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Abstract. Let G = (V0, V1, V2, E) be a 3-layer graph. The 3-layer dra-
wings of G in which V0, V1, and V2 are placed on 3 parallel lines and
each edge in E is drawn using one straight line segment, are studied. A
generalization of the linear arrangement problem which we call the 3-
layer pseudo linear arrangement problem is introduced, and it is shown
to be closely related to the 3-layer crossing number. In particular, we
show that the 3-layer crossing number of G plus the sum of the square
of degrees asymptotically has the same order of magnitude as the opti-
mal solution to the 3-layer linear arrangement problem. Consequently,
when G satisfies certain (reasonable) assumptions, we derive the first po-
lynomial time approximation algorithm to compute the 3-layer crossing
number within a multiplicative factor of O(log n) from the optimal.

1 Introduction

The planar crossing number problem is the problem of placing the vertices of a
graph in the plane and drawing the edges with curves, to minimize the number
of edge crossings [20]. This problem is known to be NP-hard [9] and has been
extensively studied in graph theory [23,16], and theory of VLSI [13]. One of
the most important aesthetic objectives in drawing graphs is to have a small
number of crossings [17], and therefore the crossing minimization problems have
been frequently studied by the graph drawing community e.g. [4,5,11,15].

Let G = (V, E) be an undirected graph with the vertex set V and the edge
set E. G is called a k-layer graph, if a partition of V into k sets V0, V1, ..., Vk−1
exists so that any edge in E has one end point in Vi and the other end point
in Vi+1 for some i = 0, 1, 2, ..., k − 2. Thus, any bipartite graph is a 2−layer
graph. If G = (V, E) is a k−layer graph, then we write G = (V0, V1, ..., Vk−1, E),
where {V0, V1, ..., Vk−1} is the partition of V into k disjoint sets. Let G =
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(V0, V2, ..., Vk−1, E) be a k-layer graph, k ≥ 2, and let L0, L1, ..., Lk−1 be k par-
allel lines in the plane. A k−layer drawing [1,4,12,15,21] of G consists of placing
the vertices of Vi into distinct points on Li, i = 0, 1, 2..., k −1, and then drawing
each edge using a straight line segment connecting the points representing the
end vertices of the edge. The objective is to minimize the number of crossings
between the edge pairs. Note that any k−layer drawing of G is identified by a
one to one function

D : V0 ∪ V1... ∪ Vk−1 → <,

where < is the set of non-negative real numbers. In particular, note that the
restriction of D to Vi, 0 ≤ i ≤ k − 1, specifies the order in which the vertices of
Vi will appear on Li. When k = 2 the corresponding drawing is called a bipartite
drawing and the problem of minimizing the number of crossings is called the
bipartite crossing number problem [5,11,15,21,19].

Computing the bipartite crossing number is NP-hard [9]1 and despite a great
deal of research which was done on this problem, no polynomial time approxi-
mation algorithm had been known for this problem. Very recently a polynomial
time approximation algorithm with performance guarantee of O(log n) from the
optimal was discovered for approximating the bipartite crossing number of a
large class of graphs on n vertices [19]. Nonetheless, no efficient approximation
algorithm for minimizing the number of crossings in a k-layer drawing has been
known for k ≥ 3. The main results in [19] were obtained by relating the bipartite
crossing number problem to the linear arrangement problem which is another
well known problem in theory of VLSI. In this paper we develop a general fra-
mework to study the 3-layer crossing number problem by relating it to a very
general version of the linear arrangement problem which we call the pseudo-
arrangement problem. In particular, we derive tight upper and lower bounds for
the 3-layer crossing number in terms of the arrangement values. The ratio of the
main term of the upper bound to the main term in the lower bound is only 3,
and the error term is the sum of the square of degrees in G. The result is inte-
resting, since it indicates that the number of edge crossings is closely related to
the length of the drawing which is defined by the pseudo-arrangement problem.
Consequently, we derive the first polynomial time approximation algorithm for
the 3-layer crossing problem with the performance guarantee of O(log n) from
the optimal, provided that the graph satisfies certain conditions.

2 Basic Concepts and Notations

Let G = (V, E) be a graph, we denote by dv the degree of v ∈ V . Throughout
this paper G = (A, B, E) denotes a bipartite graph on the partite sets A and B,
and the edge set E. G = (V0, V1, V2, E) denotes a 3-layer graph, with vertex set
V = V0 ∪ V1 ∪ V2, |V | = n, and the edge set E.

1 Technically speaking, the NP-hardness of the problem was proved for multigraphs,
but it is widely assumed that it is also NP-hard for simple graphs.
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For G = (V0, V1, V2, E), let G0 and G2 denote, respectively, the induced
subgraphs of G on the vertex sets V0 ∪ V1, and V2 ∪ V1. Note that G0 and G2
are bipartite graphs. Note that there is no edge in G with one end vertex in V0
and the other in V2. For any v ∈ V1, let dv,0 and dv,2 denote the degrees of v, in
G0 and G2, respectively, and note that dv,0 + dv,2 = dv.

A 3-layer drawing of G = (V0, V1, V2) is a one-to-one function

D : V0 ∪ V1 ∪ V2 → <.

Let Di denote the restriction of D to Vi, 0 ≤ i ≤ 2. Note that Di, 0 ≤ i ≤ 2
specifies the order in which the vertices in Vi are placed on the line Li. Observe
that (D0, D1) is a bipartite drawing for G0 and (D1, D2) is a bipartite drawing
for G2. For any e ∈ E, let cr0(e) denote the number of crossings of e with other
edges in the drawing (D0, D1), and cr2(e) denote the number of crossings of e
with other edges in the drawing (D1, D2) . We define cr0 and cr2 to be the total
number of crossings in the drawings (D0, D1) and (D1, D2), respectively, and
define crD to be the total number of edge crossings in D. Thus, crD = cr0 + cr2.
The 3-layer crossing number of G is the minimum number of crossings of edges
over all 3-layer drawings of G.

A linear arrangement (LA) of a graph G = (V, E) is a one to one func-
tion f : V → {1, 2, ...|V |}. The linear arrangement problem is to find a LA
so that

∑
uv∈E |f(u) − f(v)| is minimized [2,3,7,10,18]. This problem is known

to be NP-hard but can be approximated in polynomial time using a variety
of algorithms[7,10,18]. Crucial to our work are generalizations of this problem
defined for bipartite and 3-layer graphs.

For x, y ∈ <, let (x, y) denote the open interval between x and y. Let G =
(A, B, E). A pseudo linear arrangement (PLA) for G is a one to one function
f : A∪B → < so that f(B) = {1, 2..., |B|}. Hence, any vertex in B is assigned a
unique integer which is at most equal to |B|. Let ab ∈ E, with f(a) < f(b). We
define the length of e, denoted by Le

f , to be

∑
x∈B,f(x)∈(f(a),f(b))

dx.

We define the length of f , denoted by Lf , to be
∑

ab∈E Le
f . The pseudo linear

arrangement problem is to find a PLA of minimum length. We denote this mini-
mum value by L̄G. It follows from the recent work on spreading matrices [7,18]
that for any graph on n vertices L̄G can be approximated to within a factor of
O(log n) from the optimal in polynomial time.

A 3-layer pseudo linear arrangement (3PLA) of G = (V0, V1, V2, E) is a one
to one function f : V0 ∪ V1 ∪ V2 → <, so that f(V1) = {1, 2, 3, ..., |V1|}. Note
that we may view any 3PLA f of G as a 3-layer drawing of G. Let fi denote
the restriction of f to Vi, 0 ≤ i ≤ 2, and note that that (f0, f1) and (f1, f2) are
PLAs of G0 and G2, respectively. Let ab ∈ E, we define the length of e, denoted
by Le

f to be Le
(f0,f1), provided that e is an edge in G0, otherwise, we define Le

f

to be Le
(f1,f2). Note that for any edge e in G0
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Le
f =

∑
x∈V1,f(x)∈(f(a),f(b))

dx,0

whereas, for any e in G2,

Le
f =

∑
x∈V1,f(x)∈(f(a),f(b))

dx,2.

The length of f , denoted by Lf , is defined to be
∑

e∈E Le
f . The 3-layer pseudo

linear arrangement problem is to find a 3PLA for G which has the minimum
length. We denote this minimum value by LG. Let f be a 3PLA of G. For
v ∈ V0 ∪ V2, let u1, u2, ..., udv be its neighbors in the set V1 satisfying f(u1) <
f(u2) < ... < f(udv

). We define the median vertex of v, denoted by med(v), to
be ud dv

2 e.

3 Arrangements and 3-Layer Drawings

Let G = (V0, V1, V2, E) and D be a 3-layer drawing of G. We assume throughout
this paper that the vertices of V0 are placed on the line y = 0, vertices of V1
are placed on the line, y = 1, and vertices of V3 are placed on the line y = 2.
Moreover, since the number of crossings only depends on the order of vertices,
we will assume throughout this paper that the vertices of V1 are placed into the
points

(1, 1), (2, 1), ..., (|V1|, 1).

Note that for any v ∈ V , D(v) is the x-coordinate of v, and that D is a 3PLA
of G. In particular, note that for any v ∈ V0 ∪ V2, med(v) is the vertex ud dv

2 e,
where u1, u2, ..., udv

are neighbors of v in the set V1 satisfying D(u1) < D(u2) <
... < D(udv

).

Theorem 1. Let D be a 3-layer drawing of G = (V0, V1, V2, E), then

crD ≥ 1
2

(
LG −

∑
v∈V0∪V2

⌊
dv

2

⌋
dv

)
.

Proof. To show the lower bound on crD, consider the bipartite drawing (D0, D1)
of G0. Let v ∈ V0 with dv ≥ 2, and let u1, u2, ..., udv

be its neighbors with
D(u1) < D(u2) < ... < D(udv

). Let i be an integer, 1 ≤ i ≤ bdv/2c, and let
u be a vertex in V1 so that that D(ui) < D(u) < D(udv−i+1). Observe that u
generates du,0 crossings on the edges uiv and udv−i+1v, if it is not adjacent to
v; similarly, u generates du,0 − 1 crossings on the edges uiv and udv−i+1v, if it
is adjacent to v. Thus,

cr0(uiv) + cr0(udv−i+1v) ≥
∑

D(u)∈(D(ui),D(udv−i+1))

du,0 − dv.
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Hence, for v ∈ V0 with dv ≥ 2,

dv∑
i=1

crD0(uiv) ≥
b dv

2 c∑
i=1

∑
D(u)∈(D(ui),D(udv−i+1))

du,0 −
⌊

dv

2

⌋
dv.

We conclude by taking the sum over all v ∈ V0, dv ≥ 2 that,

2cr0 ≥
∑
v∈V0

dv∑
i=1

cr0(uiv) ≥
∑
v∈V0

b dv
2 c∑

i=1

∑
D(u)∈(D(ui),D(udv−i+1))

du,0 −
∑
v∈V0

⌊
dv

2

⌋
dv.

Using a similar approach we obtain

2cr2 ≥
∑
v∈V2

dv∑
i=1

cr2(uiv) ≥
∑
v∈V2

b dv
2 c∑

i=1

∑
D(u)∈(D(ui),D(udv−i+1))

d2,0 −
∑
v∈V2

⌊
dv

2

⌋
dv.

Define a 3PLA by: f(v) = D(v) for all v ∈ V1, and f(v) = med(v) + εv for all
v ∈ V0 ∪ V2, where εv is an infinitely small value. Let e = vx, where v ∈ V0 ∪ V2,
and x = med(v), then Le

f = 0. It follows that

Lf =
∑

v∈V0∪V2

b dv
2 c∑

i=1

∑
D(u)∈(D(ui),D(udv−i+1))

du,0.

Hence, 2crD ≥ Lf − ∑
v∈V0∪V2

⌊
dv

2

⌋
dv, and the claim follows by observing that

LG ≤ Lf . ut
Theorem 2. Let f be a 3PLA of G = (V0, V1, V2, E), then there is 3-layer
drawing D of G so that

crD ≤ 3
2
Lf +

∑
v∈V1

d2
v.

Proof. Define a new 3PLA by: D(v) = f(med(v)) for any v ∈ V0 ∪ V2, and
D(v) = f(v), for any v ∈ V1. If two vertices are placed at the same location, we
separate them by placing an arbitrary small distance between them.

LD ≤ Lf .

To prove the upper bound on crD, we estimate from above the number of cros-
sings on any edge incident to a vertex v ∈ V0 ∪ V2. The sum of the number of
crossings can be shown to be at most 3/2LD +

∑
v∈V1

d2
v using the method to

derive the lower bound. ut
By Theorems 1 and 2, in order to construct a 3-layer drawing with small

number of crossings, one only needs to find a 3PLA of G with small value.
Unfortunately, it is not known how to compute exactly or even approximate
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the 3-layer arrangement problem, in polynomial time. Nonetheless, we can show
that if G0 and G2 do not have vertices of degree zero, then, this problem “es-
sentially” becomes the pseudo linear arrangement problem, provided that G is
degree bounded. Let G = (V0, V1, V2, E), we denote the maximum degree among
all vertices in V1 by ∆1.

Lemma 1. Let G = (V0, V1, V2, E), and let f̄ be any PLA for the bipartite
graph G = (V0 ∪ V2, V1, E). Then, f̄ induces a 3PLA, denoted by f , so that

Lf ≤ Lf̄ .

Moreover, if dv,0 > 0 and dv,2 > 0, for any v ∈ V1, then

Lf̄

∆1
≤ Lf .

We can now present our main result.

Theorem 3. Let G = (V0, V1, V2, E) so that |E| > (2 + ε)|V |, for a positive ε.
Assume that dv,0 > 0 and dv,2 > 0, for all v ∈ V1, and that ∆1 is bounded by
a constant. Then, the 3-layer crossing number can be approximated to within a
factor of O(log n) from the optimal in polynomial time.

Proof. The conditions on E and ∆1 can be used to show that for any 3-layer
drawing D,

crD = Ω(
∑

v∈V0∪V2

d2
v).

Hence, by Theorem 1 crD = Ω(LG). It remains to construct an O(log n) times
optimal 3PLA, denoted by f , since then by Theorem 2 we can construct the
desired drawing D. To construct f , we first construct a O(log n) times optimal
PLA using the algorithm in [18]. By Lemma 1 this gives a O(log n) times optimal
3PLA, or f , since ∆1 is bounded by a constant. ut
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metry. Bolyai Society Mathematical Studies, Vol 6. Akadémia Kiadó, Budapest
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