.

2. P. Eades and D. Kelly. Heuristics for drawing 2-layered networks. Ars Combina-
toria, 21-A:89–98, 1986.

3. P. Eades and K. Sugiyama. How to draw a directed graph. Journal of Information
Processing, 13(4):424–437, 1990.

4. P. Eades and N. C. Wormald. Edge crossings in drawings of bipartite graphs.
Algorithmica, 11:379–403, 1994.

5. P. Healy and A. Kuusik. Characterisation of level non-planar graphs by minimal
patterns. Technical Report UL-CSIS-98-4, University of Limerick, 1998.

6. M. Jünger, E. K. Lee, P. Mutzel, and T. Odenthal. A polyhedral approach to
multi-layer crossing minimization problem. In Graph Drawing, 5th International
Symposium, GD ’97, Rome, Italy, September 1997, volume 1353 of Lecture Notes
in Computer Science, pages 13–24. Springer-Verlag, 1997.

7. M. Jünger and P. Mutzel. Exact and heuristic algorithms for 2-layer crossing
minimization. In Graph Drawing, Symposium on Graph Drawing, GD ’95. Pas-
sau, Germany, September 20–22, 1995, volume 1027 of Lecture Notes in Computer
Science, pages 337–348. Springer-Verlag, 1995.

8. S. Leipert. Level planarity testing and embedding in linear time. PhD thesis,
Institut für Informatik, Universität zu Köln, 1998.

9. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hier-
archical system structures. IEEE Transactions on Systems, Man, and Cybernetics,
11(2):109–125, 1981.

10. J. Utech, J. Branke, H. Schmeck, and P. Eades. An evolutionary algorithm for
drawing directed graphs. In Proceedings of the 1998 International Conference on
Imaging Science, Systems, and Technology (CISST’98), pages 154 – 160, 1998.

	Introduction
	The Vertex-Exchange Graph
	Definition and Properties
	Odd-Labelled Cycles

	Level Planarity Testing by the Vertex-Exchange Graph
	Layout Calculation of a Level Planar Graph
	Crossing Minimisation
	Crossing Number Bounds

	Conclusions

